Analyzing failure mechanisms and predicting step-like displacement: Rainfall and RWL dynamics in lock-unlock landslides

Xuekun Xiang, Haijia Wen, Jiafeng Xiao, Xiongfeng Wang, Hongyue Yin, Junhao Huang

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101959.

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101959. DOI: 10.1016/j.gsf.2024.101959

Analyzing failure mechanisms and predicting step-like displacement: Rainfall and RWL dynamics in lock-unlock landslides

Author information +
History +

Abstract

Lock-unlock landslides have thick sliding zones that store a lot of energy. This makes them start quickly, happen suddenly, and have serious consequences. Therefore, it becomes urgent to study the deformation and failure mechanisms of such landslides and develop rational predictive models. Taking the Jiuxianping landslide as an example, this study investigates the regularity of landslide displacement changes using multi-source data, focusing on the abrupt displacement patterns in the unlock phase. Furthermore, employing Transient Release and Inhalation Method tests combined with Geo-Studio’s SEEP/W and SIGMA/W modules for fluid–solid coupled simulation calculations, the evolution process of landslide failure mechanisms and deformation characteristics is analyzed and discussed. Lastly, utilizing data mining analysis of multi-source data, a hybrid optimized machine learning predictive model is established for model prediction comparison. The study reveals that: (1) The rise in infiltration line elevates pore water pressure, affecting the stability of the sliding zone, leading to “unlock effects” and step-like displacement deformation; (2) Simulation shows that YY208 is closer to the actual situation, located at the far bank position, while YY210 is greatly influenced by the “buoyancy effect”, resulting in a slowdown in deformation velocity; (3) After data preprocessing, overall actual displacement prediction performs better than simulation displacement prediction in terms of Mean Absolute Error, Mean Squared Error and Correlation Coefficient, but noise reduction processing can improve the periodic prediction effect of simulation displacement.

Keywords

Lock-unlock / TRIM test / Geo-Studio / Hybrid optimization / Machine learning

Cite this article

Download citation ▾
Xuekun Xiang, Haijia Wen, Jiafeng Xiao, Xiongfeng Wang, Hongyue Yin, Junhao Huang. Analyzing failure mechanisms and predicting step-like displacement: Rainfall and RWL dynamics in lock-unlock landslides. Geoscience Frontiers, 2025, 16(1): 101959 https://doi.org/10.1016/j.gsf.2024.101959

References

H. An, M. Kim, G. Lee, T.T. Viet. Survey of spatial and temporal landslide prediction methods and techniques. Korean J. Agric. Sci., 43 (2016), pp. 507-521,
CrossRef Google scholar
M.A. Brideau, D. Seadt, R. Couture. Structural and engineering geology of the East Gate Landslide, Purcell Mountains, British Columbia, Canada. Eng. Geol., 84 (3–4) (2006), pp. 183-206,
CrossRef Google scholar
H.T. Cao, X.Y. Yue. Homogenization of Richardsʼ equation of van Genuchten-Mualem model. J. Math. Anal. Appl., 412 (1) (2014), pp. 391-400,
CrossRef Google scholar
Y. Chen, H. Li, H. Karimian, M. Li, Q. Fan, Z. Xu. Spatio-temporal variation of ozone pollution risk and its influencing factors in China based on Geodetector and Geospatial models. Chemosphere., 302 (2022), Article 134843,
CrossRef Google scholar
H.R. Chen, S.Q. Qin, L. Xue, C. Xu. Why the Xintan landslide was not triggered by the heaviest historical rainfall: Mechanism and review. Eng. Geol., 294 (2021), Article 106379,
CrossRef Google scholar
W. Chen, S. Zhang, R. Li, H. Shahabi. Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Sci. Total Environ., 644 (2018), pp. 1006-1018,
CrossRef Google scholar
J. Cohen. Statistical Power Analysis for the Behavioral Sciences. (2nd ed.), Routledge (1988)
Z.C. Fang, Y. Wang, H.X. Duan, R.Q. Niu, L. Peng. Comparison of general kernel, multiple kernel, infinite ensemble and semi-supervised support vector machines for landslide susceptibility prediction. Stoch. Environ. Res. Risk Assess., 36 (2022), pp. 3535-3556,
CrossRef Google scholar
Z.Y. Fu, J.J. Long, W.Q. Chen, C.D. Li, H.K. Zhang, W.M. Yao. Reliability of the prediction model for landslide displacement with step-like behavior. Stoch. Environ. Res. Risk Assess., 35 (2021), pp. 2335-2353,
CrossRef Google scholar
H. Fu, G.-Y. Sun, J.-C. Ren, A.-Z. Zhang, X.-P. Jia. Fusion of PCA and segmented-PCA domain multiscale 2-D-SSA for effective spectral-spatial feature extraction and data classification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens., 60 (2022), pp. 1-14,
CrossRef Google scholar
Q. Ge, H.Y. Sun, Z.Q. Liu, B.B. Yang, S. Lacasse, F. Nadim. A novel approach for displacement interval forecasting of landslides with step-like displacement pattern. Georisk, 16 (3) (2022), pp. 489-503,
CrossRef Google scholar
J. Gilles. Empirical wavelet transform. IEEE Trans. Signal Process., 61 (16) (2013), pp. 3999-4010,
CrossRef Google scholar
N. Golyandina, V. Nekrutkin, A. Zhigljavsky. Analysis of Time Series Structure: SSA and Related Techniques. Chapman & Hall/CRC (2001)
B. Gyawali, M. Ahmed, D. Murgulet, D.N. Wiese. Filling temporal gaps within and between GRACE and GRACE-FO terrestrial water storage records: An innovative approach. Remote Sens., 14 (2022), p. 1565,
CrossRef Google scholar
J.M. Habumugisha, N. Chen, M. Rahman, M.M. Islam, H. Ahmad, A. Elbeltagi, G. Sharma, S.N. Liza, A. Dewan. Landslide susceptibility mapping with deep learning algorithms. Sustainability, 14 (3) (2022), p. 1734,
CrossRef Google scholar
H.M. Han, B. Shi, L. Zhang. Prediction of landslide sharp increase displacement by SVM with considering hysteresis of groundwater change. Eng. Geol., 2021 (280) (2021), Article 105876,
CrossRef Google scholar
H. Hassani, S. Heravi, A. Zhigljavsky. Forecasting European industrial production with singular spectrum analysis. Int. J. Forecast., 25 (1) (2009), pp. 103-118,
CrossRef Google scholar
F. Huang, Z. Ye, S.H. Jiang, J. Huang, Z. Chang, J. Chen. Uncertainty study of landslide susceptibility prediction considering the different attribute interval numbers of environmental factors and different data-based models. Catena, 202 (2021), Article 105250,
CrossRef Google scholar
W.J. Jia, T. Wen, D.C. Li, W. Guo, Z. Quan, Y.H. Wang, D.X. Huang, M.G. Hu. Landslide displacement prediction of Shuping landslide combining PSO and LSSVM model. Water, 15 (4) (2023), p. 612,
CrossRef Google scholar
P. Jiang, J. Chen. Displacement prediction of landslide based on generalized regression neural networks with K-fold cross-validation. Neurocomputing, 198 (2016), pp. 40-47,
CrossRef Google scholar
S. Jiang, J.Y. Li, S. Zhang, Q.H. Gu, C.W. Lu, H.S. Liu. Landslide risk prediction by using GBRT algorithm: Application of artificial intelligence in disaster prevention of energy mining. Process Saf. Environ. Prot., 166 (2022), pp. 384-392,
CrossRef Google scholar
S.H. Kim, H. June, Y. Son, P. Chang, W.. Saturation depth and slope stability considering unsteady rainfall in natural slope. J. Korean Soc. Agric. Eng., 19 (1) (2007), pp. 57-65,
CrossRef Google scholar
K. Liao, Y.P. Wu, F.S. Miao, L.W. Li, Y. Xue. Using a kernel extreme learning machine with grey wolf optimization to predict the displacement of step-like landslide. Bull. Eng. Geol. Environ., 79 (2020), pp. 673-685,
CrossRef Google scholar
H. Liu, X.W. Mi, Y.F. Li. Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM. Energy Convers. Manag., 159 (2018), pp. 54-64,
CrossRef Google scholar
L.L. Liu, H.D. Yin, T. Xiao, B.B. Yang, S. Lacasse. Ensemble learning for landslide displacement prediction: A perspective of Bayesian optimization and comparison of different time series analysis methods. Stoch. Environ. Res. Risk Assess., 38 (2024), pp. 3031-3058,
CrossRef Google scholar
L.W. Li, W, Y.P., Y.P. Huang, B. Li, F.S. Miao, Z.Q. Deng. Adaptive hybrid ML model for forecasting the step-like displacement of reservoir colluvial landslides: a case study in the three Gorges reservoir area, China. Stoch. Environ. Res. Risk Assess., 37 (2023), pp. 903-923,
CrossRef Google scholar
H.T. Long, G.D. Zhang, J.L. Cao. The use of BP neural network in the landslide prediction of Three Gorges Reservoir. Adv. Mater. Res., 838–841 (2014), pp. 2179-2184,
CrossRef Google scholar
X.S. Lu, F.S. Miao, X.X. Xie, D.Y. Li, Y.H. Xie. A new method for displacement prediction of “step-like” landslides based on VMD-FOA-SVR model. Environ. Earth Sci., 80 (2021), p. 542,
CrossRef Google scholar
S.Q. Lu, Q.L. Yi, W. Yi. Analysis on formation mechanism and stability of Nierwan landslide in the Three Gorges Reservoir area. Appl. Mech. Mater., 170–173 (2012), pp. 941-944,
CrossRef Google scholar
F.S. Miao, Y.P. Wu, Y.H. Xie, Y.N. Li. Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model. Landslides, 15 (2018), pp. 475-488,
CrossRef Google scholar
F.S. Miao, X.X. Xie, Y.P. Wu, F.C. Zhao. Data mining and deep learning for predicting the displacement of “Step-like” landslides. Sensors, 22 (2) (2022), p. 481,
CrossRef Google scholar
Phoon, K., Zhang, W.G., 2022. Future of machine learing in geotechnics. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 17(1), 7-22. https://doi.org/10.1080/17499518.2022.2087884.
S.P. Pudasaini, M. Krautblatter. The mechanics of landslide mobility with erosion. Nat. Commun., 12 (2021), p. 679,
CrossRef Google scholar
K.L. Song, H.Q. Yang, D. Liang, L.C. Chen, M. Jaboyedoff. Step-like displacement prediction and failure mechanism analysis of slow-moving reservoir landslide. J. Hydrol., 628 (2024), Article 130588,
CrossRef Google scholar
T.H. Su, S.J. Huang, J.G. Jean, C.S. Chen. Multiscale computational solid mechanics: data and machine learing. J. Mech., 38 (2022), pp. 568-585,
CrossRef Google scholar
D.L. Sun, Q.Y. Gu, H.J. Wen, S.X. Shi, C.L. Mi, F.T. Zhang. A hybrid landslide warning model coupling susceptibility zoning and precipitation. Forests, 13 (2022), p. 827,
CrossRef Google scholar
W.X. Sun, H.L. Liu, W.G. Zhang, S.L. Liu, L. Han. Determination of groundwater buoyancy reduction coefficient in clay: Model tests, numerical simulations and machine learning methods. Underground Space, 13 (2023), pp. 228-240,
CrossRef Google scholar
R. Vautard, M. Ghil. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Phys. d: Nonlinear Phenomena, 35 (3) (1989), pp. 395-424,
CrossRef Google scholar
H. Wang, G.Y. Long, P. Shao, Y. Lv, F. Gan, J.X. Liao. A DES-BDNN based probabilistic forecasting approach for step-like landslide displacement. J. Clean. Prod., 394 (2023), Article 136281,
CrossRef Google scholar
H.B. Wang, Y.H. Sun, Y.Z. Tan, T. Sui, G.H. Sun. Deformation characteristics and stability evolution behavior of Woshaxi landslide during the initial impoundment period of the Three Gorges reservoir. Environ. Earth Sci., 78 (2019), p. 592,
CrossRef Google scholar
X.K. Xiang, J.F. Xiao, H.J. Wen, Z.H. Li, J.H. Huang. Prediction of landslide step-like displacement using factor preprocessing-based hybrid optimized SVR model in the Three Gorges Reservoir, China. Gondwana Res., 126 (2024), pp. 289-304,
CrossRef Google scholar
R.Y. Yan, R.X. Gao, X.F. Chen. Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Process., 96 (Part A) (2014), pp. 1-15,
CrossRef Google scholar
B.C. Yang, J.X. Bai, Y.T. Duan, Z.P. Wang. The unlocked mechanism and instability prediction of a typical locked-segment-type slope in China: the Chana landslide. Bull. Eng. Geol. Environ., 81 (2022), p. 493,
CrossRef Google scholar
S. Yi, N. Sneeuw. Filling the data gaps within GRACE missions using singular spectrum analysis. J. Geophys. Res. Solid Earth, 126, e2020JB021227 (2021),
CrossRef Google scholar
Y. Yin, B. Li, W. Wang. Dynamic analysis of the stabilized Wangjiayan landslide in the Wenchuan Ms 8.0 earthquake and aftershocks. Landslides, 12 (2015), pp. 537-547,
CrossRef Google scholar
S. Yu, X. Ren, J. Zhang, H. Wang, J. Wang, W. Zhu. Seepage, deformation, and stability analysis of sandy and clay slopes with different permeability anisotropy characteristics affected by reservoir water level fluctuations. Water, 12 (2020), p. 201,
CrossRef Google scholar
W.G. Zhang, H.R. Li, L.B. Tang, X. Gu, L.Q. Wang, L. Wang. Displacement prediction of Jiuxianping landslide using gated recurrent unit (GRU) networks. Acta Geotech., 17 (2022), pp. 1367-1382,
CrossRef Google scholar
W.G. Zhang, S.L. Liu, L.Q. Wang, W.X. Sun, Y.W. He, Y.K. Wang, G.H. Sun. The overall stability of a partially unstable reservoir bank slope to water fluctuation and rainfall based on Bayesian theory. Landslides 21, 2021–2032 (2024),
CrossRef Google scholar
Y.G. Zhang, Z. Zhang, S. Xue, R.J. Wang. Stability analysis of a typical landslide mass in the Three Gorges Reservoir under varying reservoir water levels. Environ. Earth Sci., 79 (2020), p. 42,
CrossRef Google scholar
X.Z. Zhou, H.J. Wen, Y.L. Zhang, J.H. Xu, W.G. Zhang. Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization. Geosci. Front., 12 (5) (2021), Article 101211,
CrossRef Google scholar
C. Zhou, K.L. Yin, Y. Cao, B. Ahmed, X.L. Fu. A novel method for landslide displacement prediction by integrating advanced computational intelligence algorithms. Sci. Rep., 8 (2018), p. 7287,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/