Viscosities of hcp iron alloys under Earth’s inner core conditions
Yunfan Xu, Yu He, Shichuan Sun, Wei Zhang, Weiru Dai, Duck Young Kim, Heping Li
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101935.
Viscosities of hcp iron alloys under Earth’s inner core conditions
Viscosity is critical for controlling the dynamics and evolution of the Earth’s inner core (IC). The viscosities of hexagonal close-packed (hcp) and body-centred cubic (bcc) Fe were studied experimentally and theoretically under Earth's core conditions. However, Earth’s inner core is mainly composed of Fe-Ni alloys with some light element impurities (Si, S, C, H, O), and the influence of impurities (Ni, Si, S, C, H, and O) on viscosity is still unknown. In this study, the diffusion coefficients of Fe, Ni, Si, S, C, H, and O were calculated under IC conditions using ab initio molecular dynamics (AIMD) and deep learning molecular dynamics (DPMD) methods. Among them, C, H, and O are highly diffusive like liquids in the lattice, while Fe, Ni, Si, and S diffuse through Fe site vacancies. In binary alloys, the influence of these impurities (Ni: 12.5%, S: 3.6%, Si: 3.1%, C: 1.3%, O: 1.7%, H: 0.4% by weight) on viscosity is insignificant. Based on the dislocation creep mechanism, the predicted viscosities of the hcp Fe alloys are 1 × 1014–2 × 1016 Pa·s, which is consistent with the values predicted by free inner core nutation and seismic wave attenuation observations.
Earth’s inner core / High pressure and high temperature / Viscosity / Molecular dynamics
T. Alboussiere, R. Deguen, M. Melzani. Melting-induced stratification above the Earth's inner core due to convective translation. Nature, 466 (2010), pp. 744-U749,
CrossRef
Google scholar
|
A.B. Belonoshko, T. Lukinov, J. Fu, J.J. Zhao, S. Davis, S.I. Simak. Stabilization of body-centred cubic iron under inner-core conditions. Nat. Geosci., 10 (2017), pp. 312-316,
CrossRef
Google scholar
|
A.B. Belonoshko, J. Fu, T. Bryk, S.I. Simak, M. Mattesini. Low viscosity of the Earth’s inner core. Nat. Commun., 10, 2483 (2019),
CrossRef
Google scholar
|
M.I. Bergman. Measurements of electric anisotropy due to solidification texturing and the implications for the Earth's inner core. Nature, 389 (1997), pp. 60-63,
CrossRef
Google scholar
|
M.I. Bergman. Estimates of the Earth's inner core grain size. Geophys. Res. Lett., 25 (1998), pp. 1593-1596,
CrossRef
Google scholar
|
M.I. Bergman, D.J. Lewis, I.H. Myint, L. Slivka, S.-I. Karato, A. Abreu. Grain growth and loss of texture during annealing of alloys, and the translation of Earth's inner core. Geophys. Res. Lett., 37 (22) (2010), p. L22313,
CrossRef
Google scholar
|
J. Bloxham. The effect of thermal core-mantle interactions on the palaeomagnetic secular variation. Philos. Trans. r. Soc. A, 358 (2000), pp. 1171-1179,
CrossRef
Google scholar
|
W. Blum, W. Maier. Harper-Dorn creep - a myth? Phys. Status Solidi A, 171 (1999), pp. 467-474,
CrossRef
Google scholar
|
H. Brett, A. Deuss. Inner core anisotropy measured using new ultra-polar PKIKP paths. Geophys. J. Int., 223 (2020), pp. 1230-1246,
CrossRef
Google scholar
|
B.A. Buffett. Geodynamic estimates of the viscosity of the Earth's inner core. Nature, 388 (1997), pp. 571-573,
CrossRef
Google scholar
|
B.A. Buffett, J. Bloxham. Deformation of earth's inner core by electromagnetic forces. Geophys. Res. Lett., 27 (2000), pp. 4001-4004,
CrossRef
Google scholar
|
B.A. Buffett, H.R. Wenk. Texturing of the Earth's inner core by Maxwell stresses. Nature, 413 (2001), pp. 60-63,
CrossRef
Google scholar
|
D.M. Ceperley, B.J. Alder. Ground-state of the electron-gas by a stochastic method. Phys. Rev. Lett., 45 (1980), pp. 566-569,
CrossRef
Google scholar
|
Creager, K.C., 1999. Large-scale variations in inner core anisotropy. J. Geophys. Res.: Solid Earth 104, 23127-23139. https://doi.org/10.1029/1999jb900162.
|
C.J. Davies. Cooling history of Earth’s core with high thermal conductivity. Phys. Earth Planet. Inter., 247 (2015), pp. 65-79
|
D.A. Frost, M. Lasbleis, B. Chandler, B. Romanowicz. Dynamic history of the inner core constrained by seismic anisotropy. Nat. Geosci., 14 (2021), pp. 531-535,
CrossRef
Google scholar
|
R. Garcia, A. Souriau. Inner core anisotropy and heterogeneity level. Geophys. Res. Lett., 27 (2000), pp. 3121-3124,
CrossRef
Google scholar
|
G.A. Glatzmaier, P.H. Roberts. A 3-dimensional self-consistent computer-simulation of a geomagnetic-field reversal. Nature, 377 (1995), pp. 203-209,
CrossRef
Google scholar
|
A.E. Gleason, W.L. Mao. Strength of iron at core pressures and evidence for a weak Earth's inner core. Nat. Geosci., 6 (2013), pp. 571-574,
CrossRef
Google scholar
|
J.I. Goldstein, R.E. Hanneman, R.E. Ogilvie. Diffusion in Fe-Ni system at 1 atm and 40 kbar pressure. Trans. Metall. Soc. AIME, 233 (1965), pp. 812-820
|
Gomi, H., Hirose, K., 2023. Impurity resistivity of the Earth's inner core. J. Geophys. Res.: Solid Earth 128(11), e2023JB027097. https://doi.org/10.1029/2023jb027097.
|
Y. He, S. Sun, D.Y. Kim, B.G. Jang, H. Li, H.-K. Mao. Superionic iron alloys and their seismic velocities in Earth's inner core. Nature, 602 (2022), pp. 258-262,
CrossRef
Google scholar
|
Y. He, D.Y. Kim, V.V. Struzhkin, Z.M. Geballe, V. Prakapenka, H.K. Mao. The stability of FeHx and hydrogen transport at Earth's core mantle boundary. Sci. Bull., 68 (2023), pp. 1567-1573,
CrossRef
Google scholar
|
Y. He, S. Sun, H. Li. Superionic iron alloys in Earth’s inner core and their effects. Chin. J. High Press. Phys., 38 (2024), pp. 132-141(in Chinese with English abstract)
|
K. Hirose, B. Wood, L. Vocadlo. Light elements in the Earth's core. Nat. Rev. Earth Environ., 2 (2021), pp. 645-658,
CrossRef
Google scholar
|
P. Hohenberg, W. Kohn. Inhomogeneous electron gas. Phys. Rev. B, 136 (1964), pp. B864-B871,
CrossRef
Google scholar
|
Irving, J.C.E., Deuss, A., 2011. Hemispherical structure in inner core velocity anisotropy. J. Geophys. Res.: Solid Earth 116(B4), B04307. https://doi.org/10.1029/2010jb007942.
|
M. Ishii, A.M. Dziewonski. The innermost inner core of the earth: evidence for a change in anisotropic behavior at the radius of about 300 km. Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 14026-14030,
CrossRef
Google scholar
|
Jackson, I., Fitz Gerald, J.D., Kokkonen, H., 2000. High-temperature viscoelastic relaxation in iron and its implications for the shear modulus and attenuation of the Earth's inner core. J. Geophys. Res.: Solid Earth 105, 23605-23634. https://doi.org/10.1029/2000jb900131.
|
R. Jeanloz, H.R. Wenk. Convection and anisotropy of the inner core. Geophys. Res. Lett., 15 (1988), pp. 72-75,
CrossRef
Google scholar
|
Z. Jing, T. Liu. Earth’s core composition constrained by H partitioning at the inner core boundary. Res. Square (2024), 10.21203/rs.3.rs-3974305/v1
|
R. Jinnouchi, F. Karsai, C. Verdi, R. Asahi, G. Kresse. Descriptors representing two- and three-body atomic distributions and their effects on the accuracy of machine-learned inter-atomic potentials. J. Chem. Phys., 152 (2020), Article 234192,
CrossRef
Google scholar
|
S. Karato. Inner-core anisotropy due to the magnetic-field-induced preferred orientation of iron. Science, 262 (1993), pp. 1708-1711,
CrossRef
Google scholar
|
S. Karato. Seismic anisotropy of the Earth's inner core resulting from flow induced by Maxwell stresses. Nature, 402 (1999), pp. 871-873,
CrossRef
Google scholar
|
W. Kohn, L.J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140 (1965), pp. 1133-1138,
CrossRef
Google scholar
|
L. Koot, M. Dumberry. Viscosity of the Earth's inner core: constraints from nutation observations. Earth Planet. Sci. Lett., 308 (2011), pp. 343-349,
CrossRef
Google scholar
|
G. Kresse. Ab-initio molecular-dynamics for liquid-metals. J. Non-Cryst. Solids, 193 (1995), pp. 222-229,
CrossRef
Google scholar
|
Z. Li, S. Scandolo. Elasticity and vviscosity of hcp iron at Earth’s inner core conditions from machine learning-based large-scale atomistic simulations. Geophys. Res. Lett., 49 (24) (2022), Article e2022GL101161,
CrossRef
Google scholar
|
K.H. Lythgoe, A. Deuss, J.F. Rudge, J.A. Neufeld. Earth's inner core: innermost inner core or hemispherical variations?. Earth Planet. Sci. Lett., 385 (2014), pp. 181-189,
CrossRef
Google scholar
|
B. Militzer, H.R. Wenk, S. Stackhouse, L. Stixrude. First-principles calculation of the elastic moduli of sheet silicates and their application to shale anisotropy. Am. Mineral., 96 (2011), pp. 125-137,
CrossRef
Google scholar
|
M. Monnereau, M. Calvet, L. Margerin, A. Souriau. Lopsided growth of Earth's inner core. Science, 328 (2010), pp. 1014-1017,
CrossRef
Google scholar
|
A. Morelli, A.M. Dziewonski, J.H. Woodhouse. Anisotropy of the inner core inferred from Pkikp travel-times. Geophys. Res. Lett., 13 (1986), pp. 1545-1548,
CrossRef
Google scholar
|
Y. Nishihara, S. Doi, N. Tsujino, D. Yamazaki, K.N. Matsukage, Y. Tsubokawa, T. Yoshino, A.R. Thomson, Y. Higo, Y. Tange. Rheology of hexagonal close-packed (hcp). Iron. J. Geophys. Res.: Solid Earth, 128(6), e2022JB026165 (2023),
CrossRef
Google scholar
|
F.L. Niu, L.X. Wen. Hemispherical variations in seismic velocity at the top of the Earth's inner core. Nature, 410 (2001), pp. 1081-1084,
CrossRef
Google scholar
|
S.I. Oreshin, L.P. Vinnik. Heterogeneity and anisotropy of seismic attenuation in the inner core. Geophys. Res. Lett., 31 (2) (2004), p. L02613,
CrossRef
Google scholar
|
Y. Park, K. Yonemitsu, K. Hirose, Y. Kuwayama, S. Azuma, K. Ohta. Viscosity of Earth's inner core constrained by Fe-Ni interdiffusion in Fe-Si alloy in an internal-resistive-heated diamond anvil cell. Am. Mineral., 108 (2023), pp. 1064-1071,
CrossRef
Google scholar
|
J.P. Perdew, A. Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 23 (1981), pp. 5048-5079,
CrossRef
Google scholar
|
T.-S. Pham, H. Tkalcic. Up-to-fivefold reverberating waves through the Earth's center and distinctly anisotropic innermost inner core. Nat. Commun., 14 (2023), p. 754,
CrossRef
Google scholar
|
D.M. Reaman, G.S. Daehn, W.R. Panero. Predictive mechanism for anisotropy development in the Earth's inner core. Earth Planet. Sci. Lett., 312 (2011), pp. 437-442,
CrossRef
Google scholar
|
D.M. Reaman, H.O. Colijn, F. Yang, A.J. Hauser, W.R. Panero. Interdiffusion of Earth's core materials to 65 GPa and 2200 K. Earth Planet. Sci. Lett., 349 (2012), pp. 8-14,
CrossRef
Google scholar
|
S. Ritterbex, T. Tsuchiya. Viscosity of hcp iron at Earth's inner core conditions from density functional theory. Sci. Rep., 10 (2020), p. 6311,
CrossRef
Google scholar
|
X.D. Song, D.V. Helmberger. Anisotropy of Earth’s inner-core. Geophys. Res. Lett., 20 (1993), pp. 2591-2594,
CrossRef
Google scholar
|
X.D. Song, P.G. Richards. Seismological evidence for differential rotation of the Earth's inner core. Nature, 382 (1996), pp. 221-224,
CrossRef
Google scholar
|
L. Stixrude, R.E. Cohen, R.J. Hemley. Theory of minerals at high pressure. Ultrahigh-pressure mineralogy: Physics and chemistry of the Earth's deep interior. R. J. Hemley., 37 (1998), pp. 639-671
|
W.J. Su, A.M. Dziewonski. Inner-core anisotropy in 3 dimensions. J. Geophys Res. Solid Earth, 100 (1995), pp. 9831-9852,
CrossRef
Google scholar
|
Sumita, I., Bergman, M.I., 2007. 8.10 - Inner-Core Dynamics. Treatise on Geophysics. G. Schubert. Amsterdam, Elsevier, pp. 299-318.
|
S. Sun, Y. He, J. Yang, Y. Lin, J. Li, D.Y. Kim, H. Li, H.-K. Mao. Superionic effect and anisotropic texture in Earth's inner core driven by geomagnetic field. Nat. Commun., 14 (2023), p. 1656,
CrossRef
Google scholar
|
X. Sun, X. Song. The inner inner core of the Earth: Texturing of iron crystals from three-dimensional seismic anisotropy. Earth Planet. Sci. Lett., 269 (2008), pp. 56-65,
CrossRef
Google scholar
|
S. Tanaka, H. Hamaguchi. Degree one heterogeneity and hemispherical variation of anisotropy in the inner core from PKP(BC)-PKP(DF) times. J. Geophys Res. Solid Earth, 102 (1997), pp. 2925-2938,
CrossRef
Google scholar
|
J. Tromp. Support for anisotropy of the Earth’s inner-core from free oscillations. Nature, 366 (1993), pp. 678-681,
CrossRef
Google scholar
|
N. Tsujino, A. Marza, D. Yamazaki. Pressure dependence of Si diffusion in γ-Fe. Am. Mineral., 105 (2020), pp. 319-324,
CrossRef
Google scholar
|
J.A. Van Orman. On the viscosity and creep mechanism of Earth's inner core. Geophys. Res. Lett., 31 (2004), p. L20606,
CrossRef
Google scholar
|
Wang, H., Zhang, L.F., Han, J.Q., E, W.N., 2018. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics. Comput. Phys. Commun. 228, 178-184. https://doi.org/10.1016/j.cpc.2018.03.016.
|
L. Waszek, A. Deuss. Distinct layering in the hemispherical seismic velocity structure of Earth's upper inner core. J. Geophys. Res. Solid Earth, 116 (2011), p. B12313,
CrossRef
Google scholar
|
L.X. Wen, F.L. Niu. Seismic velocity and attenuation structures in the top of the Earth's inner core. J. Geophys. Res. Solid Earth, 107 (B11) (2002), p. 2273,
CrossRef
Google scholar
|
D. Yamazaki, N. Tsujino, A. Yoneda, E. Ito, T. Yoshino, Y. Tange, Y. Higo. Grain growth of ε-iron: Implications to grain size and its evolution in the Earth's inner core. Earth Planet. Sci. Lett., 459 (2017), pp. 238-243,
CrossRef
Google scholar
|
Y. Yang, X. Song. Multidecadal variation of the Earth's inner-core rotation. Nat. Geosci., 16 (2023), p. 189,
CrossRef
Google scholar
|
S. Yoshida, I. Sumita, M. Kumazawa. Growth model of the inner core coupled with the outer core dynamics and the resulting elastic anisotropy. J. Geophys. Res. Solid Earth, 101 (1996), pp. 28085-28103,
CrossRef
Google scholar
|
W.C. Yu, L.X. Wen. Seismic velocity and attenuation structures in the top 400 km of the Earth's inner core along equatorial paths. J. Geophys. Res. Solid Earth, 111 (2006), p. B07308,
CrossRef
Google scholar
|
L. Yuan, G. Steinle-Neumann. Hydrogen distribution between the Earth’s inner and outer core. Earth Planet. Sci. Lett., 609 (2023), Article 118084,
CrossRef
Google scholar
|
M.L. Yunker, J.A. Van Orman. Interdiffusion of solid iron and nickel at high pressure. Earth Planet. Sci. Lett., 254 (2007), pp. 203-213,
CrossRef
Google scholar
|
Y.Z. Zhang, H.D. Wang, W.J. Chen, J.Z. Zeng, L.F. Zhang, H. Wang, E. Weinan. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models. Comput. Phys. Commun., 253 (2020), Article 107206,
CrossRef
Google scholar
|
Y.J. Zhang, Y. Wang, Y.Q. Huang, J.J. Wang, Z.X. Liang, L. Hao, Z.P. Gao, J. Li, Q. Wu, H. Zhang, Y. Liu, J. Sun, J.F. Lin. Collective motion in hcp-Fe at Earth’s inner core conditions. Proc. Natl. Acad. Sci. USA, 120 (41) (2023), Article e2309952120,
CrossRef
Google scholar
|
/
〈 |
|
〉 |