Decarbonization of siderite in the water-rich upper mantle

Mengqi Guo, Fangfei Li, Xinyang Li, Zhaodong Liu, Liang Li, Daoyuan Wu, Qiang Zhou

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101930.

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101930. DOI: 10.1016/j.gsf.2024.101930

Decarbonization of siderite in the water-rich upper mantle

Author information +
History +

Abstract

The aqueous fluids within subducted slabs have the potential to influence the form of carbonate presence and the carbon cycling process. Experiments were performed on resistive heating diamond anvil cell using siderite crystals and grains with water under conditions of pressure as high as 11.4 GPa and temperatures reaching up to 530 °C. These experiments aimed to simulate geological reactions that may occur within a depth range of 340 km in subducted slabs. Raman spectroscopy was employed to monitor the reactions and microscale phenomena within the sample chamber as pressure and temperature increase. The recovered products were analyzed using scanning electron microscopy and transmission electron microscopy. The results indicate that at 0.8 GPa and 108 °C, a Fischer-Tropsch Type (FTT) reaction occurred on the sample surface, resulting in the formation of organic compound formaldehyde, followed by the observation of formic acid. At higher pressure and temperature (3.5 GPa, 420 °C), the formation of γ-Fe2O3 and γ-FeOOH was observed on the sample surface, accompanied by the release of CO2 and H2. Transmission electron microscope analysis of the quenched product powders indicated that the generated iron oxides were consistent with the phases observed at high pressure and temperature conditions. High pressure and temperature dissolution experiments of siderite in water reveal that carbon may be released into the mantle wedge entirely in the form of CO2 in warm subducted slabs and cold subducted slabs that subduct to depths of 75 km. The released CO2 participates in the carbon cycle of the island arc volcanic systems in the upper mantle at depths of 70–120 km and accelerates the transfer of subducted carbon to the Earth’s surface.

Keywords

Siderite / Water / Dissolution / Decarbonization / Carbon dioxide / Carbon cycle

Cite this article

Download citation ▾
Mengqi Guo, Fangfei Li, Xinyang Li, Zhaodong Liu, Liang Li, Daoyuan Wu, Qiang Zhou. Decarbonization of siderite in the water-rich upper mantle. Geoscience Frontiers, 2025, 16(1): 101930 https://doi.org/10.1016/j.gsf.2024.101930

References

Y. Bang, H. Hwang, T. Kim, H. Cynn, Y. Park, H. Jung, C. Park, D. Popov, V.B. Prakapenka, L. Wang. The stability of subducted glaucophane with the Earth’s secular cooling. Nat. Commun., 12 (2021), p. 1496,
CrossRef Google scholar
J. Binck, L. Bayarjargal, S.S. Lobanov, W. Morgenroth, R. Luchitskaia, C.J. Pickard, V. Milman, K. Refson, D.B. Jochym, P. Byrne. Phase stabilities of MgCO3 and MgCO3-II studied by Raman spectroscopy, X-ray diffraction, and density functional theory calculations. Phys. Rev. Mater., 4 (2020), Article 055001,
CrossRef Google scholar
Y.-X. Chen, A. Demény, H.-P. Schertl, Y.-F. Zheng, F. Huang, K. Zhou, Q.-Z. Jin, X.-P. Xia. Tracing subduction zone fluids with distinct Mg isotope compositions: Insights from high-pressure metasomatic rocks (leucophyllites) from the Eastern Alps. Geochim. Cosmochim. Acta, 271 (2020), pp. 154-178,
CrossRef Google scholar
C. ChengYe, W. QinXian, C. DuoF. Genesis of siderite in Miocene marine shale in Kuohsing area, Taiwan. Acta Sedimentol. Sinica, 40 (2022), 10.14027/j.issn.1000-0550.2021.047
P. Colomban, S. Cherifi, G. Despert. Raman identification of corrosion products on automotive galvanized steel sheets. J. Raman Spectrosc., 39 (2008), pp. 881-886,
CrossRef Google scholar
F. Datchi, A. Dewaele, Y. Le Godec, P. Loubeyre. Equation of state of cubic boron nitride at high pressures and temperatures. Phys. Rev. B, 75 (2007), Article 214104,
CrossRef Google scholar
F. Datchi, V.M. Giordano, P. Munsch, A.M. Saitta. Structure of carbon dioxide phase IV: Breakdown of the intermediate bonding state scenario. Phys. Rev. Lett., 103 (2009), Article 185701,
CrossRef Google scholar
D.L. De Faria, S. Venâncio Silva, M.T. de Oliveira. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc., 28 (1997), pp. 873-878,
CrossRef Google scholar
D.P. Dobson, P.G. Meredith, S.A. Boon. Simulation of subduction zone seismicity by dehydration of serpentine. Science, 298 (2002), pp. 1407-1410,
CrossRef Google scholar
S. Farsang, M. Louvel, C. Zhao, M. Mezouar, A.D. Rosa, R.N. Widmer, X. Feng, J. Liu, S.A. Redfern. Deep carbon cycle constrained by carbonate solubility. Nat. Commun., 12 (2021), p. 4311,
CrossRef Google scholar
Y. Fei, Mao, H.k., Hemley, R.J.,. Thermal expansivity, bulk modulus, and melting curve of H2O-ice VII to 20 GPa. J. Chem. Phys., 99 (1993), pp. 5369-5373,
CrossRef Google scholar
Hacker, B.R., Abers, G.A., Peacock, S.M., 2003. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J. Geophys. Res., Solid Earth 108, 2029. DOI:
CrossRef Google scholar
J.A. Hernandez, R. Caracas. Proton dynamics and the phase diagram of dense water ice. J. Chem. Phys., 148 (2018), Article 214501,
CrossRef Google scholar
N.G. Holm, J.L. Charlou. Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge. Earth Planet. Sci. Lett., 191 (2001), pp. 1-8,
CrossRef Google scholar
W.-P. Hsieh, Y.-H. Chien. High pressure Raman spectroscopy of H2O-CH3OH mixtures. Sci. Rep., 5 (2015), p. 8532,
CrossRef Google scholar
H.L. James. Sedimentary facies of iron-formation. Econ. Geol., 49 (1954), pp. 235-293,
CrossRef Google scholar
N. Kang, M.W. Schmidt, S. Poli, E. Franzolin, J.A. Connolly. Melting of siderite to 20 GPa and thermodynamic properties of FeCO3-melt. Chem. Geol., 400 (2015), pp. 34-43,
CrossRef Google scholar
W. Kenan, W. Benshan, X. Wansheng, X. Shiping, L. Guangcai, Z. Huizi. Experimental study on hydrocarbon formation due to reactions between carbonates and water or water-bearing minerals in deep earth. Chinese J. Geochem., 18 (1999), pp. 115-120,
CrossRef Google scholar
F. Klein, W. Bach, N. Jöns, T. McCollom, B. Moskowitz, T. Berquó. Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta, 73 (2009), pp. 6868-6893,
CrossRef Google scholar
A.P. Lee, J. Webb, D.J. Macey, W. van Bronswijk, A.R. Savarese, G.C. de Witt. In situ Raman spectroscopic studies of the teeth of the chiton Acanthopleura hirtosa. J. Biol. Inorg. Chem., 3 (1998), pp. 614-619,
CrossRef Google scholar
X. Li, Z. Zhang, J.F. Lin, H. Ni, V.B. Prakapenka, Z. Mao. New high-pressure phase of CaCO3 at the topmost lower mantle: Implication for the deep-mantle carbon transportation. Geophys. Res. Lett., 45 (2018), pp. 1355-1360,
CrossRef Google scholar
J. Liu, J.-F. Lin, V.B. Prakapenka. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier. Sci. Rep., 5 (2015), p. 7640,
CrossRef Google scholar
Y. Luo, D. Zhu, J. Pan, X. Zhou. Thermal decomposition behaviour and kinetics of Xinjiang siderite ore. Min. Process. Extr. Metall., 125 (2016), pp. 17-25,
CrossRef Google scholar
C.E. Manning, M.L. Frezzotti. Subduction-zone fluids. Elements, 16 (2020), pp. 395-400,
CrossRef Google scholar
M. Marocchi, H. Bureau, G. Fiquet, F. Guyot. In-situ monitoring of the formation of carbon compounds during the dissolution of iron(II) carbonate (siderite). Chem. Geol., 290 (2011), pp. 145-155,
CrossRef Google scholar
T.M. McCollom. Formation of meteorite hydrocarbons from thermal decomposition of siderite (FeCO3). Geochim. Cosmochim. Acta, 67 (2003), pp. 311-317,
CrossRef Google scholar
T.M. McCollom, B.R. Simoneit. Abiotic formation of hydrocarbons and oxygenated compounds during thermal decomposition of iron oxalate. Orig. Life Evol. Biosph., 29 (1999), pp. 167-186,
CrossRef Google scholar
V. Milesi, F. Guyot, F. Brunet, L. Richard, N. Recham, M. Benedetti, J. Dairou, A. Prinzhofer. Formation of CO2, H2 and condensed carbon from siderite dissolution in the 200–300 ℃ range and at 50 MPa. Geochim. Cosmochim. Acta, 154 (2015), pp. 201-211,
CrossRef Google scholar
D.R. Mitchell. DiffTools: Electron diffraction software tools for DigitalMicrograph™. Microsc. Res. Tech., 71 (2008), pp. 588-593,
CrossRef Google scholar
P.S. Mozley. Relation between depositional environment and the elemental composition of early diagenetic siderite. Geology, 17 (1989), pp. 704-706,
CrossRef Google scholar
M. Munoz, W.R. Premo, P. Courjault-Rade. Sm–Nd dating of fluorite from the worldclass Montroc fluorite deposit, southern Massif Central, France. Miner. Depos., 39 (2005), pp. 970-975,
CrossRef Google scholar
M. Nieuwoudt, J. Comins, I. Cukrowski. The growth of the passive film on iron in 0.05 M NaOH studied in situ by Raman micro-spectroscopy and electrochemical polarisation. Part I: near-resonance enhancement of the Raman spectra of iron oxide and oxyhydroxide compounds. J. Raman Spectrosc., 42 (2011), pp. 1335-1339,
CrossRef Google scholar
S.J. Oh, D. Cook, H. Townsend. Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfine Interact., 112 (1998), pp. 59-66,
CrossRef Google scholar
S.M. Peacock. Fluid processes in subduction zones. Science, 248 (1990), pp. 329-337,
CrossRef Google scholar
C.J. Pickard, R.J. Needs. Structures and stability of calcium and magnesium carbonates at mantle pressures. Phys. Rev. B, 91 (2015), Article 104101,
CrossRef Google scholar
T. Plank, C.E. Manning. Subducting carbon. Nature, 574 (2019), pp. 343-352,
CrossRef Google scholar
V.B. Prakapenka, N. Holtgrewe, S.S. Lobanov, A.F. Goncharov. Structure and properties of two superionic ice phases. Nat. Phys., 17 (2021), pp. 1233-1238,
CrossRef Google scholar
A.V. Romanenko, S.V. Rashchenko, A. Kurnosov, L. Dubrovinsky, S.V. Goryainov, A.Y. Likhacheva, K.D. Litasov. Single-standard method for simultaneous pressure and temperature estimation using Sm2+: SrB4O7 fluorescence. J. Appl. Phys., 124 (2018), Article 165902,
CrossRef Google scholar
Z. Ronghua, H. Shumin, Z. Xuetong. Kinetics of hydrothermal reactions of minerals in near-critical and supercritical water. Acta Geol. Sin-Engl., 74 (2000), pp. 400-405,
CrossRef Google scholar
L.B. Salviano, Cardoso, T.M.D.S., Silva, G.C., Dantas, M.S.S., Ferreira, A.D.M.. Microstructural assessment of magnetite nanoparticles (Fe3O4) obtained by chemical precipitation under different synthesis conditions. Mater. Res., 21 (2018), p. e20170764
N. Sleep, A. Meibom, T. Fridriksson, R. Coleman, D. Bird. H2-rich fluids from serpentinization: geochemical and biotic implications. Proc. Natl. Acad. Sci. USA, 101 (2004), pp. 12818-12823,
CrossRef Google scholar
E.M. Syracuse, P.E. van Keken, G.A. Abers. The global range of subduction zone thermal models. Phys. Earth Planet. Inter., 183 (2010), pp. 73-90,
CrossRef Google scholar
R. Tao, Y. Fei, L. Zhang. Experimental determination of siderite stability at high pressure. Am. Mineral., 98 (2013), pp. 1565-1572,
CrossRef Google scholar
Taylor, L.A., Mao, H., Bell, P., 1973. “ Rust” in the Apollo 16 rocks, in: Proceedings of the Lunar Science Conference, 829-839.
R.J. Thibeau, C.W. Brown, R.H. Heidersbach. Raman spectra of possible corrosion products of iron. Appl. Spectrosc., 32 (1978), pp. 532-535,
CrossRef Google scholar
V. Vadillo, J. Sánchez-Oneto, J.R. Portela, E.J. Martínez de la Ossa. Chapter 10 - Supercritical Water Oxidation. S.C. Ameta, R. Ameta (Eds.), Advanced Oxidation Processes for Waste Water Treatment, Academic Press (2018), pp. 333-358
S.J. Wang, S.G. Li. Magnesium isotope geochemistry of the carbonate-silicate system in subduction zones. Natl. Sci. Rev., 9, nwac036 (2022),
CrossRef Google scholar
X. Wang, Z. Ouyang, S. Zhuo, M. Zhang, G. Zheng, Y. Wang. Serpentinization, abiogenic organic compounds, and deep life. Sci. China Earth Sci., 57 (2014), pp. 878-887,
CrossRef Google scholar
Z. Zhang, Z. Mao, X. Liu, Y. Zhang, J. Brodholt. Stability and reactions of CaCO3 polymorphs in the Earth's deep mantle. J. Geophys. Res. Solid Earth, 123 (2018), pp. 6491-6500,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/