Paleogeographic significance of unknown hyperextended continental crust in South Atlantic conjugated margin
C.D. Teixeira, T.J. Girelli, H. Serratt, H.O.S. Oliveira, M.F. Cruz, B. Conti, P. Rodriguez, F. Chemale
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101934.
Paleogeographic significance of unknown hyperextended continental crust in South Atlantic conjugated margin
The paleogeographic reconstruction of fragmented and dispersed continents often poses a challenge due to the lack of information regarding the nature of that extend beneath passive margin basins. To define the width of the continental crust beneath passive margin basins and its implications for paleogeographic reconstruction of conjugate continental margins, this study investigates the architecture of the stretched continental crust of the southern South Atlantic conjugate margin. The investigated region encompasses South Africa, Namibia, southern Brazil, and Uruguay, which were formed during the Mesozoic rifting of SW Gondwana. Employing a multi-tool approach combining seismic interpretation, gravity, magnetometry, and U-Pb isotopic data, the research aims to quantify the extension of stretched continental crust and its implications for plate reconstructions. The study reveals that the restored stretched crust spans at least 150 km, emphasizing the significance of considering connections between both margins for realistic paleogeographic reconstructions. Furthermore, the distinct U-Pb zircon age distribution patterns between SW Africa and SE South America reinforce the lack of direct connections despite their Gondwanan origin. The missing link estimated in this study is around 150 km, comparable in size to major mountain ranges such as the Andean or Urals. This work sheds light on critical aspects of Earth’s dynamic crustal evolution and emphasizes the need for comprehensive reconstructions considering stretched and eroded crust in the South Atlantic conjugate margin.
Hyperextended continental crust / Reconstruction / South Atlantic Ocean / Passive margin / Gondwana
M.A.S. Basei. . Geologia e modelagem geotectônica dos terrenos Pré-Cambrianos das regiões sul-oriental brasileira e uruguaia: possíveis correlações com províncias similares do sudoeste africano. Tese (Livre-Docência em Geociências), Instituto de Geociências, Universidade de São Paulo, São Paulo (2000), p. 124, 10.11606/T.44.2014.tde-11022014-155501
|
M.A.S. Basei, H.E. Frimmel, M.D.C. Campos Neto, C.E. Ganade de Araujo, N. Araujo de Castro, C.R. Passarelli. The tectonic history of the southern adamastor ocean based on a correlation of the Kaoko and Dom feliciano belts. Siegesmund (Ed.), Geology of Southwest Gondwana, Springer Nature Regional Geology (2018)
|
M.A.S. Basei, H.E. Frimmel, A.P. Nutman, F. Preciozzi. West Gondwana amalgamation based on detrital zircon ages from Neoproterozoic Ribeira and Dom Feliciano belts of South America and comparison with coeval sequences from SW Africa. Geol. Soc. Lond. Spec. Publ., 294 (1) (2008), pp. 239-256
|
B. Becker-Kerber, P.S.G. Paim, F.C. Junior, et al.. The oldest record of Ediacaran macrofossils in Gondwana (∼ 563 Ma, Itajaí Basin, Brazil). Gondwana Res., 84 (2020), pp. 211-228
|
G.C. Begg, W.L. Griffin, L.M. Natapov, et al.. The lithospheric architecture of Africa: seismic tomography, mantle petrology, and tectonic evolution. Geosphere, 5 (1) (2009), pp. 23-50
|
O.A. Blaich, J.I. Faleide, F. Tsikalas, A.C. Gordon, W. Mohriak. Crustal-scale architecture and segmentation of the South Atlantic volcanic margin. Geol. Soc. Lond. Spec. Publ., 369 (1) (2013), pp. 167-183
|
F.A. Caxito, L.A. Hartmann, M. Heilbron, H. Bruno, A. Pedrosa-Soares, M.A.S. Basei, F. Chemale. Multi-proxy evidence for subduction of the Neoproterozoic Adamastor Ocean and Wilson cycle tectonics in the South Atlantic Brasiliano Orogenic System of Western Gondwana. Precambr. Res., 376 (2022), Article 106678
|
F. Chauvet, F. Sapin, L. Geoffroy, J.C. Ringenbach, J.N. Ferry. Conjugate volcanic passive margins in the austral segment of the South Atlantic-Architecture and development. Earth-Sci. Rev., 212 (2021), Article 103461
|
F. Chemale Jr. Evolução geológica do Escudo Sul-rio-grandense. Geologia Do Rio Grande Do Sul (2000), pp. 13-52
|
F. Chemale Jr, G. Mallmann, M. de Fátima Bitencourt, K. Kawashita. Time constraints on magmatism along the Major Gercino Shear Zone, southern Brazil: implications for West Gondwana reconstruction. Gondwana Res., 22 (1) (2012), pp. 184-199
|
T. Doré, E. Lundin. Research focus: hyperextended continental margins—Knowns and unknowns. Geology, 43 (1) (2015), pp. 95-96
|
T.M. Will, S. Höhn, H.E. Frimmel, C. Gaucher, Le Roux, P.H. Macey. Petrological, geochemical and isotopic data of Neoproterozoic rock units from Uruguay and South Africa: Correlation of basement terranes across the South Atlantic. Gondwana Res., 80 (2020), pp. 12-32
|
Du Toit, A.L. 1927. A geological comparison of South America with South Africa (No. 381). Carnegie Institution of Washington.
|
G. Eagles, L. Pérez-Díaz, N. Scarselli. Getting over continent ocean boundaries. Earth-Sci. Rev., 151 (2015), pp. 244-265
|
L.A.D. Fernandes, A. Tommasi, C.C. Porcher. Deformation patterns in the southern Brazilian branch of the Dom Feliciano Belt: a reappraisal. J. South Am. Earth Sci., 5 (1) (1992), pp. 77-96,
CrossRef
Google scholar
|
H.E. Frimmel. Trace element distribution in neoproterozoic carbonates as palaeoenvironmental indicator. Chem Geol., 258 (3–4) (2009), pp. 338-353
|
G. Gehrels. Detrital zircon U-Pb geochronology applied to tectonics. An. Rev. Earth Planet. Sci., 42 (2014), pp. 127-149
|
L. Geoffroy, F. Chauvet, J.C. Ringenbach. Middle-lower continental crust exhumed at the distal edges of volcanic passive margins. Commun. Earth Environ., 3 (1) (2022), p. 95
|
A.S. Gomes, P.M. Vasconcelos. Geochronology of the Paraná-Etendeka large igneous province. Earth-Sci. Rev., 220 (2021), Article 103716
|
R. Granot, J. Dyment. The cretaceous opening of the South Atlantic Ocean. Earth Planet. Sci. Lett., 414 (2015), pp. 156-163
|
P. Haas, R.D. Müller, J. Ebbing, N.P. Finger, M.K. Kaban, C. Heine. Modeling lithospheric thickness along the conjugate South Atlantic passive margins implies asymmetric rift initiation. Tectonics, 41 (9) (2022), Article e2021TC006828
|
C. Harkin, N. Kusznir, A. Roberts, G. Manatschal, B. Horn. Origin, composition and relative timing of seaward dipping reflectors on the Pelotas rifted margin. Mar. Petrol. Geol., 114 (2020), p. 104235
|
L.A. Hartmann, F. Chemale Jr., R.P. Philipp. . R. Iannuzzi, J.C. Frantz (Eds.), Evolução geotectônica do Rio Grande do Sul no pré-cambriano, 50 (2007), pp. 97-123
|
. . M. Heilbron, U.G. Cordani, F.F. Alkmim (Eds.), Sao Francisco Craton, Tectonic Genealogy of a Miniature Continent. Springer, Eastern Brazil (2016)
|
C. Heine, J. Zoethout, R.D. Müller. Kinematics of the South Atlantic rift. Solid Earth, 4 (2) (2013), pp. 215-253
|
W. Jokat, T. Boebel, M. König, U. Meyer. Timing and geometry of early Gondwana break-up. J. Geophys. Res. Solid Earth, 108 (B9) (2003),
CrossRef
Google scholar
|
J. Konopásek, C. Cavalcante, H. Fossen, V. Janoušek. Adamastor – an ocean that never existed?. Earth-Sci. Rev., 205 (2020), Article 103201,
CrossRef
Google scholar
|
H. Koopmann, B. Schreckenberger, D. Franke, K. Becker, M. Schnabel. The late rifting phase and continental break-up of the southern South Atlantic: the mode and timing of volcanic rifting and formation of earliest oceanic crust. Geol. Soc. Lond. Spec. Publ., 420 (1) (2014), pp. 315-340
|
C. Lei, T.M. Alves, J. Ren, C. Tong. Rift structure and sediment infill of hyperextended continental crust: insights from 3D seismic and well data (Xisha Trough, South China Sea). J. Geophys. Res. Solid Earth, 125 (5) (2020),
CrossRef
Google scholar
|
X. Lenoir, G. Féraud, L. Geoffroy. High-rate flexure of the East Greenland volcanic margin: constraints from 40Ar/39Ar dating of basaltic dykes. Earth Planet. Sci. Lett., 214 (3–4) (2003), pp. 515-528
|
D. Macdonald, I. Gomez-Perez, J. Franzese, et al.. Mesozoic break-up of SW Gondwana: implications for regional hydrocarbon potential of the southern South Atlantic. Mar. Petrol. Geol., 20 (3–4) (2003), pp. 287-308
|
S. Maus, U. Barckhausen, H. Berkenbosch, et al.. EMAG2: a 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements. Geochem. Geophys. Geosys., 10 (8) (2009),
CrossRef
Google scholar
|
D. McKenzie. Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett., 40 (1) (1978), pp. 25-32,
CrossRef
Google scholar
|
E.J. Milani, M.J. De Wit. Correlations between the classic Paraná and Cape-Karoo sequences of South America and southern Africa and their basin infills flanking the Gondwanides: du Toit revisited. Geol. Soc. Lond. Spec. Publ., 294 (1) (2008), pp. 319-342
|
Miller, R., Grote, W. 1988. Geological Map of the Damara Orogen, South West Africa/Namibia 1: 500 000. Geological Survey.
|
M. Moulin, D. Aslanian, P. Unternehr. A new starting point for the South and Equatorial Atlantic Ocean. Earth-Sci. Rev., 98 (1–2) (2010), pp. 1-37,
CrossRef
Google scholar
|
R.D. Müller, J. Cannon, X. Qin, et al.. GPlates: building a virtual Earth through deep time. Geochem. Geophys. Geosyst., 19 (2018),
CrossRef
Google scholar
|
R.D. Müller, S. Zahirovic, S.E. Williams, et al.. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics, 38 (6) (2019), pp. 1884-1907
|
J.C. Mutter, M. Talwani, P.L. Stoffa. Origin of seaward-dipping reflectors in oceanic crust off the Norwegian margin by “subaerial seafloor spreading”. Geology, 10 (7) (1982), pp. 353-357
|
J.S. Myers. Structure of the coastal dyke swarm and associated plutonic intrusions of East Greenland. Earth Planet. Sci Lett., 46 (3) (1980), pp. 407-418
|
M. Nirrengarten, G. Manatschal, J. Tugend, N. Kusznir, D. Sauter. Kinematic evolution of the southern North Atlantic: implications for the formation of hyperextended rift systems. Tectonics, 37 (2018), pp. 89-118,
CrossRef
Google scholar
|
C.W. Passchier, R.A.J. Trouw, A. Ribeiro, F.V.P. Paciullo. Tectonic evolution of the southern Kaoko belt, Namibia. J. Afr. Earth Sci., 35 (1) (2002), pp. 61-75
|
G. Peron-Pinvidic, G. Manatschal, P.T. Osmundsen. Structural comparison of archetypal Atlantic rifted margins: a review of observations and concepts. Mar. Petrol. Geol., 43 (2013), pp. 21-47
|
R.P. Philipp, M.M. Pimentel, F. Chemale Jr.. Tectonic evolution of the Dom Feliciano Belt in Southern Brazil: geological relationships and U-Pb geochronology. Brazilian Journal of Geology, 46 (2016), pp. 83-104
|
H. Porada. Pan-African rifting and orogenesis in southern to equatorial Africa and eastern Brazil. Precambr. Res., 44 (2) (1989), pp. 103-136
|
A.R. Prave. Tale of three cratons: tectonostratigraphic anatomy of the Damara orogen in northwestern Namibia and the assembly of Gondwana. Geology, 24 (12) (1996), pp. 1115-1118
|
S.J. Puetz. A relational database of global U–Pb ages. Geoscience Frontiers, 9 (3) (2018), pp. 877-891
|
S.J. Puetz, C.J. Spencer, C.E. Ganade. Analyses from a validated global U-Pb detrital zircon database: enhanced methods for filtering discordant U-Pb zircon analyses and optimizing crystallization age estimates. Earth-Sci. Rev., 220 (2021), Article 103745
|
P.D. Rabinowitz, J. LaBrecque. The Mesozoic South Atlantic Ocean and evolution of its continental margins. J. Geophys. Res., 84 (B11) (1979), p. 5973,
CrossRef
Google scholar
|
C.W. Rapela, C.M. Fanning, C. Casquet, R.J. Pankhurst, L. Spalletti, D. Poiré, E.G. Baldo. The Rio de la Plata craton and the adjoining Pan-African/Brasiliano terranes: Their origins and incorporation into southwest Gondwana. Gondwana Res., 20 (2011), pp. 673-690
|
Roberts, N.M.W., Spencer, C.J. 2015. The zircon archive of continent formation through time. In: Roberts, N.M.W., Van Kranendonk, M., Parman, S., Shirey, S., Clift, P.D. (Eds.), Continent Formation Through Time. Geological Society, London, Special Publications, 389, 197–225.
|
D.T. Sandwell, R.D. Müller, W.H.F. Smith, E. Garcia, R. Francis. New global marine gravity model from Cryo-Sat-2 and Jason-1 reveals buried tectonic structure. Science, 346 (6205) (2014), pp. 65-67,
CrossRef
Google scholar
|
C. Schiffer, A.G. Doré, G.R. Foulger, et al.. Structural inheritance in the North Atlantic. Earth-Sci. Rev., 206 (2020), Article 102975
|
H. Serratt, C.D. Teixeira, T.J. Girelli, M. Kehl de Souza, M.R. Vargas, A.M. Silva, F. Chemale Jr.. Seaward‐dipping reflector influence on seafloor magnetostratigraphy–A Pelotas Basin view. Geophys. Res. Lett. (2022)
|
M. Seton, R.D. Müller, S. Zahirovic, et al.. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci. Rev., 113 (3–4) (2012), pp. 212-270
|
E. Sutra, G. Manatschal, G. Mohn, P. Unternehr. Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins. Geochem. Geophys. Geosyst., 14 (2013), pp. 2575-2597,
CrossRef
Google scholar
|
T.H. Torsvik, S. Rousse, C. Labails, M.A. Smethurst. A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophys. J. Int., 177 (3) (2009), pp. 1315-1333
|
J.J. Veevers. Gondwanaland from 650–500 Ma assembly through 320 Ma merger in Pangea to 185–100 Ma break-up: supercontinental tectonics via stratigraphy and radiometric dating. Earth-Sci. Rev., 68 (1–2) (2004), pp. 1-132
|
P. Vermeesch. IsoplotR: a free and open toolbox for geochronology. Geosci. Front., 9 (5) (2018), pp. 1479-1493
|
/
〈 |
|
〉 |