Decarbonization of siderite in the water-rich upper mantle
Mengqi Guo, Fangfei Li, Xinyang Li, Zhaodong Liu, Liang Li, Daoyuan Wu, Qiang Zhou
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101930.
Decarbonization of siderite in the water-rich upper mantle
The aqueous fluids within subducted slabs have the potential to influence the form of carbonate presence and the carbon cycling process. Experiments were performed on resistive heating diamond anvil cell using siderite crystals and grains with water under conditions of pressure as high as 11.4 GPa and temperatures reaching up to 530 °C. These experiments aimed to simulate geological reactions that may occur within a depth range of 340 km in subducted slabs. Raman spectroscopy was employed to monitor the reactions and microscale phenomena within the sample chamber as pressure and temperature increase. The recovered products were analyzed using scanning electron microscopy and transmission electron microscopy. The results indicate that at 0.8 GPa and 108 °C, a Fischer-Tropsch Type (FTT) reaction occurred on the sample surface, resulting in the formation of organic compound formaldehyde, followed by the observation of formic acid. At higher pressure and temperature (3.5 GPa, 420 °C), the formation of γ-Fe2O3 and γ-FeOOH was observed on the sample surface, accompanied by the release of CO2 and H2. Transmission electron microscope analysis of the quenched product powders indicated that the generated iron oxides were consistent with the phases observed at high pressure and temperature conditions. High pressure and temperature dissolution experiments of siderite in water reveal that carbon may be released into the mantle wedge entirely in the form of CO2 in warm subducted slabs and cold subducted slabs that subduct to depths of 75 km. The released CO2 participates in the carbon cycle of the island arc volcanic systems in the upper mantle at depths of 70–120 km and accelerates the transfer of subducted carbon to the Earth’s surface.
Siderite / Water / Dissolution / Decarbonization / Carbon dioxide / Carbon cycle
Y. Bang, H. Hwang, T. Kim, H. Cynn, Y. Park, H. Jung, C. Park, D. Popov, V.B. Prakapenka, L. Wang. The stability of subducted glaucophane with the Earth’s secular cooling. Nat. Commun., 12 (2021), p. 1496,
CrossRef
Google scholar
|
J. Binck, L. Bayarjargal, S.S. Lobanov, W. Morgenroth, R. Luchitskaia, C.J. Pickard, V. Milman, K. Refson, D.B. Jochym, P. Byrne. Phase stabilities of MgCO3 and MgCO3-II studied by Raman spectroscopy, X-ray diffraction, and density functional theory calculations. Phys. Rev. Mater., 4 (2020), Article 055001,
CrossRef
Google scholar
|
Y.-X. Chen, A. Demény, H.-P. Schertl, Y.-F. Zheng, F. Huang, K. Zhou, Q.-Z. Jin, X.-P. Xia. Tracing subduction zone fluids with distinct Mg isotope compositions: Insights from high-pressure metasomatic rocks (leucophyllites) from the Eastern Alps. Geochim. Cosmochim. Acta, 271 (2020), pp. 154-178,
CrossRef
Google scholar
|
C. ChengYe, W. QinXian, C. DuoF. Genesis of siderite in Miocene marine shale in Kuohsing area, Taiwan. Acta Sedimentol. Sinica, 40 (2022), 10.14027/j.issn.1000-0550.2021.047
|
P. Colomban, S. Cherifi, G. Despert. Raman identification of corrosion products on automotive galvanized steel sheets. J. Raman Spectrosc., 39 (2008), pp. 881-886,
CrossRef
Google scholar
|
F. Datchi, A. Dewaele, Y. Le Godec, P. Loubeyre. Equation of state of cubic boron nitride at high pressures and temperatures. Phys. Rev. B, 75 (2007), Article 214104,
CrossRef
Google scholar
|
F. Datchi, V.M. Giordano, P. Munsch, A.M. Saitta. Structure of carbon dioxide phase IV: Breakdown of the intermediate bonding state scenario. Phys. Rev. Lett., 103 (2009), Article 185701,
CrossRef
Google scholar
|
D.L. De Faria, S. Venâncio Silva, M.T. de Oliveira. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc., 28 (1997), pp. 873-878,
CrossRef
Google scholar
|
D.P. Dobson, P.G. Meredith, S.A. Boon. Simulation of subduction zone seismicity by dehydration of serpentine. Science, 298 (2002), pp. 1407-1410,
CrossRef
Google scholar
|
S. Farsang, M. Louvel, C. Zhao, M. Mezouar, A.D. Rosa, R.N. Widmer, X. Feng, J. Liu, S.A. Redfern. Deep carbon cycle constrained by carbonate solubility. Nat. Commun., 12 (2021), p. 4311,
CrossRef
Google scholar
|
Y. Fei, Mao, H.k., Hemley, R.J.,. Thermal expansivity, bulk modulus, and melting curve of H2O-ice VII to 20 GPa. J. Chem. Phys., 99 (1993), pp. 5369-5373,
CrossRef
Google scholar
|
Hacker, B.R., Abers, G.A., Peacock, S.M., 2003. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J. Geophys. Res., Solid Earth 108, 2029. DOI:
CrossRef
Google scholar
|
J.A. Hernandez, R. Caracas. Proton dynamics and the phase diagram of dense water ice. J. Chem. Phys., 148 (2018), Article 214501,
CrossRef
Google scholar
|
N.G. Holm, J.L. Charlou. Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge. Earth Planet. Sci. Lett., 191 (2001), pp. 1-8,
CrossRef
Google scholar
|
W.-P. Hsieh, Y.-H. Chien. High pressure Raman spectroscopy of H2O-CH3OH mixtures. Sci. Rep., 5 (2015), p. 8532,
CrossRef
Google scholar
|
H.L. James. Sedimentary facies of iron-formation. Econ. Geol., 49 (1954), pp. 235-293,
CrossRef
Google scholar
|
N. Kang, M.W. Schmidt, S. Poli, E. Franzolin, J.A. Connolly. Melting of siderite to 20 GPa and thermodynamic properties of FeCO3-melt. Chem. Geol., 400 (2015), pp. 34-43,
CrossRef
Google scholar
|
W. Kenan, W. Benshan, X. Wansheng, X. Shiping, L. Guangcai, Z. Huizi. Experimental study on hydrocarbon formation due to reactions between carbonates and water or water-bearing minerals in deep earth. Chinese J. Geochem., 18 (1999), pp. 115-120,
CrossRef
Google scholar
|
F. Klein, W. Bach, N. Jöns, T. McCollom, B. Moskowitz, T. Berquó. Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta, 73 (2009), pp. 6868-6893,
CrossRef
Google scholar
|
A.P. Lee, J. Webb, D.J. Macey, W. van Bronswijk, A.R. Savarese, G.C. de Witt. In situ Raman spectroscopic studies of the teeth of the chiton Acanthopleura hirtosa. J. Biol. Inorg. Chem., 3 (1998), pp. 614-619,
CrossRef
Google scholar
|
X. Li, Z. Zhang, J.F. Lin, H. Ni, V.B. Prakapenka, Z. Mao. New high-pressure phase of CaCO3 at the topmost lower mantle: Implication for the deep-mantle carbon transportation. Geophys. Res. Lett., 45 (2018), pp. 1355-1360,
CrossRef
Google scholar
|
J. Liu, J.-F. Lin, V.B. Prakapenka. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier. Sci. Rep., 5 (2015), p. 7640,
CrossRef
Google scholar
|
Y. Luo, D. Zhu, J. Pan, X. Zhou. Thermal decomposition behaviour and kinetics of Xinjiang siderite ore. Min. Process. Extr. Metall., 125 (2016), pp. 17-25,
CrossRef
Google scholar
|
C.E. Manning, M.L. Frezzotti. Subduction-zone fluids. Elements, 16 (2020), pp. 395-400,
CrossRef
Google scholar
|
M. Marocchi, H. Bureau, G. Fiquet, F. Guyot. In-situ monitoring of the formation of carbon compounds during the dissolution of iron(II) carbonate (siderite). Chem. Geol., 290 (2011), pp. 145-155,
CrossRef
Google scholar
|
T.M. McCollom. Formation of meteorite hydrocarbons from thermal decomposition of siderite (FeCO3). Geochim. Cosmochim. Acta, 67 (2003), pp. 311-317,
CrossRef
Google scholar
|
T.M. McCollom, B.R. Simoneit. Abiotic formation of hydrocarbons and oxygenated compounds during thermal decomposition of iron oxalate. Orig. Life Evol. Biosph., 29 (1999), pp. 167-186,
CrossRef
Google scholar
|
V. Milesi, F. Guyot, F. Brunet, L. Richard, N. Recham, M. Benedetti, J. Dairou, A. Prinzhofer. Formation of CO2, H2 and condensed carbon from siderite dissolution in the 200–300 ℃ range and at 50 MPa. Geochim. Cosmochim. Acta, 154 (2015), pp. 201-211,
CrossRef
Google scholar
|
D.R. Mitchell. DiffTools: Electron diffraction software tools for DigitalMicrograph™. Microsc. Res. Tech., 71 (2008), pp. 588-593,
CrossRef
Google scholar
|
P.S. Mozley. Relation between depositional environment and the elemental composition of early diagenetic siderite. Geology, 17 (1989), pp. 704-706,
CrossRef
Google scholar
|
M. Munoz, W.R. Premo, P. Courjault-Rade. Sm–Nd dating of fluorite from the worldclass Montroc fluorite deposit, southern Massif Central, France. Miner. Depos., 39 (2005), pp. 970-975,
CrossRef
Google scholar
|
M. Nieuwoudt, J. Comins, I. Cukrowski. The growth of the passive film on iron in 0.05 M NaOH studied in situ by Raman micro-spectroscopy and electrochemical polarisation. Part I: near-resonance enhancement of the Raman spectra of iron oxide and oxyhydroxide compounds. J. Raman Spectrosc., 42 (2011), pp. 1335-1339,
CrossRef
Google scholar
|
S.J. Oh, D. Cook, H. Townsend. Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfine Interact., 112 (1998), pp. 59-66,
CrossRef
Google scholar
|
S.M. Peacock. Fluid processes in subduction zones. Science, 248 (1990), pp. 329-337,
CrossRef
Google scholar
|
C.J. Pickard, R.J. Needs. Structures and stability of calcium and magnesium carbonates at mantle pressures. Phys. Rev. B, 91 (2015), Article 104101,
CrossRef
Google scholar
|
T. Plank, C.E. Manning. Subducting carbon. Nature, 574 (2019), pp. 343-352,
CrossRef
Google scholar
|
V.B. Prakapenka, N. Holtgrewe, S.S. Lobanov, A.F. Goncharov. Structure and properties of two superionic ice phases. Nat. Phys., 17 (2021), pp. 1233-1238,
CrossRef
Google scholar
|
A.V. Romanenko, S.V. Rashchenko, A. Kurnosov, L. Dubrovinsky, S.V. Goryainov, A.Y. Likhacheva, K.D. Litasov. Single-standard method for simultaneous pressure and temperature estimation using Sm2+: SrB4O7 fluorescence. J. Appl. Phys., 124 (2018), Article 165902,
CrossRef
Google scholar
|
Z. Ronghua, H. Shumin, Z. Xuetong. Kinetics of hydrothermal reactions of minerals in near-critical and supercritical water. Acta Geol. Sin-Engl., 74 (2000), pp. 400-405,
CrossRef
Google scholar
|
L.B. Salviano, Cardoso, T.M.D.S., Silva, G.C., Dantas, M.S.S., Ferreira, A.D.M.. Microstructural assessment of magnetite nanoparticles (Fe3O4) obtained by chemical precipitation under different synthesis conditions. Mater. Res., 21 (2018), p. e20170764
|
N. Sleep, A. Meibom, T. Fridriksson, R. Coleman, D. Bird. H2-rich fluids from serpentinization: geochemical and biotic implications. Proc. Natl. Acad. Sci. USA, 101 (2004), pp. 12818-12823,
CrossRef
Google scholar
|
E.M. Syracuse, P.E. van Keken, G.A. Abers. The global range of subduction zone thermal models. Phys. Earth Planet. Inter., 183 (2010), pp. 73-90,
CrossRef
Google scholar
|
R. Tao, Y. Fei, L. Zhang. Experimental determination of siderite stability at high pressure. Am. Mineral., 98 (2013), pp. 1565-1572,
CrossRef
Google scholar
|
Taylor, L.A., Mao, H., Bell, P., 1973. “ Rust” in the Apollo 16 rocks, in: Proceedings of the Lunar Science Conference, 829-839.
|
R.J. Thibeau, C.W. Brown, R.H. Heidersbach. Raman spectra of possible corrosion products of iron. Appl. Spectrosc., 32 (1978), pp. 532-535,
CrossRef
Google scholar
|
V. Vadillo, J. Sánchez-Oneto, J.R. Portela, E.J. Martínez de la Ossa. Chapter 10 - Supercritical Water Oxidation. S.C. Ameta, R. Ameta (Eds.), Advanced Oxidation Processes for Waste Water Treatment, Academic Press (2018), pp. 333-358
|
S.J. Wang, S.G. Li. Magnesium isotope geochemistry of the carbonate-silicate system in subduction zones. Natl. Sci. Rev., 9, nwac036 (2022),
CrossRef
Google scholar
|
X. Wang, Z. Ouyang, S. Zhuo, M. Zhang, G. Zheng, Y. Wang. Serpentinization, abiogenic organic compounds, and deep life. Sci. China Earth Sci., 57 (2014), pp. 878-887,
CrossRef
Google scholar
|
Z. Zhang, Z. Mao, X. Liu, Y. Zhang, J. Brodholt. Stability and reactions of CaCO3 polymorphs in the Earth's deep mantle. J. Geophys. Res. Solid Earth, 123 (2018), pp. 6491-6500,
CrossRef
Google scholar
|
/
〈 |
|
〉 |