Wave velocities and anisotropy of rocks: Implication for origin of low velocity zone of the Qinling Orogenic Belt, China
Lei Liu, Ying Li, Tingting Li, Hanyu Wang, Shasha Liu, Panpan Zhao, Gerile Naren, Li Yi, Hong Liu, Fengxia Sun, Jianguo Du
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101939.
Wave velocities and anisotropy of rocks: Implication for origin of low velocity zone of the Qinling Orogenic Belt, China
Structure and composition of Earth are fundamental importance in exploring the dynamic evolution of the crust and mantle. The Qinling Orogenic Belt (QOB) is located between the North China plate and the South China Plate, and is one of the main orogenic belts in China. To explore the composition and origin of anisotropy and the low wave velocity zone of the QOB, ten rock samples (gneiss and schist) were collected from the five sites of the QOB and the P- and S-wave velocities of these samples were measured under 0.6 to 2.0 GPa and 100 to 550 °C. The wave velocities increase with increasing pressure and decreasing temperature. The VP and VS of the schist and gneiss match the velocity of the middle and lower crust of the QOB, indicating that schist and gneiss are important component of the QOB. All the schist and gneiss samples exhibit obvious seismic anisotropy with 1.64%–17.42% for VS and 2.93%–14.78% for VP under conditions of crust and upper mantle. The CPO/LPO and layering distribution of mica in rock samples are the main reasons for this anisotropy. The VS structures below the five sampled sites from seismic ambient noise tomography were built to explore the effect of schist and gneiss on the composition and structure of the QOB. The results indicate that orientation-arranged gneiss and schist driven by the tectonic stresses might be a new origin of the character of VP/VS, seismic anisotropy, and the low velocity zone in the QOB.
Wave velocity of rock / Anisotropy / Origin of low velocity zone / The Qinling Orogenic Belt
Y. Aizawa, K. Ito, Y. Tatsumi. Compressional wave velocity of granite and amphibolite up to melting temperatures at 1 GPa. Tectonophysics, 351 (2002), pp. 255-261,
CrossRef
Google scholar
|
B. Almqvist, D. Mainprice. Seismic properties and anisotropy of the continental crust: predictions based on mineral texture and rock microstructure. Rev. Geophys., 55 (2) (2017), pp. 367-433,
CrossRef
Google scholar
|
X. Bao, X. Song, J. Li. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography. Earth Planet. Sci. Lett., 417 (2015), pp. 132-141,
CrossRef
Google scholar
|
M. Bazargan, H. Motra, B. Almqvist, S. Piazolo, C. Hieronymus. Pressure, temperature and lithological dependence of seismic and magnetic susceptibility anisotropy in amphibolites and gneisses from the central Scandinavian Caledonides. Tectonophysics, 820 (2021), Article 229113,
CrossRef
Google scholar
|
F. Birch. The velocity of compressional waves in rocks to 10 kilobars: Part 2. J. Geophys. Res., 66 (7) (1961), pp. 2199-2224,
CrossRef
Google scholar
|
Y. Cao, H. Jung, S. Song. Petro-fabrics and seismic properties of blueschist and eclogite in the North Qilian suture zone, NW China: Implications for the low-velocity upper layer in subducting slab, trench-parallel seismic anisotropy, and eclogite detectability in the subduction zone. J. Geophys. Res. Solid Earth, 118 (2013), pp. 3037-3058,
CrossRef
Google scholar
|
J. Chantel, G. Manthilake, D. Andrault, D. Novella, T. Yu, Y.B. Wang. Experimental evidence supports mantle partial melting in the asthenosphere. Sci. Adv., 2 (5) (2016), Article e1600246,
CrossRef
Google scholar
|
N.I. Christensen. Compressional wave velocities in metamorphic rocks at pressures to 10 kilobars. J. Geophys. Res., 70 (1965), pp. 6147-6164,
CrossRef
Google scholar
|
N. Christensen, W. Mooney. Seismic velocity structure and composition of the continental crust: a global view. J. Geophys. Res., 100 (1995), pp. 9761-9788,
CrossRef
Google scholar
|
M.K. Clark, L.H. Royden. Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology, 28 (8) (2000), pp. 703-706,
CrossRef
Google scholar
|
X. Dong, J. Teng. Traveltime tomography using teleseismic P wave in the northeastern Tibetan plateau. Chinese J. Geophys., 61 (2018), pp. 2066-2074,
CrossRef
Google scholar
|
E. Enkelmann, L. Ratschbacher, R. Jonckheere, R. Nestler, M. Fleischer, R. Gloaguen, B.R. Hacker, Y.Q. Zhang, Y.-S. Ma. Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: is Tibetan lower crustal flow diverging around the Sichuan Basin?. Geol. Soc. Am. Bull, 118 (2006), pp. 651-671,
CrossRef
Google scholar
|
M.J. Fouch, S. Rondenay. Seismic anisotropy beneath stable continental interiors. Phys. Earth and Planet. Inter., 158 (2006), pp. 292-320,
CrossRef
Google scholar
|
Y. Gao, L. Chen, X. Wang, Y. Ai. Complex lithospheric deformation in eastern and northeastern Tibet from shear wave splitting observations and its geodynamic implications. J. Geophys. Res. Solid Earth, 124 (2019), pp. 10331-10346,
CrossRef
Google scholar
|
Z. Guo, Y.J. Chen. Crustal structure of the eastern Qinling orogenic belt and implication for reactivation since the Cretaceous. Tectonophysics, 683 (2016), pp. 1-11,
CrossRef
Google scholar
|
B.R. Hacker, E. Gnos, L. Ratschbacher, M. Grove, M. Mcwilliams, S.V. Sobolev, J. Wan, W. Zhenhan. Hot and dry deep crustal xenoliths from Tibet. Science, 287 (2000), pp. 2463-2466,
CrossRef
Google scholar
|
C. Han, J.O.S. Hammond, M.D. Ballmer, W. Wei, M. Xu, Z. Huang, L. Wang. Multi-scale anisotropy in NE China: evidence for localized mantle upwelling. Earth Planet. Sci. Lett., 625 (2024), Article 118495,
CrossRef
Google scholar
|
S. Hu, L. He, J. Wang. Heat flow in the continental area of China: a new data set. Earth Planet. Sci. Lett., 179 (2000), pp. 407-419,
CrossRef
Google scholar
|
Z. Huang, M. Xu, L. Wang, N. Mi, D. Yu, H. Li. Shear wave splitting in the southern margin of the Ordos Block, north China. Geophys. Res. Lett., 35 (2008), Article 2008GL035188,
CrossRef
Google scholar
|
R.D. Hyndman, M.J. Drury. The physical properties of oceanic basement rocks from deep drilling on the Mid-Atlantic Ridge. J. Geophys. Res., 81 (1976), pp. 4042-4052,
CrossRef
Google scholar
|
M. Ishikawa, M. Arima. Laboratory measurements of ultrasonic wave velocities of crustal rocks at high pressures and temperatures: Petrological structure of Izu-Bonin-Mariana arc crust. A.K. Gupta, S. Dasgupta (Eds.), Physics and Chemistry of the Earth’s Interior, Springer, New York (2009), pp. 143-152,
CrossRef
Google scholar
|
K. Ito, Y. Tatsumi. Measurement of elastic wave velocities in granulite and amphibolite having identical H2O-free bulk compositions up to 850 C at 1 GPa. Earth Planet. Sci. Lett., 133 (1995), pp. 255-264,
CrossRef
Google scholar
|
S. Ji, M. Salisbury. Shear-wave velocities, anisotropy and splitting in high-grade mylonites. Tectonophysics, 221 (1993), pp. 453-473,
CrossRef
Google scholar
|
M. Jiang, A. Galvé, A. Hirn, B. de Voogd, M. Laigle, H.P. Su, J. Diaz, J.C. Lépine, Y.X. Wang. Crustal thickening and variations in architecture from the Qaidam basin to the Qiang Tang (North-Central Tibetan Plateau) from wide-angle reflection seismology. Tectonophysics, 412 (2006), pp. 121-140,
CrossRef
Google scholar
|
H. Kern, T.I. Ivankina, A.N. Nikitin, T. Lokajíček, Z. Pros. The effect of oriented microcracks and crystallographic and shape preferred orientation on bulk elastic anisotropy of a foliated biotite gneiss from Outokumpu. Tectonophysics, 457 (2008), pp. 143-149,
CrossRef
Google scholar
|
H. Kern, T. Popp, F. Gorbatsevich, A. Zharikov, K. Lobanov, Y. Smirnov. Pressure and temperature dependence of VP and VS in rocks from the superdeep well and from surface analogues at Kola and the nature of velocity anisotropy. Tectonophysics, 338 (2001), pp. 113-134,
CrossRef
Google scholar
|
J. Khazanehdari, E.H. Rutter, K.H. Brodie. High-pressure-high-temperature seismic velocity structure of the midcrustal and lower crustal rocks of the Ivrea-Verbano zone and Serie dei Laghi, NW Italy. J. Geophys. Res.-Solid Earth, 105 (B6) (2000), pp. 13843-13858,
CrossRef
Google scholar
|
K. Kitamura. Constraint of lattice-preferred orientation (LPO) on VP anisotropy of amphibole-rich rocks. Geophys. J. Int., 165 (2006), pp. 1058-1065,
CrossRef
Google scholar
|
F. Le Pape, A.G. Jones, J. Vozar, W.B. Wei. Penetration of crustal melt beyond the Kunlun Fault into northern Tibet. Nat. Geosci., 5 (2012), pp. 330-335,
CrossRef
Google scholar
|
H. Lee, M.J. Bezada, Y. Kim. The origin of the low-velocity anomalies beneath the rootless Atlas Mountains: insights gained from modeling of anisotropy developed by the travel of Canary Plume. J. Geophys. Res. Solid Earth, 127 (2022), Article e2022JB024622,
CrossRef
Google scholar
|
H.-Y. Lee, Y. Gung, L.-W. Chen, W.-S. Chen, Y.-N. Chen, S.-J. Cai, H.-C. Chen, C.-W. Liao. Strong variation of near-surface seismic anisotropy in Taiwan and its geological implications. Earth Planet. Sci. Lett., 620 (2023), Article 118339,
CrossRef
Google scholar
|
J. Lei, D. Zhao. Teleseismic P-wave tomography and mantle dynamics beneath Eastern Tibet. Geochem. Geophys. Geosyst., 17 (2016), pp. 1861-1884,
CrossRef
Google scholar
|
J. Lei, D. Zhao, X. Xu, Y. Xu, M. Du. Is there a big mantle wedge under eastern Tibet?. Phys. Earth Planet. Inter., 292 (2019), pp. 100-113,
CrossRef
Google scholar
|
Y.K. Li, R. Gao, J.W. Gao, S.X. Mi, Y.T. Yao, W.H. Li, X.S. Xiong. Characteristics of crustal velocity structure along Qinling orogenic belt. Prog. Geophys., 30 (2015), pp. 1056-1069, 10.10638/pg20150309
|
M. Li, S. Liu, D. Yang, C. Xie, X. Xu, G. Dong, W. Wang, S. Yang. Deformation of the Qinling belt revealed by P -wave velocity and azimuthal anisotropy tomography. Geophys. J. Int., 234 (1) (2023), pp. 263-279,
CrossRef
Google scholar
|
H. Li, Z. Ye, R. Gao, X. Huang. A distinct contrast in the lithospheric structure and limited crustal flow across the northeastern Tibetan Plateau: Evidence from Vs and Vp/Vs imaging. Tectonophysics, 836 (2022), Article 229413,
CrossRef
Google scholar
|
F.C. Lin, M.H. Ritzwoller, Y.J. Yang, M.P. Moschetti, M.J. Fouch. Complex and variable crustal and uppermost mantle seismic anisotropy in the western United States. Nat. Geosci., 4 (2011), pp. 55-61,
CrossRef
Google scholar
|
Y.S. Liu, S. Gao, S.Y. Jin, S.H. Hu, M. Sun, Z.B. Zhao, J.L. Feng. Geochemistry of lower crustal xenoliths from Neogene Hannuoba basalt, North China craton: implications for petrogenesis and lower crustal composition. Geochim. Cosmochim. Acta, 65 (2001), pp. 2589-2604,
CrossRef
Google scholar
|
J.H. Liu, F.T. Liu, R.M. Sun, H. Wu, D. Wu. Seismic tomography beneath the Qinling Dabie orogenic belts and both the northern and southern fringes. Acta Geophys. Sin., 38 (1997), pp. 46-54
|
M. Liu, W.D. Mooney, S. Li, N. Okaya, S. Detweiler. Crustal structure of the northeastern margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordosbasin. Tectonophysics, 420 (2006), pp. 253-266,
CrossRef
Google scholar
|
Y. Liu, H. Xie, J. Guo, W. Zhou, J. Xu, Z. Zhao. A new method for experimental determination of compressional velocities in rocks and minerals at high-pressure. Chinese Phys. Lett., 17 (2000), pp. 924-926,
CrossRef
Google scholar
|
Y. Liu, H. Xie, W. Zhou, J. Guo. A method for experimental determination of compressional velocities in rocks and minerals at high pressure and high temperature. J. Phys.: Condens Matter, 14 (2002), pp. 11381-11384,
CrossRef
Google scholar
|
M.D. Long. Constraints on subduction geodynamics from seismic anisotropy. Rev. Geophys., 51 (2013), pp. 76-112,
CrossRef
Google scholar
|
M.D. Long, T.W. Becker. Mantle dynamics and seismic anisotropy. Earth Planet. Sci. Lett., 297 (2010), pp. 341-354,
CrossRef
Google scholar
|
Z. Lü, X. Ye, Y. Zhang, Y. Qian, G. Wen. 3-D crustal shear wave velocity and azimuthally anisotropic structure of the Pearl River Delta onshore-offshore area and its tectonic implications. Tectonophysics, 868 (2023), Article 230097,
CrossRef
Google scholar
|
P. Matte, J. Malavieille, P. Tapponnier, H. Maluski, X. Qin, L. Lun, T. Qin. Tectonics of the Qinling Belt: build-up and evolution of eastern Asia. Nature, 317 (1985), pp. 496-500,
CrossRef
Google scholar
|
Q.R. Meng, G.W. Zhang. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics, 323 (2000), pp. 183-196,
CrossRef
Google scholar
|
D.J. Miller, N.I. Christensen. Seismic velocities of lower crustal and upper mantle rocks from the slow-spreading Mid-Atlantic Ridge, south of the Kane Transform Zone (MARK). Proc. Ocean Drill. Program Sci. Results, 153 (1997), pp. 437-454,
CrossRef
Google scholar
|
P. Molnar, P. Tapponnier. Cenozoic tectonics of Asia: effects of a continental collision: features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science, 189 (1975), pp. 419-426,
CrossRef
Google scholar
|
J. Nábělek, G. Hetényi, J. Vergne, S. Sapkota, B. Kafle, M. Jiang, H. Su, J. Chen, B.S. Huang, the Hi-Climb Team. Underplating in the Himalaya-Tibet Collision Zone revealed by the Hi-CLIMB experiment. Science, 325 (2009), pp. 1371-1374,
CrossRef
Google scholar
|
J. Nakajima, T. Matsuzawa, A. Hasegawa, D.P. Zhao. Seismic imaging of arc magma and fluids under the central part of northeastern Japan. Tectonophysics, 341 (2001), pp. 1-17,
CrossRef
Google scholar
|
K.D. Nelson, W.J. Zhao, L.D. Brown, J. Kuo, J.K. Che, X.W. Liu, S.L. Klemperer, Y. Makovsky, R. Meissner, J. Mechie, R. Kind, F. Wenzel, J. Ni, J. Nabelek, L.S. Chen, H.D. Tan, W.B. Wei, A.G. Jones, J. Booker, M. Unsworth, W.S.F. Kidd, M. Hauck, D. Alsdorf, A. Ross, M. Cogan, C.D. Wu, E. Sandvol, M. Edwards. Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results. Science, 274 (1996), pp. 1684-1688,
CrossRef
Google scholar
|
T. Owens, G. Zandt. Implications of crustal property variations for model of Tibetan Plateau evolution. Nature, 387 (1997), pp. 37-43,
CrossRef
Google scholar
|
A.A. Ozacar, G. Zandt. Crustal seismic anisotropy in central Tibet: implications for deformational style and flow in the crust. Geophys. Res. Lett., 31 (2004), p. L23601,
CrossRef
Google scholar
|
S. Pan, F. Niu. Large contrasts in crustal structure and composition between the Ordos plateau and the NE Tibetan plateau from receiver function analysis. Earth Planet. Sci. Lett., 303 (2011), pp. 291-298,
CrossRef
Google scholar
|
T. Popp, H. Kern. Thermal dehydration reactions characterized by combined measurements of electrical conductivity and elastic wave velocities. Earth Planet. Sci. Lett., 120 (1993), pp. 43-57,
CrossRef
Google scholar
|
K. Priestley, T. Ho, Y. Takei, D. McKenzie. The thermal and anisotropic structure of the top 300 km of the mantle. Earth Planet. Sci. Lett., 626 (2024), Article 118525,
CrossRef
Google scholar
|
L. Ratschbacher, B.R. Hacker, A. Calvert, L.E. Webb, J.C. Grimmer, M.O. McWilliams, T. Ireland, S. Dong, J. Hu. Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history. Tectonophysics, 366 (2003), pp. 1-53,
CrossRef
Google scholar
|
V. Schulte-Pelkum, G. Monsalve, A. Sheehan, M.R. Pandey, S. Sapkota, R. Bilham, F. Wu. Imaging the Indian subcontinent beneath the Himalaya. Nature, 435 (2005), pp. 1222-1225,
CrossRef
Google scholar
|
K. Selway, J.P. O'Donnell. A small, unextractable melt fraction as the cause for the low velocity zone. Earth Planet. Sci. Lett., 517 (2019), pp. 117-124,
CrossRef
Google scholar
|
P.G. Silver. Seismic anisotropy beneath the continents: probing the depths of geology. Annu. Rev. Earth Planet. Sci., 24 (1996), pp. 385-432,
CrossRef
Google scholar
|
P. Song, X. Zhang, Y. Liu, J. Teng. Moho imaging based on receiver function analysis with teleseismic wavefield reconstruction: Application to South China. Tectonophysics, 718 (2017), pp. 118-131,
CrossRef
Google scholar
|
P. Song, J. Teng, X. Zhang, Y. Liu, X. Si, X. Ma, Y. Qiao, X. Dong. Flyover crustal structures beneath the Qinling Orogenic Belt and its tectonic implications. J. Geophys. Res. Solid Earth, 123 (2018), pp. 6703-6718,
CrossRef
Google scholar
|
Y. Takei. Constitutive mechanical relations of solid-liquid composites in terms of grain-boundary contiguity. J. Geophys. Res.-Solid Earth, 103 (1998), pp. 18183-18203,
CrossRef
Google scholar
|
Y. Tang, S. Zhou, Y.J. Chen, E. Sandvol, X. Liang, Y. Feng, G. Jin, M. Jiang, M. Liu. Crustal structures across the western Weihe Graben, North China: implications for extrusion tectonics at the northeast margin of Tibetan Plateau. J. Geophys. Res. Solid Earth, 120 (7) (2015), pp. 5070-5081,
CrossRef
Google scholar
|
A.P. Tarkov, V.V. Vavakin. Poisson’s ratio behaviour in various crystalline rocks: application to the study of the Earth’s interior. Phys. Earth Planet. Inter., 29 (1982), pp. 24-29,
CrossRef
Google scholar
|
J.W. Teng, S.L. Li, Y. Zhang, F.Y. Wang, J.L. Pi, Z. Junmeng, C.K. Zhang, Y.H. Qiao, G.Z. Hu, Y.-F. Yan. Fine velocity structures and deep processes in crust and mantle of the Qinling orogenic belt and the adjacent North China craton and Yangtze craton. Chinese J. Geophys., 57 (2014), pp. 3154-3175,
CrossRef
Google scholar
|
T.L. Tseng, W.P. Chen, R.L. Nowack. Northward thinning of Tibetan crust revealed by virtual seismic profiles. Geophys. Res. Lett., 36 (2009), Article L24304,
CrossRef
Google scholar
|
M.J. Unsworth, A.G. Jones, W. Wei, G. Marquis, S.G. Gokarn, J.E. Spratt, I.-M. Team. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data. Nature, 438 (2005), pp. 78-81,
CrossRef
Google scholar
|
Z. Wang, G. Fu, Y. She. Crustal density structure, lithosphere flexure mechanism, and isostatic state throughout the Qinling Orogen revealed by in situ dense gravity observations. J. Geophys. Res. Solid Earth, 123 (11) (2018), pp. 10026-10039,
CrossRef
Google scholar
|
C.Y. Wang, E. Sandvol, L. Zhu, H. Lou, Z. Yao, X. Luo. Lateral variation of crustal structure in the Ordos block and surrounding regions, North China, and its tectonic implications. Earth Planet. Sci. Lett., 387 (2014), pp. 198-211,
CrossRef
Google scholar
|
T. Wang, X. Wang, W. Tian, C. Zhang, W. Li, S. Li. North Qinling Paleozoic granite associations and their variation in space and time: implications for orogenic processes in the orogens of central China. Sci. China Ser. D-Earth Sci., 52 (2009), pp. 1359-1384,
CrossRef
Google scholar
|
Z. Wei, Z. Li, L. Chen, R. Chu, S. Wu, Y. Ling, Q. Zeng. Crustal structure underneath central China across the Tibetan Plateau, the North China Craton, the South China Block and the Qinling-Dabie Orogen constrained by multifrequency receiver function and surface wave data. J. Asian Earth Sci., 202 (2020), Article 104535,
CrossRef
Google scholar
|
W. Wei, D. Zhao, J. Xu, B. Zhou, Y. Shi. Depth variations of P-wave azimuthal anisotropy beneath Mainland China. Sci. Rep., 6 (2016), p. 29614,
CrossRef
Google scholar
|
J.Y. Xie, M.H. Ritzwoller, W.S. Shen, Y.J. Yang, Y. Zheng, L.Q. Zhou. Crustal radial anisotropy across Eastern Tibet and the Western Yangtze Craton. J. Geophys. Res.-Solid Earth, 118 (2013), pp. 4226-4252,
CrossRef
Google scholar
|
H.S. Xie, Y.M. Zhang, H.G. Xu, W. Hou, J. Guo, H.R. Zhao. A new method of measurement for elastic wave velocities in minerals and rocks at high temperature and high pressure and its significance. Sci. China Chem., 36 (1993), pp. 1276-1280
|
Z. Xu, X. Song, L. Zhu. Crustal and uppermost mantle S velocity structure under Hi-CLIMB seismic array in central Tibetan Plateau from joint inversion of surface wave dispersion and receiver function data. Tectonophysics, 584 (2013), pp. 209-220,
CrossRef
Google scholar
|
F. Xue, A. Kröner, T. Reischmann, F. Lerch. Palaeozoic pre- and post-collision calc-alkaline magmatism in the Qinling orogenic belt, central China, as documented by zircon ages on granitoid rocks. J. Geol. Soc. London, 153 (1996), pp. 409-417,
CrossRef
Google scholar
|
T. Yang, S. Monna, L. Fang. Seismic imaging of the crust and uppermost mantle structure in the Qinling orogenic belt and its surroundings: Geodynamic implications. Tectonophysics, 843 (2022), Article 229619,
CrossRef
Google scholar
|
Y.J. Yang, M.H. Ritzwoller, Y. Zheng, W.S. Shen, A.L. Levshin, Z.J. Xie. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet. J. Geophys. Res.-Solid Earth (2012), p. 117,
CrossRef
Google scholar
|
Z. Ye, J. Li, R. Gao, X. Song, Q. Li, Y. Li, X. Xu, X. Huang, X. Xiong, W. Li. Crustal and uppermost mantle structure across the Tibet-Qinling transition zone in NE Tibet: implications for material extrusion beneath the Tibetan plateau. Geophys. Res. Lett., 44 (20) (2017), pp. 10316-10323,
CrossRef
Google scholar
|
Z. You, Y. Han, S. Suo, N. Chen, Z. Zhong. Metamorphic history and tectonic evolution of the Qinling Complex, eastern Qinling Mountains, China. J. Metamorph. Geol., 11 (1993), pp. 549-560,
CrossRef
Google scholar
|
X.C. Yuan. Velocity structure of the Qinling lithosphere and mushroom cloud model. Sci. China Earth Sci., 39 (1996), pp. 235-244
|
G. Zandt, C. Ammon. Continental crust composition constrained by measurements of crustal Poisson’s Ratio. Nature, 374 (1995), pp. 152-154,
CrossRef
Google scholar
|
S. Zertani, J.C. Vrijmoed, F. Tilmann, T. John, T.B. Andersen, L. Labrousse. P wave anisotropy caused by partial eclogitization of descending crust demonstrated by modeling effective petrophysical properties. Geochem. Geophys. Geosyst., 21 (2020), Article e2019GC008906,
CrossRef
Google scholar
|
G.W. Zhang, Y. Dong, A.P. Yao. The crustal compositions, structures and tectonic evolution of the Qinling orogenic belt. Geol. Shaanxi, 15 (1997), pp. 1-14
|
B.H. Zhang, H.Z. Fei, J.H. Ge, L.S. Zeng, Q.K. Xia. Crustal melting in orogenic belts revealed by eclogite thermal properties. Nat. Commun., 13 (2022), p. 4673,
CrossRef
Google scholar
|
S.Q. Zhang, S. Karato. Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature, 375 (1995), pp. 774-777,
CrossRef
Google scholar
|
F. Zhang, Q. Wu, Y. Li, R. Zhang, L. Sun, J. Pan, Z. Ding. Seismic tomography of Eastern Tibet: implications for the Tibetan Plateau growth. Tectonics, 37 (2018), pp. 2833-2847,
CrossRef
Google scholar
|
G. Zhang, Z. Yu, Y. Sun, S. Cheng, T. Li, F. Xue, C. Zhang. The major suture zone of the Qinling orogenic belt. J. Asian Earth Sci., 3 (1989), pp. 63-76,
CrossRef
Google scholar
|
G. Zhang, B.R. Zhang, X.R. Yuan, Q.H. Xiao. Qinling Orogenic Belt and Continental Dynamics. Science Publishing House, Beijing (2001)
|
Z.D. Zhao, S. Gao, T.C. Luo, B.R. Zhang, H.S. Xie, Y.M. Zhang, H.G. Xu, J. Guo. Origin of the crustal low velocity layer of Qinling and North China: Evidence from laboratory measurement of P-wave velocity in rocks at high PT conditions. Acta Geophys. Sin., 39 (1996), pp. 650-652
|
D.P. Zhao, O.P. Mishra, R. Sanda. Influence of fluids and magma on earthquakes: seismological evidence. Phys. Earth Planet. Inter., 132 (2002), pp. 249-267,
CrossRef
Google scholar
|
D.P. Zhao, T. Mizuno. Crack density and saturation rate in the 1995 Kobe earthquake region. Geophys. Res. Lett., 26 (1999), pp. 3213-3216,
CrossRef
Google scholar
|
D. Zhao, S. Yu, X. Liu. Seismic anisotropy tomography: new insight into subduction dynamics. Gondw. Res., 33 (2016), pp. 24-43,
CrossRef
Google scholar
|
W. Zhou, D. Fan, Y. Liu, H. Xie. Measurements of wave velocity and electrical conductivity of an amphibolite from southwestern margin of the Tarim Basin at pressures to 1.0 GPa and temperatures to 700 ℃: Comparison with field observations. Geophys. J. Int., 187 (2011), pp. 1393-1404,
CrossRef
Google scholar
|
Z. Zhou, J. Lei. Pn anisotropic tomography and mantle dynamics beneath China. Phys. Earth Planet. Inter., 257 (2016), pp. 193-204,
CrossRef
Google scholar
|
Y.A. Zorin, V.V. Mordvinova, E.K. Turutanov, B.G. Belichenko, A.A. Artemyev, G.L. Kosarev, S.S. Gao. Low seismic velocity layers in the Earth’s crust beneath Eastern Siberia (Russia) and Central Mongolia: receiver function data and their possible geological implication. Tectonophysics, 359 (2002), pp. 307-327,
CrossRef
Google scholar
|
Zhang, G.W., Dong, Y.P., Lai, S.C., Guo, A. Meng Q.R., Liu, S.F., Chen, S.Y., Yao, A., Zhang, Z.Q., Pei, X.Z., Li, S.Z., 2004. Mianlue tectonic zone and Mianlue suture zone on southern margin of Qinling-Dabie orogenic belt. Science in China (Series D), 49 , 300-316. doi:10.1360/02YD0526.
|
/
〈 |
|
〉 |