A first-principles molecular dynamics study of molecular hydrogen diffusion in Fe-free olivine

Haibo Liu , Baohua Zhang , Hongzhan Fei , Lei Liu

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101926

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101926 DOI: 10.1016/j.gsf.2024.101926

A first-principles molecular dynamics study of molecular hydrogen diffusion in Fe-free olivine

Author information +
History +
PDF

Abstract

Molecular hydrogen (H2) may be an important form of water in nominally anhydrous minerals in the Earth’s mantle and plays a critical role in mantle water cycle, but the transport properties of H2 remain unclear. Here, the diffusion of H2 in Fe-free olivine lattice is investigated at pressures of 1–13 GPa and temperatures of 1300–1900 K by first-principles molecular dynamics. The activation energy and activation volume for H2 diffusion in Fe-free olivine are determined to be 55 ± 8 kJ/mol and 3.6 ± 0.2 cm3/mol, respectively. H2 diffusion in Fe-free olivine is faster than H+ by 1–4 orders of magnitude and therefore it is more favorable for hydrogen transportation under upper mantle conditions. H2 can be carried to the mantle transition zone by subducting slabs without releasing to the surrounding mantle. The upper mantle may act as a lid, preventing the releasing of H2 produced in the deep mantle to the surface.

Keywords

First principles calculations / Molecular dynamics / Molecular hydrogen / Diffusion coefficient / Olivine / Upper mantle

Cite this article

Download citation ▾
Haibo Liu, Baohua Zhang, Hongzhan Fei, Lei Liu. A first-principles molecular dynamics study of molecular hydrogen diffusion in Fe-free olivine. Geoscience Frontiers, 2025, 16(1): 101926 DOI:10.1016/j.gsf.2024.101926

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Haibo Liu: Writing – original draft, Visualization, Validation, Software, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Baohua Zhang: Writing – review & editing, Validation, Supervision, Funding acquisition. Hongzhan Fei: Writing – review & editing, Validation, Conceptualization. Lei Liu: Software, Methodology.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Baohua Zhang is a Guest Editor of the special issue in which this article is published. He was not involved in the handling and decision making of this paper.

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China for Distinguished Young Scholars (42325203). The authors thank Dr. Bowen Chen and Dr. Jingjun Zhou for helpful discussions. The data set for this research is given in the online supporting information and the archiving is underway.

References

[1]

D.R. Bell, G.R. Rossman. Water in Earth's mantle: the role of nominally anhydrous minerals. Science, 255 (1992), pp. 1391-1397,

[2]

D.R. Bell, G.R. Rossman, J. Maldener, D. Endisch, F. Rauch. Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum. J. Geophys. Res.: Solid Earth, 108 (2003), p. 2105,

[3]

R.H. Byrd, J. Nocedal, R.B. Schnabel. Representations of quasi-Newton matrices and their use in limited memory methods. Math. Program., 63 (1994), pp. 129-156,

[4]

Y.Y. Chang, W.P. Hsieh, E. Tan, J. Chen. Hydration-reduced lattice thermal conductivity of olivine in Earth’s upper mantle. Proc. Natl. Acad. Sci. USA., 114 (2017), pp. 4078-4081,

[5]

S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne. First principles methods using CASTEP. Z. Kristallogr. - Cryst. Mater., 220 (2005), pp. 567-570,

[6]

L.D. Dai, S. Karato. High and highly anisotropic electrical conductivity of the asthenosphere due to hydrogen diffusion in olivine. Earth Planet. Sci. Lett., 408 (2014), pp. 79-86,

[7]

S. Demouchy. Diffusion of hydrogen in olivine grain boundaries and implications for the survival of water-rich zones in the Earth's mantle. Earth Planet. Sci. Lett., 295 (2010), pp. 305-313,

[8]

S. Demouchy, S. Mackwell. Water diffusion in synthetic iron-free forsterite. Phys. Chem. Mineral., 30 (2003), pp. 486-494,

[9]

S. Demouchy, S. Mackwell. Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine. Phys. Chem. Mineral., 33 (2006), pp. 347-355,

[10]

W.L. Du Frane, J.A. Tyburczy. Deuterium-hydrogen exchange in olivine: implications for point defects and electrical conductivity. Geochem. Geophys. Geosyst., 13 (2012), p. Q03004,

[11]

U.H. Faul, I. Jackson. The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet. Sci. Lett., 234 (2005), pp. 119-134,

[12]

H. Fei, M. Wiedenbeck, D. Yamazaki, T. Katsura. Small effect of water on upper-mantle rheology based on silicon self-diffusion coefficients. Nature, 498 (2013), pp. 213-215,

[13]

S. Figowy, C.E. Mohn, R. Caracas. Noble gas migration in silica polymorphs at Earth's mantle conditions. Earth Planet. Sci. Lett., 633 (2024), Article 118637,

[14]

D.J. Frost, C. Liebske, F. Langenhorst, C.A. McCammon, R.G. Trønnes, D.C. Rubie. Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature, 428 (2004), pp. 409-412,

[15]

D.H. Green, W.O. Hibberson, A. Rosenthal, I. Kovacs, G.M. Yaxley, T.J. Falloon, F. Brink. Experimental study of the influence of water on melting and phase assemblages in the upper mantle. J. Petrol., 55 (2014), pp. 2067-2096,

[16]

Y. He, S. Sun, D.Y. Kim, B.G. Jang, H. Li, H.K. Mao. Superionic iron alloys and their seismic velocities in Earth's inner core. Nature, 602 (2022), pp. 258-262,

[17]

M.M. Hirschmann. Water, melting, and the deep Earth H2O cycle. Annu. Rev. Earth Planet. Sci., 34 (2006), pp. 629-653,

[18]

M.M. Hirschmann, C. Aubaud, A.C. Withers. Storage capacity of H2O in nominally anhydrous minerals in the upper mantle. Earth Planet. Sci. Lett., 236 (2005), pp. 167-181,

[19]

G. Hirth, D.L. Kohlstedt. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett., 144 (1996), pp. 93-108,

[20]

P. Hohenberg, W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136 (1964), pp. B864-B871,

[21]

Q. Hu, D.Y. Kim, W. Yang, L. Yang, Y. Meng, L. Zhang, H.K. Mao. FeO2 and FeOOH under deep lower-mantle conditions and Earth's oxygen-hydrogen cycles. Nature, 534 (2016), pp. 241-244,

[22]

Q. Hu, D.Y. Kim, J. Liu, Y. Meng, L. Yang, D. Zhang, W.L. Mao, H.K. Mao. Dehydrogenation of goethite in Earth's deep lower mantle. Proc. Natl. Acad. Sci. USA, 114 (2017), pp. 1498-1501,

[23]

G. Huang, R.N. Mitchell, R.M. Palin, C.J. Spencer, J. Guo. Barium content of Archaean continental crust reveals the onset of subduction was not global. Nat. Commun., 13 (2022), p. 6553,

[24]

X. Huang, Y. Xu, S. Karato. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature, 434 (2005), pp. 746-749,

[25]

J. Ingrin, H. Skogby. Hydrogen in nominally anhydrous upper-mantle minerals: concentration levels and implications. Eur. J. Mineral., 12 (2000), pp. 543-570,

[26]

S.D. Jacobsen, F. Jiang, Z. Mao, T.S. Duffy, J.R. Smyth, C.M. Holl, D.J. Frost. Effects of hydration on the elastic properties of olivine. Geophys. Res. Lett., 35 (2008), p. L14303,

[27]

S.I. Karato. The role of hydrogen in the electrical conductivity of the upper mantle. Nature, 347 (1990), pp. 272-273,

[28]

T. Katsura. A revised adiabatic temperature profile for the mantle. J. Geophys. Res.: Solid Earth, 127 (2022), Article e2021JB023562,

[29]

D.L. Kohlstedt. The role of water in high-temperature rock deformation. Rev. Mineral. Geochem., 62 (2006), pp. 377-396,

[30]

D.L. Kohlstedt, S.J. Mackwell. Diffusion of hydrogen and intrinsic point defects in olivine. Z. Phys. Chem., 207 (1998), pp. 147-162,

[31]

D.L. Kohlstedt, H. Keppler, D.C. Rubie. Solubility of water in the α, β and γ phases of (Mg, Fe)2SiO4. Contrib. Mineral. Petrol., 123 (1996), pp. 345-357,

[32]

W. Kohn, L.J. Sham. Quantum density oscillations in an inhomogeneous electron gas. Phys. Rev., 137 (1965), pp. A1697-A1705,

[33]

J.S. Lin, A. Qteish, M.C. Payne, V. Heine. Optimized and transferable nonlocal separable ab initio pseudopotentials. Phys. Rev. B, 47 (1993), pp. 4174-4180,

[34]

K.D. Litasov, A. Shatskiy, E. Ohtani. Earth's mantle melting in the presence of C-O-H-bearing fluid. S.I. Karato (Ed.), Physics and Chemistry of the Deep Earth, John Wiley & Sons Inc, New Jersey (2013), pp. 38-65

[35]

S.J. Mackwell, D.L. Kohlstedt. Diffusion of hydrogen in olivine: Implications for water in the mantle. J. Geophys. Res.: Solid Earth, 95 (1990), pp. 5079-5088,

[36]

S.J. Mackwell, D.L. Kohlstedt, M.S. Paterson. The role of water in the deformation of olivine single crystals. J. Geophys. Res., 90 (1985), pp. 11319-11333,

[37]

H.K. Mao, Q. Hu, L. Yang, J. Liu, D.Y. Kim, Y. Meng, L. Zhang, V.B. Prakapenka, W. Yang, W.L. Mao. When water meets iron at Earth's core–mantle boundary. Natl. Sci. Rev., 4 (2017), pp. 870-878,

[38]

Z. Mao, S.D. Jacobsen, F. Jiang, J.R. Smyth, C.M. Holl, D.J. Frost, T.S. Duffy. Velocity crossover between hydrous and anhydrous forsterite at high pressures. Earth Planet. Sci. Lett., 293 (2010), pp. 250-258,

[39]

C. Marcaillou, M. Muñoz, O. Vidal, T. Parra, M. Harfouche. Mineralogical evidence for H2 degassing during serpentinization at 300 °C/300 bar. Earth Planet. Sci. Lett., 303 (2011), pp. 281-290,

[40]

S. Mei, D.L. Kohlstedt. Influence of water on plastic deformation of olivine aggregates: 1. Diffusion creep regime. J. Geophys. Res.: Solid Earth, 105 (2000), pp. 21457-21469,

[41]

X. Michalet. Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Phys. Rev. E, 82 (2010), Article 041914,

[42]

B.N. Moine, N. Bolfan-Casanova, I.B. Radu, D.A. Ionov, G. Costin, A.V. Korsakov, A.V. Golovin, O.B. Oleinikov, E. Deloule, J.Y. Cottin. Molecular hydrogen in minerals as a clue to interpret ∂D variations in the mantle. Nat. Commun., 11 (2020), p. 3604,

[43]

J.M.R. Muir, F. Zhang, A.M. Walker. Fast anisotropic Mg and H diffusion in wet forsterite. Phys. Chem. Mineral., 49 (2022), p. 31,

[44]

H.W. Ni, Y.F. Zheng, Z. Mao, Q. Wang, R.X. Chen, L. Zhang. Distribution, cycling and impact of water in the Earth's interior. Natl. Sci. Rev., 4 (2017), pp. 879-891,

[45]

D. Novella, B. Jacobsen, P.K. Weber, J.A. Tyburczy, F.J. Ryerson, W.L. Du Frane. Hydrogen self-diffusion in single crystal olivine and electrical conductivity of the Earth's mantle. Sci. Rep., 7 (2017), p. 5344,

[46]

E. Ohtani. The role of water in Earth's mantle. Natl. Sci. Rev., 7 (2020), pp. 224-232,

[47]

J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77 (1996), pp. 3865-3868,

[48]

W.P. Schellart. Influence of the subducting plate velocity on the geometry of the slab and migration of the subduction hinge. Earth Planet. Sci. Lett., 231 (2005), pp. 197-219,

[49]

E.M. Smith, S.B. Shirey, F. Nestola, E.S. Bullock, J. Wang, S.H. Richardson, W. Wang. Large gem diamonds from metallic liquid in Earth's deep mantle. Science, 354 (2016), pp. 1403-1405,

[50]

J.R. Smyth. Hydrogen in high pressure silicate and oxide mineral structures. Rev. Mineral. Geochem., 62 (2006), pp. 85-115,

[51]

W. Sun, T. Yoshino, M. Kuroda, N. Sakamoto, H. Yurimoto. H-D interdiffusion in single-crystal olivine: Implications for electrical conductivity in the upper mantle. J. Geophys. Res.: Solid Earth, 124 (2019), pp. 5696-5707,

[52]

T.J. Tenner, M.M. Hirschmann, A.C. Withers, P. Ardia. H2O storage capacity of olivine and low-Ca pyroxene from 10 to 13 GPa: consequences for dehydration melting above the transition zone. Contrib. Mineral. Petrol., 163 (2012), pp. 297-316,

[53]

D. Wang, M. Mookherjee, Y. Xu, S. Karato. The effect of water on the electrical conductivity of olivine. Nature, 443 (2006), pp. 977-980,

[54]

X. Yang, H. Keppler, Y. Li. Molecular hydrogen in mantle minerals. Geochem. Perspect. Lett., 2 (2016), pp. 160-168,

[55]

T. Yoshino, T. Matsuzaki, S. Yamashita, T. Katsura. Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature, 443 (2006), pp. 973-976,

[56]

M. Zelenski, A.V. Plyasunov, V.S. Kamenetsky, N. Nekrylov, D. Matveev, A. Korneeva. High-temperature water-olivine interaction and hydrogen liberation in the subarc mantle. Contrib. Mineral. Petrol., 177 (2022), p. 47,

[57]

B.H. Zhang, J.H. Ge, Z.L. Xiong, S.M. Zhai. Effect of water on the thermal properties of olivine with implications for lunar internal temperature. J. Geophys. Res.: Planets, 124 (2019), pp. 3469-3481,

[58]

B.H. Zhang, Q.K. Xia. Influence of water on the physical properties of olivine, wadsleyite, and ringwoodite. Eur. J. Mineral., 33 (2021), pp. 39-75,

[59]

F. Zhu, J. Li, J. Liu, J. Dong, Z. Liu. Metallic iron limits silicate hydration in Earth’s transition zone. Proc. Natl. Acad. Sci. U.S.A., 116 (2019), pp. 22526-22530,

AI Summary AI Mindmap
PDF

409

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/