A first-principles molecular dynamics study of molecular hydrogen diffusion in Fe-free olivine

Haibo Liu, Baohua Zhang, Hongzhan Fei, Lei Liu

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101926.

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101926. DOI: 10.1016/j.gsf.2024.101926

A first-principles molecular dynamics study of molecular hydrogen diffusion in Fe-free olivine

Author information +
History +

Abstract

Molecular hydrogen (H2) may be an important form of water in nominally anhydrous minerals in the Earth’s mantle and plays a critical role in mantle water cycle, but the transport properties of H2 remain unclear. Here, the diffusion of H2 in Fe-free olivine lattice is investigated at pressures of 1–13 GPa and temperatures of 1300–1900 K by first-principles molecular dynamics. The activation energy and activation volume for H2 diffusion in Fe-free olivine are determined to be 55 ± 8 kJ/mol and 3.6 ± 0.2 cm3/mol, respectively. H2 diffusion in Fe-free olivine is faster than H+ by 1–4 orders of magnitude and therefore it is more favorable for hydrogen transportation under upper mantle conditions. H2 can be carried to the mantle transition zone by subducting slabs without releasing to the surrounding mantle. The upper mantle may act as a lid, preventing the releasing of H2 produced in the deep mantle to the surface.

Keywords

First principles calculations / Molecular dynamics / Molecular hydrogen / Diffusion coefficient / Olivine / Upper mantle

Cite this article

Download citation ▾
Haibo Liu, Baohua Zhang, Hongzhan Fei, Lei Liu. A first-principles molecular dynamics study of molecular hydrogen diffusion in Fe-free olivine. Geoscience Frontiers, 2025, 16(1): 101926 https://doi.org/10.1016/j.gsf.2024.101926

References

D.R. Bell, G.R. Rossman. Water in Earth's mantle: the role of nominally anhydrous minerals. Science, 255 (1992), pp. 1391-1397,
CrossRef Google scholar
D.R. Bell, G.R. Rossman, J. Maldener, D. Endisch, F. Rauch. Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum. J. Geophys. Res.: Solid Earth, 108 (2003), p. 2105,
CrossRef Google scholar
R.H. Byrd, J. Nocedal, R.B. Schnabel. Representations of quasi-Newton matrices and their use in limited memory methods. Math. Program., 63 (1994), pp. 129-156,
CrossRef Google scholar
Y.Y. Chang, W.P. Hsieh, E. Tan, J. Chen. Hydration-reduced lattice thermal conductivity of olivine in Earth’s upper mantle. Proc. Natl. Acad. Sci. USA., 114 (2017), pp. 4078-4081,
CrossRef Google scholar
S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne. First principles methods using CASTEP. Z. Kristallogr. - Cryst. Mater., 220 (2005), pp. 567-570,
CrossRef Google scholar
L.D. Dai, S. Karato. High and highly anisotropic electrical conductivity of the asthenosphere due to hydrogen diffusion in olivine. Earth Planet. Sci. Lett., 408 (2014), pp. 79-86,
CrossRef Google scholar
S. Demouchy. Diffusion of hydrogen in olivine grain boundaries and implications for the survival of water-rich zones in the Earth's mantle. Earth Planet. Sci. Lett., 295 (2010), pp. 305-313,
CrossRef Google scholar
S. Demouchy, S. Mackwell. Water diffusion in synthetic iron-free forsterite. Phys. Chem. Mineral., 30 (2003), pp. 486-494,
CrossRef Google scholar
S. Demouchy, S. Mackwell. Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine. Phys. Chem. Mineral., 33 (2006), pp. 347-355,
CrossRef Google scholar
W.L. Du Frane, J.A. Tyburczy. Deuterium-hydrogen exchange in olivine: implications for point defects and electrical conductivity. Geochem. Geophys. Geosyst., 13 (2012), p. Q03004,
CrossRef Google scholar
U.H. Faul, I. Jackson. The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet. Sci. Lett., 234 (2005), pp. 119-134,
CrossRef Google scholar
H. Fei, M. Wiedenbeck, D. Yamazaki, T. Katsura. Small effect of water on upper-mantle rheology based on silicon self-diffusion coefficients. Nature, 498 (2013), pp. 213-215,
CrossRef Google scholar
S. Figowy, C.E. Mohn, R. Caracas. Noble gas migration in silica polymorphs at Earth's mantle conditions. Earth Planet. Sci. Lett., 633 (2024), Article 118637,
CrossRef Google scholar
D.J. Frost, C. Liebske, F. Langenhorst, C.A. McCammon, R.G. Trønnes, D.C. Rubie. Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature, 428 (2004), pp. 409-412,
CrossRef Google scholar
D.H. Green, W.O. Hibberson, A. Rosenthal, I. Kovacs, G.M. Yaxley, T.J. Falloon, F. Brink. Experimental study of the influence of water on melting and phase assemblages in the upper mantle. J. Petrol., 55 (2014), pp. 2067-2096,
CrossRef Google scholar
Y. He, S. Sun, D.Y. Kim, B.G. Jang, H. Li, H.K. Mao. Superionic iron alloys and their seismic velocities in Earth's inner core. Nature, 602 (2022), pp. 258-262,
CrossRef Google scholar
M.M. Hirschmann. Water, melting, and the deep Earth H2O cycle. Annu. Rev. Earth Planet. Sci., 34 (2006), pp. 629-653,
CrossRef Google scholar
M.M. Hirschmann, C. Aubaud, A.C. Withers. Storage capacity of H2O in nominally anhydrous minerals in the upper mantle. Earth Planet. Sci. Lett., 236 (2005), pp. 167-181,
CrossRef Google scholar
G. Hirth, D.L. Kohlstedt. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett., 144 (1996), pp. 93-108,
CrossRef Google scholar
P. Hohenberg, W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136 (1964), pp. B864-B871,
CrossRef Google scholar
Q. Hu, D.Y. Kim, W. Yang, L. Yang, Y. Meng, L. Zhang, H.K. Mao. FeO2 and FeOOH under deep lower-mantle conditions and Earth's oxygen-hydrogen cycles. Nature, 534 (2016), pp. 241-244,
CrossRef Google scholar
Q. Hu, D.Y. Kim, J. Liu, Y. Meng, L. Yang, D. Zhang, W.L. Mao, H.K. Mao. Dehydrogenation of goethite in Earth's deep lower mantle. Proc. Natl. Acad. Sci. USA, 114 (2017), pp. 1498-1501,
CrossRef Google scholar
G. Huang, R.N. Mitchell, R.M. Palin, C.J. Spencer, J. Guo. Barium content of Archaean continental crust reveals the onset of subduction was not global. Nat. Commun., 13 (2022), p. 6553,
CrossRef Google scholar
X. Huang, Y. Xu, S. Karato. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature, 434 (2005), pp. 746-749,
CrossRef Google scholar
J. Ingrin, H. Skogby. Hydrogen in nominally anhydrous upper-mantle minerals: concentration levels and implications. Eur. J. Mineral., 12 (2000), pp. 543-570,
CrossRef Google scholar
S.D. Jacobsen, F. Jiang, Z. Mao, T.S. Duffy, J.R. Smyth, C.M. Holl, D.J. Frost. Effects of hydration on the elastic properties of olivine. Geophys. Res. Lett., 35 (2008), p. L14303,
CrossRef Google scholar
S.I. Karato. The role of hydrogen in the electrical conductivity of the upper mantle. Nature, 347 (1990), pp. 272-273,
CrossRef Google scholar
T. Katsura. A revised adiabatic temperature profile for the mantle. J. Geophys. Res.: Solid Earth, 127 (2022), Article e2021JB023562,
CrossRef Google scholar
D.L. Kohlstedt. The role of water in high-temperature rock deformation. Rev. Mineral. Geochem., 62 (2006), pp. 377-396,
CrossRef Google scholar
D.L. Kohlstedt, S.J. Mackwell. Diffusion of hydrogen and intrinsic point defects in olivine. Z. Phys. Chem., 207 (1998), pp. 147-162,
CrossRef Google scholar
D.L. Kohlstedt, H. Keppler, D.C. Rubie. Solubility of water in the α, β and γ phases of (Mg, Fe)2SiO4. Contrib. Mineral. Petrol., 123 (1996), pp. 345-357,
CrossRef Google scholar
W. Kohn, L.J. Sham. Quantum density oscillations in an inhomogeneous electron gas. Phys. Rev., 137 (1965), pp. A1697-A1705,
CrossRef Google scholar
J.S. Lin, A. Qteish, M.C. Payne, V. Heine. Optimized and transferable nonlocal separable ab initio pseudopotentials. Phys. Rev. B, 47 (1993), pp. 4174-4180,
CrossRef Google scholar
K.D. Litasov, A. Shatskiy, E. Ohtani. Earth's mantle melting in the presence of C-O-H-bearing fluid. S.I. Karato (Ed.), Physics and Chemistry of the Deep Earth, John Wiley & Sons Inc, New Jersey (2013), pp. 38-65
S.J. Mackwell, D.L. Kohlstedt. Diffusion of hydrogen in olivine: Implications for water in the mantle. J. Geophys. Res.: Solid Earth, 95 (1990), pp. 5079-5088,
CrossRef Google scholar
S.J. Mackwell, D.L. Kohlstedt, M.S. Paterson. The role of water in the deformation of olivine single crystals. J. Geophys. Res., 90 (1985), pp. 11319-11333,
CrossRef Google scholar
H.K. Mao, Q. Hu, L. Yang, J. Liu, D.Y. Kim, Y. Meng, L. Zhang, V.B. Prakapenka, W. Yang, W.L. Mao. When water meets iron at Earth's core–mantle boundary. Natl. Sci. Rev., 4 (2017), pp. 870-878,
CrossRef Google scholar
Z. Mao, S.D. Jacobsen, F. Jiang, J.R. Smyth, C.M. Holl, D.J. Frost, T.S. Duffy. Velocity crossover between hydrous and anhydrous forsterite at high pressures. Earth Planet. Sci. Lett., 293 (2010), pp. 250-258,
CrossRef Google scholar
C. Marcaillou, M. Muñoz, O. Vidal, T. Parra, M. Harfouche. Mineralogical evidence for H2 degassing during serpentinization at 300 °C/300 bar. Earth Planet. Sci. Lett., 303 (2011), pp. 281-290,
CrossRef Google scholar
S. Mei, D.L. Kohlstedt. Influence of water on plastic deformation of olivine aggregates: 1. Diffusion creep regime. J. Geophys. Res.: Solid Earth, 105 (2000), pp. 21457-21469,
CrossRef Google scholar
X. Michalet. Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Phys. Rev. E, 82 (2010), Article 041914,
CrossRef Google scholar
B.N. Moine, N. Bolfan-Casanova, I.B. Radu, D.A. Ionov, G. Costin, A.V. Korsakov, A.V. Golovin, O.B. Oleinikov, E. Deloule, J.Y. Cottin. Molecular hydrogen in minerals as a clue to interpret ∂D variations in the mantle. Nat. Commun., 11 (2020), p. 3604,
CrossRef Google scholar
J.M.R. Muir, F. Zhang, A.M. Walker. Fast anisotropic Mg and H diffusion in wet forsterite. Phys. Chem. Mineral., 49 (2022), p. 31,
CrossRef Google scholar
H.W. Ni, Y.F. Zheng, Z. Mao, Q. Wang, R.X. Chen, L. Zhang. Distribution, cycling and impact of water in the Earth's interior. Natl. Sci. Rev., 4 (2017), pp. 879-891,
CrossRef Google scholar
D. Novella, B. Jacobsen, P.K. Weber, J.A. Tyburczy, F.J. Ryerson, W.L. Du Frane. Hydrogen self-diffusion in single crystal olivine and electrical conductivity of the Earth's mantle. Sci. Rep., 7 (2017), p. 5344,
CrossRef Google scholar
E. Ohtani. The role of water in Earth's mantle. Natl. Sci. Rev., 7 (2020), pp. 224-232,
CrossRef Google scholar
J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77 (1996), pp. 3865-3868,
CrossRef Google scholar
W.P. Schellart. Influence of the subducting plate velocity on the geometry of the slab and migration of the subduction hinge. Earth Planet. Sci. Lett., 231 (2005), pp. 197-219,
CrossRef Google scholar
E.M. Smith, S.B. Shirey, F. Nestola, E.S. Bullock, J. Wang, S.H. Richardson, W. Wang. Large gem diamonds from metallic liquid in Earth's deep mantle. Science, 354 (2016), pp. 1403-1405,
CrossRef Google scholar
J.R. Smyth. Hydrogen in high pressure silicate and oxide mineral structures. Rev. Mineral. Geochem., 62 (2006), pp. 85-115,
CrossRef Google scholar
W. Sun, T. Yoshino, M. Kuroda, N. Sakamoto, H. Yurimoto. H-D interdiffusion in single-crystal olivine: Implications for electrical conductivity in the upper mantle. J. Geophys. Res.: Solid Earth, 124 (2019), pp. 5696-5707,
CrossRef Google scholar
T.J. Tenner, M.M. Hirschmann, A.C. Withers, P. Ardia. H2O storage capacity of olivine and low-Ca pyroxene from 10 to 13 GPa: consequences for dehydration melting above the transition zone. Contrib. Mineral. Petrol., 163 (2012), pp. 297-316,
CrossRef Google scholar
D. Wang, M. Mookherjee, Y. Xu, S. Karato. The effect of water on the electrical conductivity of olivine. Nature, 443 (2006), pp. 977-980,
CrossRef Google scholar
X. Yang, H. Keppler, Y. Li. Molecular hydrogen in mantle minerals. Geochem. Perspect. Lett., 2 (2016), pp. 160-168,
CrossRef Google scholar
T. Yoshino, T. Matsuzaki, S. Yamashita, T. Katsura. Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature, 443 (2006), pp. 973-976,
CrossRef Google scholar
M. Zelenski, A.V. Plyasunov, V.S. Kamenetsky, N. Nekrylov, D. Matveev, A. Korneeva. High-temperature water-olivine interaction and hydrogen liberation in the subarc mantle. Contrib. Mineral. Petrol., 177 (2022), p. 47,
CrossRef Google scholar
B.H. Zhang, J.H. Ge, Z.L. Xiong, S.M. Zhai. Effect of water on the thermal properties of olivine with implications for lunar internal temperature. J. Geophys. Res.: Planets, 124 (2019), pp. 3469-3481,
CrossRef Google scholar
B.H. Zhang, Q.K. Xia. Influence of water on the physical properties of olivine, wadsleyite, and ringwoodite. Eur. J. Mineral., 33 (2021), pp. 39-75,
CrossRef Google scholar
F. Zhu, J. Li, J. Liu, J. Dong, Z. Liu. Metallic iron limits silicate hydration in Earth’s transition zone. Proc. Natl. Acad. Sci. U.S.A., 116 (2019), pp. 22526-22530,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/