Wave velocities and anisotropy of rocks: Implication for origin of low velocity zone of the Qinling Orogenic Belt, China

Lei Liu , Ying Li , Tingting Li , Hanyu Wang , Shasha Liu , Panpan Zhao , Gerile Naren , Li Yi , Hong Liu , Fengxia Sun , Jianguo Du

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101939

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101939 DOI: 10.1016/j.gsf.2024.101939

Wave velocities and anisotropy of rocks: Implication for origin of low velocity zone of the Qinling Orogenic Belt, China

Author information +
History +
PDF

Abstract

Structure and composition of Earth are fundamental importance in exploring the dynamic evolution of the crust and mantle. The Qinling Orogenic Belt (QOB) is located between the North China plate and the South China Plate, and is one of the main orogenic belts in China. To explore the composition and origin of anisotropy and the low wave velocity zone of the QOB, ten rock samples (gneiss and schist) were collected from the five sites of the QOB and the P- and S-wave velocities of these samples were measured under 0.6 to 2.0 GPa and 100 to 550 °C. The wave velocities increase with increasing pressure and decreasing temperature. The VP and VS of the schist and gneiss match the velocity of the middle and lower crust of the QOB, indicating that schist and gneiss are important component of the QOB. All the schist and gneiss samples exhibit obvious seismic anisotropy with 1.64%–17.42% for VS and 2.93%–14.78% for VP under conditions of crust and upper mantle. The CPO/LPO and layering distribution of mica in rock samples are the main reasons for this anisotropy. The VS structures below the five sampled sites from seismic ambient noise tomography were built to explore the effect of schist and gneiss on the composition and structure of the QOB. The results indicate that orientation-arranged gneiss and schist driven by the tectonic stresses might be a new origin of the character of VP/VS, seismic anisotropy, and the low velocity zone in the QOB.

Keywords

Wave velocity of rock / Anisotropy / Origin of low velocity zone / The Qinling Orogenic Belt

Cite this article

Download citation ▾
Lei Liu, Ying Li, Tingting Li, Hanyu Wang, Shasha Liu, Panpan Zhao, Gerile Naren, Li Yi, Hong Liu, Fengxia Sun, Jianguo Du. Wave velocities and anisotropy of rocks: Implication for origin of low velocity zone of the Qinling Orogenic Belt, China. Geoscience Frontiers, 2025, 16(1): 101939 DOI:10.1016/j.gsf.2024.101939

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Lei Liu: Writing – original draft, Validation, Methodology, Investigation, Funding acquisition, Conceptualization. Ying Li: Writing – review & editing, Supervision, Resources, Conceptualization. Tingting Li: Investigation, Data curation. Hanyu Wang: Writing – original draft, Validation, Data curation. Shasha Liu: Software, Resources, Data curation. Panpan Zhao: Writing – review & editing, Validation, Resources. Gerile Naren: Resources, Data curation. Li Yi: Validation, Methodology, Conceptualization. Hong Liu: Validation, Methodology, Conceptualization. Fengxia Sun: Validation, Methodology, Conceptualization. Jianguo Du: Writing – review & editing, Methodology, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This research is supported by the National Natural Science Foundation of China (42174115 and 42330311), the Special Fund of the Institute of Earthquake Forecasting, China Earthquake Administration (CEAIEF20230301), and the State key laboratory of earthquake dynamics (LED2021B02). This research is a contribution to the International Geoscience Programme (IGCP) Project 724.

References

[1]

Y. Aizawa, K. Ito, Y. Tatsumi. Compressional wave velocity of granite and amphibolite up to melting temperatures at 1 GPa. Tectonophysics, 351 (2002), pp. 255-261,

[2]

B. Almqvist, D. Mainprice. Seismic properties and anisotropy of the continental crust: predictions based on mineral texture and rock microstructure. Rev. Geophys., 55 (2) (2017), pp. 367-433,

[3]

X. Bao, X. Song, J. Li. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography. Earth Planet. Sci. Lett., 417 (2015), pp. 132-141,

[4]

M. Bazargan, H. Motra, B. Almqvist, S. Piazolo, C. Hieronymus. Pressure, temperature and lithological dependence of seismic and magnetic susceptibility anisotropy in amphibolites and gneisses from the central Scandinavian Caledonides. Tectonophysics, 820 (2021), Article 229113,

[5]

F. Birch. The velocity of compressional waves in rocks to 10 kilobars: Part 2. J. Geophys. Res., 66 (7) (1961), pp. 2199-2224,

[6]

Y. Cao, H. Jung, S. Song. Petro-fabrics and seismic properties of blueschist and eclogite in the North Qilian suture zone, NW China: Implications for the low-velocity upper layer in subducting slab, trench-parallel seismic anisotropy, and eclogite detectability in the subduction zone. J. Geophys. Res. Solid Earth, 118 (2013), pp. 3037-3058,

[7]

J. Chantel, G. Manthilake, D. Andrault, D. Novella, T. Yu, Y.B. Wang. Experimental evidence supports mantle partial melting in the asthenosphere. Sci. Adv., 2 (5) (2016), Article e1600246,

[8]

N.I. Christensen. Compressional wave velocities in metamorphic rocks at pressures to 10 kilobars. J. Geophys. Res., 70 (1965), pp. 6147-6164,

[9]

N. Christensen, W. Mooney. Seismic velocity structure and composition of the continental crust: a global view. J. Geophys. Res., 100 (1995), pp. 9761-9788,

[10]

M.K. Clark, L.H. Royden. Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology, 28 (8) (2000), pp. 703-706,

[11]

X. Dong, J. Teng. Traveltime tomography using teleseismic P wave in the northeastern Tibetan plateau. Chinese J. Geophys., 61 (2018), pp. 2066-2074,

[12]

E. Enkelmann, L. Ratschbacher, R. Jonckheere, R. Nestler, M. Fleischer, R. Gloaguen, B.R. Hacker, Y.Q. Zhang, Y.-S. Ma. Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: is Tibetan lower crustal flow diverging around the Sichuan Basin?. Geol. Soc. Am. Bull, 118 (2006), pp. 651-671,

[13]

M.J. Fouch, S. Rondenay. Seismic anisotropy beneath stable continental interiors. Phys. Earth and Planet. Inter., 158 (2006), pp. 292-320,

[14]

Y. Gao, L. Chen, X. Wang, Y. Ai. Complex lithospheric deformation in eastern and northeastern Tibet from shear wave splitting observations and its geodynamic implications. J. Geophys. Res. Solid Earth, 124 (2019), pp. 10331-10346,

[15]

Z. Guo, Y.J. Chen. Crustal structure of the eastern Qinling orogenic belt and implication for reactivation since the Cretaceous. Tectonophysics, 683 (2016), pp. 1-11,

[16]

B.R. Hacker, E. Gnos, L. Ratschbacher, M. Grove, M. Mcwilliams, S.V. Sobolev, J. Wan, W. Zhenhan. Hot and dry deep crustal xenoliths from Tibet. Science, 287 (2000), pp. 2463-2466,

[17]

C. Han, J.O.S. Hammond, M.D. Ballmer, W. Wei, M. Xu, Z. Huang, L. Wang. Multi-scale anisotropy in NE China: evidence for localized mantle upwelling. Earth Planet. Sci. Lett., 625 (2024), Article 118495,

[18]

S. Hu, L. He, J. Wang. Heat flow in the continental area of China: a new data set. Earth Planet. Sci. Lett., 179 (2000), pp. 407-419,

[19]

Z. Huang, M. Xu, L. Wang, N. Mi, D. Yu, H. Li. Shear wave splitting in the southern margin of the Ordos Block, north China. Geophys. Res. Lett., 35 (2008), Article 2008GL035188,

[20]

R.D. Hyndman, M.J. Drury. The physical properties of oceanic basement rocks from deep drilling on the Mid-Atlantic Ridge. J. Geophys. Res., 81 (1976), pp. 4042-4052,

[21]

M. Ishikawa, M. Arima. Laboratory measurements of ultrasonic wave velocities of crustal rocks at high pressures and temperatures: Petrological structure of Izu-Bonin-Mariana arc crust. A.K. Gupta, S. Dasgupta (Eds.), Physics and Chemistry of the Earth’s Interior, Springer, New York (2009), pp. 143-152,

[22]

K. Ito, Y. Tatsumi. Measurement of elastic wave velocities in granulite and amphibolite having identical H2O-free bulk compositions up to 850 C at 1 GPa. Earth Planet. Sci. Lett., 133 (1995), pp. 255-264,

[23]

S. Ji, M. Salisbury. Shear-wave velocities, anisotropy and splitting in high-grade mylonites. Tectonophysics, 221 (1993), pp. 453-473,

[24]

M. Jiang, A. Galvé, A. Hirn, B. de Voogd, M. Laigle, H.P. Su, J. Diaz, J.C. Lépine, Y.X. Wang. Crustal thickening and variations in architecture from the Qaidam basin to the Qiang Tang (North-Central Tibetan Plateau) from wide-angle reflection seismology. Tectonophysics, 412 (2006), pp. 121-140,

[25]

H. Kern, T.I. Ivankina, A.N. Nikitin, T. Lokajíček, Z. Pros. The effect of oriented microcracks and crystallographic and shape preferred orientation on bulk elastic anisotropy of a foliated biotite gneiss from Outokumpu. Tectonophysics, 457 (2008), pp. 143-149,

[26]

H. Kern, T. Popp, F. Gorbatsevich, A. Zharikov, K. Lobanov, Y. Smirnov. Pressure and temperature dependence of VP and VS in rocks from the superdeep well and from surface analogues at Kola and the nature of velocity anisotropy. Tectonophysics, 338 (2001), pp. 113-134,

[27]

J. Khazanehdari, E.H. Rutter, K.H. Brodie. High-pressure-high-temperature seismic velocity structure of the midcrustal and lower crustal rocks of the Ivrea-Verbano zone and Serie dei Laghi, NW Italy. J. Geophys. Res.-Solid Earth, 105 (B6) (2000), pp. 13843-13858,

[28]

K. Kitamura. Constraint of lattice-preferred orientation (LPO) on VP anisotropy of amphibole-rich rocks. Geophys. J. Int., 165 (2006), pp. 1058-1065,

[29]

F. Le Pape, A.G. Jones, J. Vozar, W.B. Wei. Penetration of crustal melt beyond the Kunlun Fault into northern Tibet. Nat. Geosci., 5 (2012), pp. 330-335,

[30]

H. Lee, M.J. Bezada, Y. Kim. The origin of the low-velocity anomalies beneath the rootless Atlas Mountains: insights gained from modeling of anisotropy developed by the travel of Canary Plume. J. Geophys. Res. Solid Earth, 127 (2022), Article e2022JB024622,

[31]

H.-Y. Lee, Y. Gung, L.-W. Chen, W.-S. Chen, Y.-N. Chen, S.-J. Cai, H.-C. Chen, C.-W. Liao. Strong variation of near-surface seismic anisotropy in Taiwan and its geological implications. Earth Planet. Sci. Lett., 620 (2023), Article 118339,

[32]

J. Lei, D. Zhao. Teleseismic P-wave tomography and mantle dynamics beneath Eastern Tibet. Geochem. Geophys. Geosyst., 17 (2016), pp. 1861-1884,

[33]

J. Lei, D. Zhao, X. Xu, Y. Xu, M. Du. Is there a big mantle wedge under eastern Tibet?. Phys. Earth Planet. Inter., 292 (2019), pp. 100-113,

[34]

Y.K. Li, R. Gao, J.W. Gao, S.X. Mi, Y.T. Yao, W.H. Li, X.S. Xiong. Characteristics of crustal velocity structure along Qinling orogenic belt. Prog. Geophys., 30 (2015), pp. 1056-1069, 10.10638/pg20150309

[35]

M. Li, S. Liu, D. Yang, C. Xie, X. Xu, G. Dong, W. Wang, S. Yang. Deformation of the Qinling belt revealed by P -wave velocity and azimuthal anisotropy tomography. Geophys. J. Int., 234 (1) (2023), pp. 263-279,

[36]

H. Li, Z. Ye, R. Gao, X. Huang. A distinct contrast in the lithospheric structure and limited crustal flow across the northeastern Tibetan Plateau: Evidence from Vs and Vp/Vs imaging. Tectonophysics, 836 (2022), Article 229413,

[37]

F.C. Lin, M.H. Ritzwoller, Y.J. Yang, M.P. Moschetti, M.J. Fouch. Complex and variable crustal and uppermost mantle seismic anisotropy in the western United States. Nat. Geosci., 4 (2011), pp. 55-61,

[38]

Y.S. Liu, S. Gao, S.Y. Jin, S.H. Hu, M. Sun, Z.B. Zhao, J.L. Feng. Geochemistry of lower crustal xenoliths from Neogene Hannuoba basalt, North China craton: implications for petrogenesis and lower crustal composition. Geochim. Cosmochim. Acta, 65 (2001), pp. 2589-2604,

[39]

J.H. Liu, F.T. Liu, R.M. Sun, H. Wu, D. Wu. Seismic tomography beneath the Qinling Dabie orogenic belts and both the northern and southern fringes. Acta Geophys. Sin., 38 (1997), pp. 46-54

[40]

M. Liu, W.D. Mooney, S. Li, N. Okaya, S. Detweiler. Crustal structure of the northeastern margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordosbasin. Tectonophysics, 420 (2006), pp. 253-266,

[41]

Y. Liu, H. Xie, J. Guo, W. Zhou, J. Xu, Z. Zhao. A new method for experimental determination of compressional velocities in rocks and minerals at high-pressure. Chinese Phys. Lett., 17 (2000), pp. 924-926,

[42]

Y. Liu, H. Xie, W. Zhou, J. Guo. A method for experimental determination of compressional velocities in rocks and minerals at high pressure and high temperature. J. Phys.: Condens Matter, 14 (2002), pp. 11381-11384,

[43]

M.D. Long. Constraints on subduction geodynamics from seismic anisotropy. Rev. Geophys., 51 (2013), pp. 76-112,

[44]

M.D. Long, T.W. Becker. Mantle dynamics and seismic anisotropy. Earth Planet. Sci. Lett., 297 (2010), pp. 341-354,

[45]

Z. Lü, X. Ye, Y. Zhang, Y. Qian, G. Wen. 3-D crustal shear wave velocity and azimuthally anisotropic structure of the Pearl River Delta onshore-offshore area and its tectonic implications. Tectonophysics, 868 (2023), Article 230097,

[46]

P. Matte, J. Malavieille, P. Tapponnier, H. Maluski, X. Qin, L. Lun, T. Qin. Tectonics of the Qinling Belt: build-up and evolution of eastern Asia. Nature, 317 (1985), pp. 496-500,

[47]

Q.R. Meng, G.W. Zhang. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics, 323 (2000), pp. 183-196,

[48]

D.J. Miller, N.I. Christensen. Seismic velocities of lower crustal and upper mantle rocks from the slow-spreading Mid-Atlantic Ridge, south of the Kane Transform Zone (MARK). Proc. Ocean Drill. Program Sci. Results, 153 (1997), pp. 437-454,

[49]

P. Molnar, P. Tapponnier. Cenozoic tectonics of Asia: effects of a continental collision: features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science, 189 (1975), pp. 419-426,

[50]

J. Nábělek, G. Hetényi, J. Vergne, S. Sapkota, B. Kafle, M. Jiang, H. Su, J. Chen, B.S. Huang, the Hi-Climb Team. Underplating in the Himalaya-Tibet Collision Zone revealed by the Hi-CLIMB experiment. Science, 325 (2009), pp. 1371-1374,

[51]

J. Nakajima, T. Matsuzawa, A. Hasegawa, D.P. Zhao. Seismic imaging of arc magma and fluids under the central part of northeastern Japan. Tectonophysics, 341 (2001), pp. 1-17,

[52]

K.D. Nelson, W.J. Zhao, L.D. Brown, J. Kuo, J.K. Che, X.W. Liu, S.L. Klemperer, Y. Makovsky, R. Meissner, J. Mechie, R. Kind, F. Wenzel, J. Ni, J. Nabelek, L.S. Chen, H.D. Tan, W.B. Wei, A.G. Jones, J. Booker, M. Unsworth, W.S.F. Kidd, M. Hauck, D. Alsdorf, A. Ross, M. Cogan, C.D. Wu, E. Sandvol, M. Edwards. Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results. Science, 274 (1996), pp. 1684-1688,

[53]

T. Owens, G. Zandt. Implications of crustal property variations for model of Tibetan Plateau evolution. Nature, 387 (1997), pp. 37-43,

[54]

A.A. Ozacar, G. Zandt. Crustal seismic anisotropy in central Tibet: implications for deformational style and flow in the crust. Geophys. Res. Lett., 31 (2004), p. L23601,

[55]

S. Pan, F. Niu. Large contrasts in crustal structure and composition between the Ordos plateau and the NE Tibetan plateau from receiver function analysis. Earth Planet. Sci. Lett., 303 (2011), pp. 291-298,

[56]

T. Popp, H. Kern. Thermal dehydration reactions characterized by combined measurements of electrical conductivity and elastic wave velocities. Earth Planet. Sci. Lett., 120 (1993), pp. 43-57,

[57]

K. Priestley, T. Ho, Y. Takei, D. McKenzie. The thermal and anisotropic structure of the top 300 km of the mantle. Earth Planet. Sci. Lett., 626 (2024), Article 118525,

[58]

L. Ratschbacher, B.R. Hacker, A. Calvert, L.E. Webb, J.C. Grimmer, M.O. McWilliams, T. Ireland, S. Dong, J. Hu. Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history. Tectonophysics, 366 (2003), pp. 1-53,

[59]

V. Schulte-Pelkum, G. Monsalve, A. Sheehan, M.R. Pandey, S. Sapkota, R. Bilham, F. Wu. Imaging the Indian subcontinent beneath the Himalaya. Nature, 435 (2005), pp. 1222-1225,

[60]

K. Selway, J.P. O'Donnell. A small, unextractable melt fraction as the cause for the low velocity zone. Earth Planet. Sci. Lett., 517 (2019), pp. 117-124,

[61]

P.G. Silver. Seismic anisotropy beneath the continents: probing the depths of geology. Annu. Rev. Earth Planet. Sci., 24 (1996), pp. 385-432,

[62]

P. Song, X. Zhang, Y. Liu, J. Teng. Moho imaging based on receiver function analysis with teleseismic wavefield reconstruction: Application to South China. Tectonophysics, 718 (2017), pp. 118-131,

[63]

P. Song, J. Teng, X. Zhang, Y. Liu, X. Si, X. Ma, Y. Qiao, X. Dong. Flyover crustal structures beneath the Qinling Orogenic Belt and its tectonic implications. J. Geophys. Res. Solid Earth, 123 (2018), pp. 6703-6718,

[64]

Y. Takei. Constitutive mechanical relations of solid-liquid composites in terms of grain-boundary contiguity. J. Geophys. Res.-Solid Earth, 103 (1998), pp. 18183-18203,

[65]

Y. Tang, S. Zhou, Y.J. Chen, E. Sandvol, X. Liang, Y. Feng, G. Jin, M. Jiang, M. Liu. Crustal structures across the western Weihe Graben, North China: implications for extrusion tectonics at the northeast margin of Tibetan Plateau. J. Geophys. Res. Solid Earth, 120 (7) (2015), pp. 5070-5081,

[66]

A.P. Tarkov, V.V. Vavakin. Poisson’s ratio behaviour in various crystalline rocks: application to the study of the Earth’s interior. Phys. Earth Planet. Inter., 29 (1982), pp. 24-29,

[67]

J.W. Teng, S.L. Li, Y. Zhang, F.Y. Wang, J.L. Pi, Z. Junmeng, C.K. Zhang, Y.H. Qiao, G.Z. Hu, Y.-F. Yan. Fine velocity structures and deep processes in crust and mantle of the Qinling orogenic belt and the adjacent North China craton and Yangtze craton. Chinese J. Geophys., 57 (2014), pp. 3154-3175,

[68]

T.L. Tseng, W.P. Chen, R.L. Nowack. Northward thinning of Tibetan crust revealed by virtual seismic profiles. Geophys. Res. Lett., 36 (2009), Article L24304,

[69]

M.J. Unsworth, A.G. Jones, W. Wei, G. Marquis, S.G. Gokarn, J.E. Spratt, I.-M. Team. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data. Nature, 438 (2005), pp. 78-81,

[70]

Z. Wang, G. Fu, Y. She. Crustal density structure, lithosphere flexure mechanism, and isostatic state throughout the Qinling Orogen revealed by in situ dense gravity observations. J. Geophys. Res. Solid Earth, 123 (11) (2018), pp. 10026-10039,

[71]

C.Y. Wang, E. Sandvol, L. Zhu, H. Lou, Z. Yao, X. Luo. Lateral variation of crustal structure in the Ordos block and surrounding regions, North China, and its tectonic implications. Earth Planet. Sci. Lett., 387 (2014), pp. 198-211,

[72]

T. Wang, X. Wang, W. Tian, C. Zhang, W. Li, S. Li. North Qinling Paleozoic granite associations and their variation in space and time: implications for orogenic processes in the orogens of central China. Sci. China Ser. D-Earth Sci., 52 (2009), pp. 1359-1384,

[73]

Z. Wei, Z. Li, L. Chen, R. Chu, S. Wu, Y. Ling, Q. Zeng. Crustal structure underneath central China across the Tibetan Plateau, the North China Craton, the South China Block and the Qinling-Dabie Orogen constrained by multifrequency receiver function and surface wave data. J. Asian Earth Sci., 202 (2020), Article 104535,

[74]

W. Wei, D. Zhao, J. Xu, B. Zhou, Y. Shi. Depth variations of P-wave azimuthal anisotropy beneath Mainland China. Sci. Rep., 6 (2016), p. 29614,

[75]

J.Y. Xie, M.H. Ritzwoller, W.S. Shen, Y.J. Yang, Y. Zheng, L.Q. Zhou. Crustal radial anisotropy across Eastern Tibet and the Western Yangtze Craton. J. Geophys. Res.-Solid Earth, 118 (2013), pp. 4226-4252,

[76]

H.S. Xie, Y.M. Zhang, H.G. Xu, W. Hou, J. Guo, H.R. Zhao. A new method of measurement for elastic wave velocities in minerals and rocks at high temperature and high pressure and its significance. Sci. China Chem., 36 (1993), pp. 1276-1280

[77]

Z. Xu, X. Song, L. Zhu. Crustal and uppermost mantle S velocity structure under Hi-CLIMB seismic array in central Tibetan Plateau from joint inversion of surface wave dispersion and receiver function data. Tectonophysics, 584 (2013), pp. 209-220,

[78]

F. Xue, A. Kröner, T. Reischmann, F. Lerch. Palaeozoic pre- and post-collision calc-alkaline magmatism in the Qinling orogenic belt, central China, as documented by zircon ages on granitoid rocks. J. Geol. Soc. London, 153 (1996), pp. 409-417,

[79]

T. Yang, S. Monna, L. Fang. Seismic imaging of the crust and uppermost mantle structure in the Qinling orogenic belt and its surroundings: Geodynamic implications. Tectonophysics, 843 (2022), Article 229619,

[80]

Y.J. Yang, M.H. Ritzwoller, Y. Zheng, W.S. Shen, A.L. Levshin, Z.J. Xie. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet. J. Geophys. Res.-Solid Earth (2012), p. 117,

[81]

Z. Ye, J. Li, R. Gao, X. Song, Q. Li, Y. Li, X. Xu, X. Huang, X. Xiong, W. Li. Crustal and uppermost mantle structure across the Tibet-Qinling transition zone in NE Tibet: implications for material extrusion beneath the Tibetan plateau. Geophys. Res. Lett., 44 (20) (2017), pp. 10316-10323,

[82]

Z. You, Y. Han, S. Suo, N. Chen, Z. Zhong. Metamorphic history and tectonic evolution of the Qinling Complex, eastern Qinling Mountains, China. J. Metamorph. Geol., 11 (1993), pp. 549-560,

[83]

X.C. Yuan. Velocity structure of the Qinling lithosphere and mushroom cloud model. Sci. China Earth Sci., 39 (1996), pp. 235-244

[84]

G. Zandt, C. Ammon. Continental crust composition constrained by measurements of crustal Poisson’s Ratio. Nature, 374 (1995), pp. 152-154,

[85]

S. Zertani, J.C. Vrijmoed, F. Tilmann, T. John, T.B. Andersen, L. Labrousse. P wave anisotropy caused by partial eclogitization of descending crust demonstrated by modeling effective petrophysical properties. Geochem. Geophys. Geosyst., 21 (2020), Article e2019GC008906,

[86]

G.W. Zhang, Y. Dong, A.P. Yao. The crustal compositions, structures and tectonic evolution of the Qinling orogenic belt. Geol. Shaanxi, 15 (1997), pp. 1-14

[87]

B.H. Zhang, H.Z. Fei, J.H. Ge, L.S. Zeng, Q.K. Xia. Crustal melting in orogenic belts revealed by eclogite thermal properties. Nat. Commun., 13 (2022), p. 4673,

[88]

S.Q. Zhang, S. Karato. Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature, 375 (1995), pp. 774-777,

[89]

F. Zhang, Q. Wu, Y. Li, R. Zhang, L. Sun, J. Pan, Z. Ding. Seismic tomography of Eastern Tibet: implications for the Tibetan Plateau growth. Tectonics, 37 (2018), pp. 2833-2847,

[90]

G. Zhang, Z. Yu, Y. Sun, S. Cheng, T. Li, F. Xue, C. Zhang. The major suture zone of the Qinling orogenic belt. J. Asian Earth Sci., 3 (1989), pp. 63-76,

[91]

G. Zhang, B.R. Zhang, X.R. Yuan, Q.H. Xiao. Qinling Orogenic Belt and Continental Dynamics. Science Publishing House, Beijing (2001)

[92]

Z.D. Zhao, S. Gao, T.C. Luo, B.R. Zhang, H.S. Xie, Y.M. Zhang, H.G. Xu, J. Guo. Origin of the crustal low velocity layer of Qinling and North China: Evidence from laboratory measurement of P-wave velocity in rocks at high PT conditions. Acta Geophys. Sin., 39 (1996), pp. 650-652

[93]

D.P. Zhao, O.P. Mishra, R. Sanda. Influence of fluids and magma on earthquakes: seismological evidence. Phys. Earth Planet. Inter., 132 (2002), pp. 249-267,

[94]

D.P. Zhao, T. Mizuno. Crack density and saturation rate in the 1995 Kobe earthquake region. Geophys. Res. Lett., 26 (1999), pp. 3213-3216,

[95]

D. Zhao, S. Yu, X. Liu. Seismic anisotropy tomography: new insight into subduction dynamics. Gondw. Res., 33 (2016), pp. 24-43,

[96]

W. Zhou, D. Fan, Y. Liu, H. Xie. Measurements of wave velocity and electrical conductivity of an amphibolite from southwestern margin of the Tarim Basin at pressures to 1.0 GPa and temperatures to 700 ℃: Comparison with field observations. Geophys. J. Int., 187 (2011), pp. 1393-1404,

[97]

Z. Zhou, J. Lei. Pn anisotropic tomography and mantle dynamics beneath China. Phys. Earth Planet. Inter., 257 (2016), pp. 193-204,

[98]

Y.A. Zorin, V.V. Mordvinova, E.K. Turutanov, B.G. Belichenko, A.A. Artemyev, G.L. Kosarev, S.S. Gao. Low seismic velocity layers in the Earth’s crust beneath Eastern Siberia (Russia) and Central Mongolia: receiver function data and their possible geological implication. Tectonophysics, 359 (2002), pp. 307-327,

[99]

Zhang, G.W., Dong, Y.P., Lai, S.C., Guo, A. Meng Q.R., Liu, S.F., Chen, S.Y., Yao, A., Zhang, Z.Q., Pei, X.Z., Li, S.Z., 2004. Mianlue tectonic zone and Mianlue suture zone on southern margin of Qinling-Dabie orogenic belt. Science in China (Series D), 49 , 300-316. doi:10.1360/02YD0526.

AI Summary AI Mindmap
PDF

202

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/