Aerosol spatiotemporal dynamics, source analysis and influence mechanisms over typical drylands
Yunfei Zhang, Xiangyue Chen, Fengtao Zhao, Qianrou Xia, Hanchen Xing, Mengdi Du
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101958.
Aerosol spatiotemporal dynamics, source analysis and influence mechanisms over typical drylands
As globally important dust source areas, drylands not only have extremely fragile ecosystems that are exceptionally sensitive to global climate change but also have important implications for global warming and carbon cycling. However, the detailed dryland aerosol characteristics are not clear, especially the influence mechanisms of dryland aerosols, which are poorly understood. In this paper, Utilizing the Xinjiang Uygur Autonomous Region (XJ) as a target area, based on high spatial resolution aerosol optical depth (AOD) data, combined with the trend analysis, backward trajectory, source analysis, and machine learning methods, we systematically analyzed the multiscale dynamic characteristics of aerosols in XJ over a long period. Simultaneously, we also quantitatively explored the source distributions of high aerosols at typical sites at different time scales. Furthermore, we discussed the specific effects of natural and anthropogenic factors on aerosols in XJ and its subregions. The results show that 72.45% of the AOD in XJ presents an increasing trend from 2000 to 2019, 27.56% of which passed the significance test, mainly concentrated in northern Xinjiang (NXJ). The AOD in southern Xinjiang (SXJ) is the largest (0.240 ± 0.154), followed by eastern Xinjiang (EXJ) (0.157 ± 0.038), and the AOD in NXJ is the smallest (0.134 ± 0.028); however, the AOD in NXJ has the most obvious increasing trend, peaking in 2011, and the AOD in XJ remains low and stable at 5000 m elevation and above. The backward trajectory shows that nearly half of the potential paths of high AOD in SXJ are from the Taklamakan Desert, most of the potential paths in NXJ are from transboundary transmission, mostly through exposed lake beds, and most of the potential paths in EXJ are from the northwest, with characteristics similar to those of NXJ. The exposed lake beds provide salt dust, which further exacerbates the complexity and hazards of aerosols in NXJ and EXJ. The potential source areas for AOD in SXJ are concentrated in the northeast of the target site, those in NXJ are concentrated in the west of the target site, and those in EXJ are in the northwest and east. The AOD in SXJ (63.92%) and EXJ (74.83%) or XJ (57.77%) is dominated by natural factors, whereas the magnitude of AOD in NXJ (84.01%) is largely explained by anthropogenic factors.
Aerosol optical depth / Spatiotemporal patterns / Backward trajectory / Potential pollution source / Natural and anthropogenic influences / Xinjiang
M.A. Ali, M. Assiri. Analysis of AOD from MODIS-merged DT–DB products over the Arabian Peninsula. Earth Syst. Environ., 3 (2019), pp. 625-636,
CrossRef
Google scholar
|
J.K.B. Bishop, R.E. Davis, J.T. Sherman. Robotic observations of dust storm enhancement of carbon biomass in the North Pacific. Science, 298 (2002), pp. 817-821,
CrossRef
Google scholar
|
T. Chai, A. Crawford, B. Stunder, M.J. Pavolonis, R. Draxler, A. Stein. Improving volcanic ash predictions with the HYSPLIT dispersion model by assimilating MODIS satellite retrievals. Atmos. Chem. Phys., 17 (2017), pp. 2865-2879,
CrossRef
Google scholar
|
X. Chen, J. Ding, J. Wang, X. Ge, M. Raxidin, J. Liang, X. Chen, Z. Zhang, X. Cao, Y. Ding. Retrieval of fine-resolution aerosol optical depth (AOD) in semiarid urban areas using Landsat data: a case study in Urumqi NW China. Remote Sens., 12 (2020), p. 467,
CrossRef
Google scholar
|
X. Chen, J. Ding, J. Liu, J. Wang, X. Ge, R. Wang, H. Zuo. Validation and comparison of high-resolution MAIAC aerosol products over Central Asia. Atmos. Environ., 251 (2021), Article 118273,
CrossRef
Google scholar
|
F. Chen, B. Fu, J. Xia, D. Wu, S. Wu, Y. Zhang, H. Sun, Y. Liu, X. Fang, B. Qin, X. Li, T. Zhang, B. Liu, Z. Dong, S. Hou, L. Tian, B. Xu, G. Dong, J. Zheng, W. Yang, X. Wang, Z. Li, F. Wang, Z. Hu, J. Wang, J. Liu, J. Chen, W. Huang, J. Hou, Q. Cai, H. Long, M. Jiang, Y. Hu, X. Feng, X. Mo, X. Yang, D. Zhang, X. Wang, Y. Yin, X. Liu. Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects. Sci. China Earth Sci., 62 (2019), pp. 1665-1701,
CrossRef
Google scholar
|
S. Chen, J. Huang, J. Li, R. Jia, N. Jiang, L. Kang, X. Ma, T. Xie. Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Sci. China Earth Sci., 60 (2017), pp. 1338-1355,
CrossRef
Google scholar
|
X. Chen, H. Zuo, Z. Zhang, X. Cao, J. Duan, C. Zhu, Z. Zhang, J. Wang. Full-coverage 250m monthly aerosol optical depth dataset (2000–2019) amended with environmental covariates by an ensemble machine learning model over arid and semi-arid areas NW China. Earth Syst. Sci. Data, 14 (2022), pp. 5233-5252,
CrossRef
Google scholar
|
X. Chen, H. Zuo, W. Wang, J. Duan, M. Chang, J. Wang. Surface water and aerosol spatiotemporal dynamics and influence mechanisms over drylands. Geosci. Front., 14 (2023), Article 101524,
CrossRef
Google scholar
|
I. Cheng, X. Xu, L. Zhang. Overview of receptor-based source apportionment studies for speciated atmospheric mercury. Atmos. Chem. Phys., 15 (2015), pp. 7877-7895,
CrossRef
Google scholar
|
H. Dadashazar, M. Alipanah, M.R.A. Hilario, E. Crosbie, S. Kirschler, H. Liu, R.H. Moore, A.J. Peters, A.J. Scarino, M. Shook, K.L. Thornhill, C. Voigt, H. Wang, E. Winstead, B. Zhang, L. Ziemba, A. Sorooshian. Aerosol responses to precipitation along North American air trajectories arriving at Bermuda. Atmos. Chem. Phys., 21 (2021), pp. 16121-16141,
CrossRef
Google scholar
|
S. Deng, C. Wang, M. Wang, Z. Sun. A gradient boosting decision tree approach for insider trading identification: an empirical model evaluation of China stock market. Appl. Soft Comput., 83 (2019), Article 105652,
CrossRef
Google scholar
|
V.A. Dev, M.R. Eden. Formation lithology classification using scalable gradient boosted decision trees. Comput. Chem. Eng., 128 (2019), pp. 392-404,
CrossRef
Google scholar
|
W. Fan, K. Qin, J. Xu, L. Yuan, D. Li, Z. Jin, K. Zhang. Aerosol vertical distribution and sources estimation at a site of the Yangtze River Delta region of China. Atmos. Res., 217 (2019), pp. 128-136,
CrossRef
Google scholar
|
M. Fan, J. Xu, W. Yu, Y. Chen, M. Wang, W. Dai, Y. Wang. Recent Tianshan warming in relation to large-scale climate teleconnections. Sci. Total Environ., 856 (2023), Article 159201,
CrossRef
Google scholar
|
M. Filonchyk, M.P. Peterson, L. Zhang, H. Yan. An analysis of air pollution associated with the 2023 sand and dust storms over China: aerosol properties and PM10 variability. Geosci. Front., 15 (2024), Article 101762,
CrossRef
Google scholar
|
J.H. Friedman. Greedy function approximation: a gradient boosting machine. Ann. Statist., 29 (2001), pp. 1189-1232,
CrossRef
Google scholar
|
J.H. Friedman. Stochastic gradient boosting. Comput. Statis. Data Anal., 38 (2002), pp. 367-378,
CrossRef
Google scholar
|
J. Guo, M. Lou, Y. Miao, Y. Wang, Z. Zeng, H. Liu, J. He, H. Xu, F. Wang, M. Min, P. Zhai. Trans-Pacific transport of dust aerosols from East Asia: insights gained from multiple observations and modeling. Environ. Pollut., 230 (2017), pp. 1030-1039,
CrossRef
Google scholar
|
Q. He, Y. Gu, M. Zhang. Spatiotemporal trends of PM2.5 concentrations in central China from 2003 to 2018 based on MAIAC-derived high-resolution data. Environ. Int., 137 (2020), Article 105536,
CrossRef
Google scholar
|
N. Huang, L. Wang, X.-P. Song, T.A. Black, R.S. Jassal, R.B. Myneni, C. Wu, L. Wang, W. Song, D. Ji, S. Yu, Z. Niu. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv., 6 (2020), p. eabb8508,
CrossRef
Google scholar
|
IPCC. Climate Change 2021: The Physical Science Basis. Cambridge University Press, Cambridge (2021)
|
S. Jin, Y. Ma, Z. Huang, J. Huang, W. Gong, B. Liu, W. Wang, R. Fan, H. Li. A comprehensive reappraisal of long-term aerosol characteristics, trends, and variability in Asia. Atmos. Chem. Phys., 23 (2023), pp. 8187-8210,
CrossRef
Google scholar
|
Y.J. Kaufman, D. Tanré, O. Boucher. A satellite view of aerosols in the climate system. Nature, 419 (2002), p. 215,
CrossRef
Google scholar
|
M.G. Kendall. Rank correlation methods. Biometrika, 44 (1957), p. 298,
CrossRef
Google scholar
|
J. Lelieveld, K. Klingmüller, A. Pozzer, R.T. Burnett, A. Haines, V. Ramanathan. Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc. Natl. Acad. Sci., 116 (2019), pp. 7192-7197,
CrossRef
Google scholar
|
J. Li, Q. He, X. Ge, A. Abbas, L. Jin. Spatio-temporal changes of AOD in Xinjiang of China from 2000 to 2019: which factor is more influential, natural factor or human factor?. PLOS ONE, 16 (2021), p. e0253942
|
M. Li, X. Huang, L. Zhu, J. Li, Y. Song, X. Cai, S. Xie. Analysis of the transport pathways and potential sources of PM10 in Shanghai based on three methods. Sci. Total Environ., 414 (2012), pp. 525-534,
CrossRef
Google scholar
|
R. Li, T. Ma, Q. Xu, X. Song. Using MAIAC AOD to verify the PM2.5 spatial patterns of a land use regression model. Environ. Pollut., 243 (2018), pp. 501-509,
CrossRef
Google scholar
|
J. Liu, J. Ding, L. Li, X. Li, Z. Zhang, S. Ran, X. Ge, J. Zhang, J. Wang. Characteristics of aerosol optical depth over land types in Central Asia. Sci. Total Environ., 727 (2020), Article 138676,
CrossRef
Google scholar
|
J. Liu, J. Ding, M. Rexiding, X. Li, J. Zhang, S. Ran, Q. Bao, X. Ge. Characteristics of dust aerosols and identification of dust sources in Xinjiang China. Atmos. Environ., 262 (2021), Article 118651,
CrossRef
Google scholar
|
Y. Liu, H. Wang, S. Jing, Y. Gao, Y. Peng, S. Lou, T. Cheng, S. Tao, L. Li, Y. Li, D. Huang, Q. Wang, J. An. Characteristics and sources of volatile organic compounds (VOCs) in Shanghai during summer: implications of regional transport. Atmos. Environ., 215 (2019), Article 116902,
CrossRef
Google scholar
|
B. Liu, J. Wu, J. Zhang, L. Wang, J. Yang, D. Liang, Q. Dai, X. Bi, Y. Feng, Y. Zhang, Q. Zhang. Characterization and source apportionment of PM2.5 based on error estimation from EPA PMF 5.0 model at a medium city in China. Environ. Pollut., 222 (2017), pp. 10-22,
CrossRef
Google scholar
|
Y. Liu, G. Wu, B. Ma, T. Wu, X. Wang, Q. Wu. Revealing climatic and groundwater impacts on the spatiotemporal variations in vegetation coverage in marine sedimentary basins of the North China Plain China. Sci. Rep., 14 (2024), p. 10085,
CrossRef
Google scholar
|
A.I. Lyapustin, Y. Wang, I. Laszlo, T. Hilker, F.G. Hall, P.J. Sellers, C.J. Tucker, S.V. Korkin. Multi-angle implementation of atmospheric correction for MODIS (MAIAC): 3 Atmospheric Correction. Remote Sens. Environ., 127 (2012), pp. 385-393,
CrossRef
Google scholar
|
A. Lyapustin, Y. Wang, S. Korkin, D. Huang. MODIS Collection 6 MAIAC algorithm. Atmos. Meas. Tech., 11 (2018), pp. 5741-5765,
CrossRef
Google scholar
|
W. Ma, J. Ding, R. Wang, J. Wang. Drivers of PM2.5 in the urban agglomeration on the northern slope of the Tianshan Mountains China. Environ. Pollut., 309 (2022), Article 119777,
CrossRef
Google scholar
|
W. Ma, J. Ding, X. Jin. Spatial heterogeneity and driving factors of aerosol in Western China: analysis on multiangle implementation of atmospheric correction–aerosol optical depth in Xinjiang over 2001–2019. Int. J. Climatol., 43 (2023), pp. 1993-2011,
CrossRef
Google scholar
|
H.B. Mann. Nonparametric tests against trend. Econometrica, 13 (1945), pp. 245-259,
CrossRef
Google scholar
|
V.S. Martins, A. Lyapustin, L.A.S. Carvalho, C.C.F. Barbosa, E.M.L.M. Novo. Validation of high-resolution MAIAC aerosol product over South America. J. Geophys. Res. Atmos., 122 (2017), pp. 7537-7559,
CrossRef
Google scholar
|
G. Myhre, B.H. Samset, M. Schulz, Y. Balkanski, S. Bauer, T.K. Berntsen, H. Bian, N. Bellouin, M. Chin, T. Diehl. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys., 13 (2013), p. 1853,
CrossRef
Google scholar
|
S.O. Nabavi, L. Haimberger, E. Abbasi. Assessing PM2.5 concentrations in Tehran, Iran, from space using MAIAC, deep blue, and dark target AOD and machine learning algorithms. Atmos. Pollut. Res., 10 (2019), pp. 889-903,
CrossRef
Google scholar
|
D. Paudel, H. Boogaard, A. de Wit, M. van der Velde, M. Claverie, L. Nisini, S. Janssen, S. Osinga, I.N. Athanasiadis. Machine learning for regional crop yield forecasting in Europe. Field Crops Res., 276 (2022), Article 108377,
CrossRef
Google scholar
|
Pernov, J.B., Beddows, D., Thomas, D.C., DalĺOsto, M., Harrison, R.M., Schmale, J., Skov, H., Massling, A., 2022. Increased aerosol concentrations in the High Arctic attributable to changing atmospheric transport patterns. npj Clim. Atmos. Sci. 5, 62. https://doi.org/10.1038/s41612-022-00286-y.
|
W. Qin, Y. Liu, L. Wang, A. Lin, X. Xia, H. Che, M. Bilal, M. Zhang. Characteristic and driving factors of aerosol optical depth over mainland China during 1980–2017. Remote Sens., 10 (2018), p. 1064,
CrossRef
Google scholar
|
W. Qin, H. Fang, L. Wang, J. Wei, M. Zhang, X. Su, M. Bilal, X. Liang. MODIS high-resolution MAIAC aerosol product: global validation and analysis. Atmos. Environ., 264 (2021), Article 118684,
CrossRef
Google scholar
|
H. Rao, X. Shi, A.K. Rodrigue, J. Feng, Y. Xia, M. Elhoseny, X. Yuan, L. Gu. Feature selection based on artificial bee colony and gradient boosting decision tree. Appl. Soft Comput., 74 (2019), pp. 634-642,
CrossRef
Google scholar
|
P.K. Sen. Estimates of the regression coefficient based on Kendall's Tau. J. Am. Stat. Assoc., 63 (1968), pp. 1379-1389,
CrossRef
Google scholar
|
Y.-J. Shen, Y. Shen, Y. Guo, Y. Zhang, H. Pei, A. Brenning. Review of historical and projected future climatic and hydrological changes in mountainous semiarid Xinjiang (northwestern China) Central Asia. CATENA, 187 (2020), Article 104343,
CrossRef
Google scholar
|
A. Sirois, J.W. Bottenheim. Use of backward trajectories to interpret the 5-year record of PAN and O3 ambient air concentrations at Kejimkujik National Park, Nova Scotia. J. Geophys. Res. Atmos., 100 (1995), pp. 2867-2881,
CrossRef
Google scholar
|
X. Tian, S. Liu, L. Sun, Q. Liu. Retrieval of aerosol optical depth in the arid or semiarid region of Northern Xinjiang China. Remote Sens., 10 (2018), p. 197,
CrossRef
Google scholar
|
P. Wang, S. Ning, J. Dai, J. Sun, M. Lv, Q. Song, X. Dai, J. Zhao, D. Yu. Trends and variability in aerosol optical depth over North China from MODIS C6 aerosol products during 2001–2016. Atmosphere, 8 (2017), p. 223,
CrossRef
Google scholar
|
B. Wang, Z. Wang, C. Wang, X. Wang, Z. Jia, L. Liu. Elevated aerosol enhances plant water-use efficiency by increasing carbon uptake while reducing water loss. New Phytol., 243 (2024), pp. 567-579,
CrossRef
Google scholar
|
Y. Wang, J. Xiao, Y. Ma, J. Ding, X. Chen, Z. Ding, Y. Luo. Persistent and enhanced carbon sequestration capacity of alpine grasslands on Earth’s Third Pole. Sci. Adv., 9 (2023), Article eade6875,
CrossRef
Google scholar
|
Y.Q. Wang, X.Y. Zhang, R.R. Draxler. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Modell. Softw., 24 (2009), pp. 938-939,
CrossRef
Google scholar
|
X. Wei, K. Bai, N.-B. Chang, W. Gao. Multi-source hierarchical data fusion for high-resolution AOD mapping in a forest fire event. Int. J. Appl. Earth Obs. Geoinf., 102 (2021), Article 102366,
CrossRef
Google scholar
|
J. Wei, Z. Li, L. Sun, Y. Peng, M. Cribb. MODIS Collection 6.1 3 km resolution aerosol optical depth product: global evaluation and uncertainty analysis. Atmos. Environ., 240 (2020), Article 117768,
CrossRef
Google scholar
|
Z. Wu, Y. Zhou, H. Wang, Z. Jiang. Depth prediction of urban flood under different rainfall return periods based on deep learning and data warehouse. Sci. Total Environ., 716 (2020), Article 137077,
CrossRef
Google scholar
|
W.A. Wurtsbaugh, C. Miller, S.E. Null, R.J. DeRose, P. Wilcock, M. Hahnenberger, F. Howe, J. Moore. Decline of the world’s saline lakes. Nature Geosci., 10 (2017), pp. 816-821,
CrossRef
Google scholar
|
Y. Xing, Y. Chen, S. Yan, X. Cao, Y. Zhou, X. Zhang, T. Shi, X. Niu, D. Wu, J. Cui, Y. Zhou, X. Wang, W. Pu. Dust storms from the Taklamakan Desert significantly darken snow surface on surrounding mountains. Atmos. Chem. Phys., 24 (2024), pp. 5199-5219,
CrossRef
Google scholar
|
J. Xu, X. Zhang, W. Zhao, L. Zhai, M. Zhong, J. Shi, J. Sun, Y. Liu, C. Xie, Y. Tan, K. Li, X. Ge, Q. Zhang, S. Kang. High-resolution physicochemical dataset of atmospheric aerosols over the Tibetan Plateau and its surroundings. Earth Syst. Sci. Data, 16 (2024), pp. 1875-1900,
CrossRef
Google scholar
|
J. Yang, M. Hu. Filling the missing data gaps of daily MODIS AOD using spatiotemporal interpolation. Sci. Total Environ., 633 (2018), pp. 677-683,
CrossRef
Google scholar
|
P. Yang, Y. Hwa Yang, B.Z. Bing, Y.Z. Albert. A review of ensemble methods in bioinformatics. Curr. Bioinform., 5 (2010), pp. 296-308,
CrossRef
Google scholar
|
J. Yao, W. Mao, J. Chen, T. Dilinuer. Recent signal and impact of wet-to-dry climatic shift in Xinjiang China. J. Geogr. Sci., 31 (2021), pp. 1283-1298,
CrossRef
Google scholar
|
J. Yao, Y. Chen, X. Guan, Y. Zhao, J. Chen, W. Mao. Recent climate and hydrological changes in a mountain–basin system in Xinjiang China. Earth Sci. Rev., 226 (2022), Article 103957,
CrossRef
Google scholar
|
D. Zhan, M.-P. Kwan, W. Zhang, X. Yu, B. Meng, Q. Liu. The driving factors of air quality index in China. J. Clean. Prod., 197 (2018), pp. 1342-1351,
CrossRef
Google scholar
|
Z. Zhang, J. Ding, X. Chen, J. Wang. Aerosols characteristics, sources, and drive factors analysis in typical megacities NW China. J. Clean. Prod., 403 (2023), Article 136879,
CrossRef
Google scholar
|
Y. Zhang, J. Lang, S. Cheng, S. Li, Y. Zhou, D. Chen, H. Zhang, H. Wang. Chemical composition and sources of PM1 and PM2.5 in Beijing in autumn. Sci. Total Environ., 630 (2018), pp. 72-82,
CrossRef
Google scholar
|
X.X. Zhang, B. Sharratt, X. Chen, Z.F. Wang, L.Y. Liu, Y.H. Guo, J. Li, H.S. Chen, W.Y. Yang. Dust deposition and ambient PM10 concentration in northwest China: Spatial and temporal variability. Atmos. Chem. Phys., 17 (2017), pp. 1699-1711,
CrossRef
Google scholar
|
Z. Zhang, W. Wu, M. Fan, J. Wei, Y. Tan, Q. Wang. Evaluation of MAIAC aerosol retrievals over China. Atmos. Environ., 202 (2019), pp. 8-16,
CrossRef
Google scholar
|
C. Zhao, Y. Sun, J. Yang, J. Li, Y. Zhou, Y. Yang, H. Fan, X. Zhao. Observational evidence and mechanisms of aerosol effects on precipitation. Sci. Bull., 69 (2024), p. 1569,
CrossRef
Google scholar
|
N. Zhao, G. Wang, G. Li, J. Lang, H. Zhang. Air pollution episodes during the COVID-19 outbreak in the Beijing–Tianjin–Hebei region of China: an insight into the transport pathways and source distribution. Environ. Pollut., 267 (2020), Article 115617,
CrossRef
Google scholar
|
M. Zounemat-Kermani, O. Batelaan, M. Fadaee, R. Hinkelmann. Ensemble machine learning paradigms in hydrology: a review. J. Hydrol., 598 (2021), Article 126266,
CrossRef
Google scholar
|
/
〈 |
|
〉 |