Do we really need to drill through the intact ocean crust?
Yaoling Niu
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101954.
Do we really need to drill through the intact ocean crust?
We must persevere to drill through the intact ocean crust to fully address fundamental questions towards completion of the plate tectonics theory. The primary questions include: what is the ocean crust made up of, how thick is it and what is the petrological nature of the crust-mantle boundary (i.e., Mohorovičić discontinuity or Moho)? These questions may sound naive because they are widely believed to be well-understood facts, but they are not. Correctly, our current knowledge remains incomplete, and some popular misperceptions come from interpretations based on convenient assumptions. One assumption is that the ocean crust inferred from seismic data is of magmatic origin. Testing this assumption is a principal motivation of Project Mohole (1957–1966), attempting to drill intact ocean crust across the Moho into the mantle. Project Mohole failed because of its high cost, engineering challenges and insufficient tries, but the technologies developed made subsequent ocean drilling successful. However, answers to the original questions remain unsatisfactory. For example, seismic crust interpreted to be of magmatic origin is shown to have globally uniform thickness of 6.0 ± 1.0 km, but crust with such thickness at many slow-spreading ridge segments is dominated by serpentinized mantle peridotites exposed on seafloors. Therefore, the popular view on ocean ridge magmatism must be re-examined, which needs intact ocean crust drilling into the mantle. Drilling at geologically simple sites in the fast-spreading Pacific seafloor is most promising.
Ocean crust formation / Ocean crust makeup and thickness varication / Hess-type ocean crust / Nature of the oceanic Moho / Scientific ocean drilling
AMSOC Committee, 1959. Drilling through the Earth’s crust – A study of the desirability and feasibility of drilling a hole to the Mohorovicic Discontinuity. National Academy of Sciences – National Research Council Publication 717, 1-21.
|
Anonymous. Penrose field conference on ophiolites. Geotimes, 17 (1972), pp. 24-25
|
W. Bach, G.L. Früh-Green. Alteration of the oceanic lithosphere and implications for seafloor processes. Elements, 6 (2010), pp. 173-178
|
W. Bascom. The Mohole. Sci. Am., 200 (1959), pp. 41-49
|
R. Batiza. Inverse relationship between Sr isotope diversity and rate of oceanic volcanism has implications for mantle heterogeneity. Nature, 309 (1984), pp. 440-441
|
Batiza, R., Allan, J.F., Bach, W., et al., 1995. Petrology, geochemistry, and petrogenesis of Leg 142 basalts – synthesis of results. Proc. ODP, Sci. Results, 142: College Station, TX (Ocean Drilling Program), 3–8.
|
R. Batiza, W.G. Melson, T. O'Hearn. Simple magma supply geometry inferred beneath a segment of the Mid-Atlantic Ridge. Nature, 335 (1988), pp. 428-431
|
D. Bideau, R. Hékinian, B. Sichler, E. Gracia, C. Bollinger, M. Constantin, C. Guivel. Contrasting volcanictectonic processes during the past 2 Ma on the Mid-Atlantic Ridge: submersible mapping, petrological and magnetic results at lat. 34°52’N and 33°55’N. Mar. Geophys. Res., 20 (1998), pp. 425-458
|
D.K. Blackman, J.K. Karson, D.S. Kelley, J.R. Cann, G.L. Früh-Green, J.S. Gee, S.D. Hurst, B.E. John, J. Morgan, S.L. Nooner, D.K. Ross, T.J. Schroeder, E.A. Williams. Geology of the Atlantis Massif (Mid-Atlantic Ridge, 30°N): Implications for the evolution of an ultramafic core complex. Mar. Geophys. Res., 23 (2002), pp. 443-469
|
J.W. Bown, R.S. White. Variation with spreading rate of oceanic crustal thickness and geochemistry. Earth Planet. Sci. Lett., 121 (1994), pp. 435-449
|
G.C. Brown, A.W. Mussett. An Inaccessible Earth – An Integrated View to Its Structure and Composition. Chapman and Hall, London, UK (1993)
|
W.R. Buck, L.L. Lavier, A.N.B. Poliakov. Modes of faulting at mid-ocean ridges. Nature, 434 (2005), pp. 719-723
|
J.R. Cann, D.K. Blackman, D.K. Smith, E. McAllister, B. Janssen, S. Mello, E. Avgerinos, A.R. Pascoe, J. Escartin. Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Atlantic Ridge. Nature, 385 (1997), pp. 329-332
|
M. Cannat. Emplacement of mantle rocks in the seafloor at mid-ocean ridges. J. Geophys. Res., 98 (1993), pp. 4163-4172
|
M. Cannat. How thick is the magmatic crust at slow-spreading oceanic ridges?. J. Geophys. Res., 101 (1996), pp. 2847-2857
|
M. Cannat, C. Mevel, M. Maia, C. Deplus, C. Durand, P. Gente, P. Agrinier, A. Belarouchi, G. Dubuisson, E. Humler, J. Reynolds. Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22°–24° N). Geology, 23 (1995), pp. 49-52
|
M. Cannat, D. Sauter, A. Bezos, C. Meyzen, E. Humler, M. Le Rigoleur. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochem. Geophys. Geosys., 9 (4) (2008), p. Q04002,
CrossRef
Google scholar
|
P.R. Castillo, D.A. Clague, A.S. Davis, P.F. Lonsdale. Petrogenesis of Davidson Seamount lavas and its implications for fossil spreading center and intraplate magmatism in the eastern Pacific. Geochem. Geophys. Geopsys., 11 (2010), p. Q02005,
CrossRef
Google scholar
|
Y.J. Chen. Oceanic crustal thickness versus spreading rate. Geophys. Res. Lett., 19 (1992), pp. 753-756
|
N.I. Christensen. The abundance of serpentinites in the oceanic crust. J. Geol., 80 (1972), pp. 709-719
|
N.I. Christensen. Serpentinites, peridotites, and seismology. Int. Geol. Rev., 46 (2004), pp. 795-816
|
Coleman, R.G., 1977. Ophiolites: Ancient Oceanic Lithosphere? Springer Verlag, 229 pp.
|
R. Detrick, J. Collins, R. Stenphen, S. Swift. In situ evidence for the nature of the seismic layer 2/3 boundary in oceanic crust. Nature, 370 (1994), pp. 288-290
|
Dick, H.J.B., Natland, J.H., Miller, D.J., et al., 1999. Proc. ODP, Init. Repts. College Station, TX: Ocean Drilling Program. 1997; Vol 176. doi:10.2973/odp.proc.ir.176.1999.
|
Dick, H.J.B., MacLeod, C.J., Blum, O., et al., 2017. IODP 360 Preliminary Report. Proceedings of the International Ocean Discovery Program, Vol 360, 51 pp. http://publications.iodp.org/proceedings/360/360title.html.
|
H.J.B. Dick, G. Thompson, W.B. Bryan. Low-angle faulting and steady-state emplacement of plutonic rocks at ridge-transform intersections [abs.]. Eos (transactions, American Geophysical Union), 62 (1981), p. 406
|
H.J.B. Dick, R.L. Fisher, W.B. Bryan. Mineralogical variability of the uppermost mantle along mid-ocean ridges. Earth Planet. Sci. Lett., 69 (1984), pp. 88-106
|
H.J.B. Dick, J.H. Natland, J.C. Alt, et al.. A long in-situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth Planet. Sci. Lett., 179 (2000), pp. 31-51
|
H.J.B. Dick, J. Lin, H. Schouten. An ultraslow-spreading class of ocean ridge. Nature, 426 (2003), pp. 405-412
|
H.J.B. Dick, M.A. Tivey, B.E. Tucholke. Plutonic foundation of a slow-spreading ridge segment: oceanic core complex at Kane Megamullion, 23°30’N, 45°20’W. Geochem. Geophys. Geosys., 9 (6) (2008), p. Q05014,
CrossRef
Google scholar
|
H.J.B. Dick. Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. A.D. Saunders, M.J. Norry (Eds.), Geol. Soc. Spec. Publ., 42 (1989), pp. 71-105
|
R.S. Dietz. Continent and ocean basin evolution by spreading of the sea floor. Nature, 190 (1961), pp. 854-857
|
A.E.J. Engel, C.G. Engel. Composition of basalts from the mid-Atlantic ridge. Science, 144 (1964), pp. 1330-1333
|
A.E.J. Engel, C.G. Engel, R.G. Havens. Chemical characteristics of oceanic basalts and the upper mantle. Geol. Soe. Am. Bull., 76 (1965), pp. 719-734
|
J. Escartín, D.K. Smith, J. Cann, H. Schouten, C.H. Langmuir, S. Escrig. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature, 455 (2008), pp. 790-794
|
J. Ewing, M. Ewing. Seismic-refraction profiles in the Atlantic ocean basins, in the Mediterranean Sea, on the Mid-Atlantic Ridge and in the Norwegian Sea. Geol. Soc. Am. Bull., 70 (1959), pp. 291-318
|
D. Forsyth, S. Uyeda. On the relative importance of the driving forces of plate motion. Geophys. J. Int., 43 (1975), pp. 163-200
|
A. Gale, C.H. Langmuir, C.A. Dalton. The global systematics of ocean ridge basalts and their origin. J. Petrol., 55 (2014), pp. 1051-1082
|
Gillis, K.M., Mevel, C., Allan, J.F., 1993. Proc. ODP, Init. Repts. College Station, TX: Ocean Drilling Program. 1993; Vol 147. https://doi.org/10.2973/odp.proc.ir.2147.1993.
|
K.M. Gillis, J.E. Snow, A. Klaus, et al.. Primitive layered gabbros from fast-spreading lower oceanic crust. Nature, 505 (2014), pp. 204-207
|
P.Y. Guo, Y.L. Niu, P. Sun, J.J. Zhang, S. Chen, M. Duan, H.M. Gong, X.H. Wang. The nature and origin of upper mantle heterogeneity beneath the Mid-Atlantic Ridge 33–35°N: A Sr-Nd-Hf isotopic perspective. Geochim. Cosmochim. Acta, 307 (2021), pp. 72-85
|
P.Y. Guo, Y.L. Niu, S. Chen, M. Duan, P. Sun, Y.H. Chen, H.M. Gong, X.H. Wang. Low-degree melt metasomatic origin of heavy Fe isotope enrichment in the MORB mantle. Earth Planet. Sci. Lett., 601 (2023), Article 117892
|
R. Hékinian, D. Bideau, J. Francheteau, J.L. Cheminee, R. Armijo, P. Lonsdale, N. Blum. Petrology of the East Pacific Rise crust and upper mantle exposed in Hess Deep (eastern equatorial Pacific). J. Geophys. Res., 98 (B5) (1993), pp. 8069-8094
|
R. Hékinian, D. Bideau, R. Hebért, Y.L. Niu. Magmatic processes at upper mantle-crustal boundary zone: Garrett transform (EPR South). J. Geophys. Res., 100 (1995), pp. 10163-10185
|
E. Hellebrand, J.E. Snow, R. Mühe. Mantle melting beneath Gakkel Ridge (Arctic Ocean): abyssal peridotite spinel compositions. Chem. Geol., 182 (2002), pp. 227-235
|
H.H. Hess. The oceanic crust. J. Mar. Res., 14 (1955), pp. 423-439
|
H.H. Hess. The AMSOC hole to the Earth’s mantle. Am. Sci., 48 (1960), pp. 254-263
|
H.H. Hess. . A.E.J. Engel, H.L. James, B.F. Leonard (Eds.), Buddington. Geol. Soc. Am. (1962), pp. 599-620
|
J.A. Karson, H.J.B. Dick. Tectonics of ridge-transform intersections at the Kane Fracture Zone. Mar. Geophys. Res., 6 (1983), pp. 51-98
|
Kelemen, P.B., Kikawa, E., Miller, D.J. et al., 2007. Leg 209 summary: processes in a 20- km-thick conductive boundary layer beneath the Mid-Atlantic Ridge, 14°–16°N. Proc. ODP, Sci. Results, 209: College Station, TX (Ocean Drilling Program), 1–33. doi:10.2973/odp.proc.sr.209.001.2007.
|
D.S. Kelley, J.A. Karson, D.K. Blackman, et al.. An off-axis hydrothermal vent field near the mod-Atlantic ridge at 30°N. Nature, 412 (2001), pp. 145-149
|
D.S. Kelley, J.A. Karson, G.L. Fruh-Green, et al.. A serpentine-hosted ecosystem: the lost City hydrothermal field. Science, 307 (2005), pp. 1428-1434
|
Koppers, A.A.P., Coggon, R., 2020. Exploring Earth by Scientific Ocean Drilling: 2050 Science Framework. https://doi.org/10.6075/J0W66J9H.
|
Langmuir, C.H., Klein, E.M., Plank, T., 1992. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges. In: Phipps Morgan, J., Blackman, D.K., Sinton, J.M. (Eds.), Mantle Flow and Melt Generation at Mid-Ocean Ridges. Am. Geophys. Uni. Monogr. 71, 183-280.
|
X. Le Pichon. Sea-floor spreading and continental drift. J. Geophys. Res., 73 (1968), pp. 3661-3697
|
C.F. Li, Y. Lu, J.A. Wang. Global reference model of Curie-point depths based on EMAG2. Sci. Rep., 7 (2017), p. 45129
|
C.J. Lissenberg, A.M. McCaig, S.Q. Lang, P. Blum, et al.. A long section of serpentinized depleted mantle peridotite. Science, 385 (2024), pp. 623-629
|
K.C. Macdonald. Mid-ocean ridges: fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone. Ann. Rev. Earth Planet. Sci., 10 (1982), pp. 155-190
|
C.J. MacLeod, J. Escartin, D. Banerji, G.J. Banks, et al.. First direct evidence for oceanic detachment faulting: the Mid-Atlantic Ridge, 15°45’N. Geology, 30 (2002), pp. 879-882
|
C.J. MacLeod, R.C. Searle, B.J. Murton, J.F. Casey, C. Mallows, S.C. Unsworth, K.L. Achenbach, M. Harris. Life cycle of oceanic core complexes. Earth Planet. Sci. Lett., 287 (2009), pp. 333-344
|
Maxwell, A.E., Von Herzon, R.P., Andrews, J.E., Boyce, R.E., Milow, E.D., Hsu, K.J., Percival, S.F., Saito, T., 1970. Initial Reports of Deep Sea Drilling Project. Volume III, doi:10.2973/dsdp.proc.3.1970.
|
McCaig, A., Lang, S., and the Scientific participants, 2023. Building Blocks of Life, Atlantis Massif. IODP 399. https://iodp.tamu.edu/scienceops/expeditions/atlantis_massif_blocks_of_life.html.
|
D. McKenzie, M.J. Bickle. The volume and composition of melt generated by extension of the lithosphere. J. Petrol, 29 (1988), pp. 625-679
|
D.P. McKenzie, R.L. Parker. The North Pacific: an example of tectonics on a sphere. Nature, 216 (1967), pp. 1276-1280
|
P.J. Michael, D.W. Forsyth, D.K. Blackman, P.J. Fox, B.B. Hanan, A.J. Harding, K.C. Macdonald, G.A. Neumann, J.A. Orcutt, M. Tolstoy, C.M. Weiland. Mantle control of a dynamically evolving spreading center. Earth Planet. Sci. Lett., 121 (1994), pp. 451-468
|
K. Michibayashi, M. Tominaga, B. Ildefonse, D.A. Teagle. What lies beneath the formation and evolution of oceanic lithosphere. Oceanography, 32 (2019), pp. 138-149
|
W.J. Morgan. Rises, trenches, great faults, and crustal blocks. J. Geophys. Res., 73 (1968), pp. 1959-1982
|
I.D. Muir, C.E. Tilley. Basalts from the northern part of the rift zone of the mid-Atlantic ridge. J. Petrol., 5 (1964), pp. 409-434
|
Y.L. Niu. Mid-ocean ridge magmatism: Style of mantle upwelling, partial melting, crustal level processes, and spreading rate dependence: A petrologic approach. University of Hawaii, Honolulu (1992), p. 250 pp.
|
Y.L. Niu. Mantle melting and melt extraction processes beneath ocean ridges: Evidence from abyssal peridotites. J. Petrol., 38 (1997), pp. 1047-1074
|
Y.L. Niu. Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath ocean ridges. J. Petrol., 45 (2004), pp. 2423-2458
|
Y.L. Niu. Generation and evolution of basaltic magmas: Some basic concepts and a hypothesis for the origin of the Mesozoic-Cenozoic volcanism in eastern China. Geol. J. China Univ., 11 (2005), pp. 9-46
|
Y.L. Niu. Geological understanding of plate tectonics: basic concepts, illustrations, examples and new perspectives. Glob. Tectonics Metall., 10 (2014), pp. 23-46
|
Y.L. Niu. The meaning of global ocean ridge basalt major element compositions. J. Petrol., 57 (2016), pp. 2081-2104
|
Y.L. Niu. On the cause of continental breakup: a simple analysis in terms of driving mechanisms of plate tectonics and mantle plumes. J. Asian Earth Sci., 194 (2020), Article 104367
|
Y.L. Niu. Lithosphere thickness controls the extent of mantle melting, depth of melt extraction and basalt compositions in all tectonic settings on Earth - A review and new perspectives. Earth-Sci. Rev., 217 (2021), Article 103614
|
Y.L. Niu, R. Batiza. Chemical variation trends at fast and slow spreading ridges. J. Geophys. Res., 98 (1993), pp. 7887-7902
|
Y.L. Niu, R. Batiza. Magmatic processes at a slow spreading ridge segment: 26°S Mid-Atlantic ridge. J. Geophys. Res., 99 (1994), pp. 19719-19740
|
Y.L. Niu, C.H. Langmuir, R.J. Kinzler. The origin of abyssal peridotites: a new perspective. Earth Planet. Sci. Lett., 152 (1997), pp. 251-265
|
Y.L. Niu, M.J. O'Hara. Global correlations of ocean ridge basalt chemistry with axial depth: a new perspective. J. Petrol., 49 (2008), pp. 633-664
|
Y.L. Niu, D. Bideau, R. Hékinian, R. Batiza. Mantle compositional control on the extent of melting, crust production, gravity anomaly, ridge morphology, and ridge segmentation: a case study at the Mid-Atlantic Ridge 33–35°N. Earth Planet. Sci. Lett., 186 (2001), pp. 383-399
|
Y.L. Niu, D.H. Green. The petrological control on the lithosphere-asthenosphere boundary (LAB) beneath ocean basins. Earth-Sci. Rev., 185 (2018), pp. 301-307
|
Y.L. Niu, M.J. O’Hara, J.A. Pearce. Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: a petrologic perspective. J. Petrol., 44 (2003), pp. 851-866
|
Y.L. Niu, X.F. Shi, T.G. Li, S.G. Wu, W.D. Sun, R.X. Zhu. Testing the mantle plume hypothesis: an IODP effort to drill into the Kamchatka-Okhotsk Sea basement. Sci. Bull., 62 (2017), pp. 1464-1472
|
Y. Ohara, T. Yoshida, Y. Kato, S. Kasuga. Giant megamullion in the Parece Vela backarc basin. Mar. Geophys. Res., 22 (2001), pp. 47-61
|
J.A. Pearce, P.T. Robinson. The Troodos ophiolite complex probably formed in a subduction initiation slab edge setting. Gondwana Res., 18 (2010), pp. 60-81
|
J. Phipps Morgan. Melt migration beneath mid-ocean ridge spreading centers. Geophys. Res. Lett., 14 (1987), pp. 1238-1241
|
J. Phipps Morgan, D.W. Forsyth. Three dimensional flow and temperature perturbations due to a transform offset: effects on oceanic crustal and upper mantle structure. J. Geophys. Res., 93 (1988), pp. 2955-2966
|
J. Phipps Morgan, E.M. Parmentier, J. Lin. Mechanisms for the origin of mid-ocean ridge axial topography: implications for the thermal and mechanical structure of accreting plate boundaries. J. Geophys. Res., 92 (1987), pp. 12826-12839
|
R.W. Raitt. Seismic refraction studies of the Pacific ocean basin. Geol. Soc. Am. Bull., 67 (1956), pp. 1623-1640
|
M. Regelous, C.G. Weinzierl, K.M. Haase. Controls on melting at spreading ridges from correlated abyssal peridotite – mid-ocean ridge basalt composition. Earth Planet. Sci. Lett., 449 (2016), pp. 1-11
|
I. Reid, H.R. Jackson. Oceanic spreading rate and crustal thickness. Mar. Geophys. Res., 5 (1981), pp. 165-172
|
Natland, J.H., Steering Committee Members (DOLCUM), 1989. Deep Drilling in the Ocean Crust and Upper Mantle: Past Commitments, Present Prospects and Future Plans. In: Dick, H.J.B. et al.(Eds.), Drilling the Oceanic Lower Crust and Upper Mantle, Woods Hole, MA. Woods Hole Oceanographic Institution, pp. 9–19.
|
Robinson, P.T., Von Herzen, R.P., Adamson, A.C. et al., 1987. Proc. ODP, Init. Repts. College Station, TX: Ocean Drilling Program. 1987; Vol 118: doi:10.2973/odp.proc.ir.118.1989.
|
D. Sauter, M. Cannat, S. Rouméjon, M. Andreani, D. Birot, A. Bronner, D. Brunelli, J. Carlut, A. Delacour, V. Guyader, C.J. MacLeod, G. Manatschal, V. Mendel, B. Ménez, V. Pasini, E. Ruellan, R. Searle. Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nat. Geosci., 6 (2013), pp. 314-320
|
Y. Shen, D.W. Forsyth. The effects of temperature-and pressure-dependent viscosity on three-dimensional passive flow of the mantle beneath a ridge-transform system. J. Geophys. Res., 97 (1992), pp. 19717-19728
|
J.W. Shervais. Birth, death, and resurrection: the life cycle of suprasubduction zone ophiolites. Geochem. Geophys. Geosyst., 2 (1) (2001), Article 2000GC000080,
CrossRef
Google scholar
|
J.M. Sinton, R.S. Detrick. Mid-ocean ridge magma chambers. J. Geophys. Res., 97 (1992), pp. 197-216
|
C. Small. A global analysis of mid-ocean ridge axial topography. Geophys. J. Int., 116 (1994), pp. 64-84
|
D.K. Smith, J.R. Cann, J. Escartin. Widespread active detachment faulting and core complex formation near 13° N on the Mid-Atlantic Ridge. Nature, 442 (2006), pp. 440-443
|
J.J. Standish, K.W.W. Sims. Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge. Nat. Geosci., 3 (2010), pp. 286-292
|
R.J. Stern. Subduction zones. Rev. Geophys., 40 (2002), p. 3.1-3.38
|
R.J. Stern, M. Reagan, O. Ishizuka, S. Whattam. To understand subduction initiation, study forearc crust: To understand forearc crust, study. Lithosphere, 4 (2012), pp. 469-483
|
D. Teagle, B. Ildefonse. Journey to the mantle of the Earth. Nature, 471 (2011), pp. 437-439
|
B.E. Tucholke, J. Lin, M. Kleinrock. Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. J. Geophys. Res., 103 (1998), pp. 9857-9866
|
F.J. Vine, D.H. Matthews. Magnetic anomalies over ocean ridges. Nature, 199 (1963), pp. 947-949
|
A. Wegener. . Die Entstehhung Der Kontinente. Geologische Rundschau, 3 (1912), pp. 276-293
|
R.S. White, T.A. Minshull, M.J. Bickle, C.J. Robinson. Melt generation at very slow-spreading oceanic ridges: constraints from geochemical and geophysical data. J. Petrol., 42 (2001), pp. 1171-1196
|
J.D. Winter. An Introduction to Igneous and Metamorphic Petrology. Prentice Hall Inc., New Jersey, USA (2001)
|
D. Zhou, C.F. Li, S. Zlotnik, J. Wang. Correlations between oceanic crustal thickness, melt volume, and spreading rate from global gravity observation. Mar. Geophys. Res., 41 (2020), p. 14,
CrossRef
Google scholar
|
/
〈 |
|
〉 |