Constraints on the spin-state transition of siderite from laboratory-based Raman spectroscopy and electrical conductivity under high temperature and high pressure

Xinyu Zhang, Lidong Dai, Haiying Hu, Meiling Hong, Chuang Li

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101918.

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101918. DOI: 10.1016/j.gsf.2024.101918

Constraints on the spin-state transition of siderite from laboratory-based Raman spectroscopy and electrical conductivity under high temperature and high pressure

Author information +
History +

Abstract

The vibrational and electrical transport properties of natural siderite are systematically investigated by means of in-situ Raman spectroscopy and alternating current impedance spectroscopy under conditions of 0.6–55.6 GPa, 298–873 K and different hydrostatic environments using a diamond anvil cell (DAC). Upon non-hydrostatic compression, all of these observable characteristic variations of siderite including the appearance of three absolutely new Raman peaks (L’, v4′ and v1′), the disappearance of Raman peaks (T, L and v4) and the discontinuity in the pressure-dependent electrical conductivity can provide robust evidence of electronic spin transitions of Fe2+ from high-spin to mixed-spin to low-spin states at the respective pressures of 42.5 GPa and 48.5 GPa. As far as hydrostatic condition, the electronic spin states from high-spin to mixed-spin to low-spin states occurred at the higher pressures of 45.7 GPa and 50.4 GPa, respectively, which implied the highly sensitive hydrostaticity of electronic spin transition pressures. Upon decompression, the reverse electronic spin transitions from low-spin to mixed-spin to high-spin states were detected at the respective pressures of 47.2 GPa and 28.7 GPa under non-hydrostatic condition, and as well as at the pressures of 49.4 GPa and 25.1 GPa under hydrostatic condition, respectively. The huge pressure hysteresis of 13.8 GPa and 20.6 GPa for the electronic spin state transition was revealed under non-hydrostatic and hydrostatic environments, respectively. In order to explore the effect of temperature on the electronic spin transition, a series of electrical conductivity experiments on siderite were performed over the temperature range of 323–873 K under conditions of three typical pressures of 47.7, 49.8 and 51.6 GPa. Furthermore, the functional relationships between the temperature and pressure describing the high-spin to mixed-spin to low-spin transitions for siderite were successfully established: P1 (GPa) = 39.318 + 0.015 T (K) and P2 (GPa) = 41.277 + 0.018 T (K), respectively. In conclusion, our acquired phase diagram of the electronic spin transition on siderite is beneficial to deep insight into the electronic spin behavior for those of iron-bearing carbonate minerals under high-temperature and high-pressure conditions.

Keywords

Siderite / Electronic spin transition / Raman spectroscopy / Electrical conductivity / High temperature / High pressure

Cite this article

Download citation ▾
Xinyu Zhang, Lidong Dai, Haiying Hu, Meiling Hong, Chuang Li. Constraints on the spin-state transition of siderite from laboratory-based Raman spectroscopy and electrical conductivity under high temperature and high pressure. Geoscience Frontiers, 2025, 16(1): 101918 https://doi.org/10.1016/j.gsf.2024.101918

References

E. Boulard, A. Gloter, A. Corgne, D. Antonangeli, A.L. Auzende, J.P. Perrillat, F. Guyot, G. Fiquet. New host for carbon in the deep Earth. Proc. Natl. Acad. Sci. USA, 108 (2011), pp. 5184-5187
E. Boulard, N. Menguy, A.L. Auzende, K. Benzerara, H. Bureau, D. Antonangeli, A. Corgne, G. Morard, J. Siebert, J.P. Perrillat, F. Guyot, G. Fiquet. Experimental investigations of the stability of Fe-rich carbonates in the lower mantle. J. Geophys Res. Solid Earth, 117 (2012), Article B02208
F.E. Brenker, C. Vollmer, L. Vincze, B. Vekemans, A. Szymanski, K. Janssens, I. Szaloki, L. Nasdala, W. Joswig, F. Kaminsky. Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet. Sci. Lett., 260 (2007), pp. 1-9
R.G. Burns. Mineralogical applications of crystal field theory. Cambridge University Press, UK (1993)
V. Cerantola, C. McCammon, I. Kupenko, I. Kantor, C. Marini, M. Wilke, L. Ismailova, N. Solopova, A. Chumakov, S. Pascarelli, L. Dubrovinsky. High-pressure spectroscopic study of siderite (FeCO3) with a focus on spin crossover. Am. Mineral., 100 (2015), pp. 2670-2681
K.H. Chao, W.P. Hsieh. Thermal conductivity anomaly in (Fe0.78Mg0.22)CO3 siderite across spin transition of iron. J. Geophys Res. Solid Earth, 124 (2019), pp. 1388-1396
L.D. Dai, S. Karato. Electrical conductivity of orthopyroxene: Implications for the water content of the asthenosphere. Proc. Jpn. Acad.: Ser B, 85 (2009), pp. 466-475
L.D. Dai, H.P. Li, H.Y. Hu, S.M. Shan, J.J. Jiang, K.S. Hui. The effect of chemical composition and oxygen fugacity on the electrical conductivity of dry and hydrous garnet at high temperatures and high pressures. Contrib. Mineral. Petrol., 163 (2012), pp. 689-700
L.D. Dai, H.P. Li, H.Y. Hu, J.J. Jiang, K.S. Hui, S.M. Shan. Electrical conductivity of Alm82Py15Grs3 almandine-rich garnet determined by impedance spectroscopy at high temperatures and high pressures. Tectonophysics, 608 (2013), pp. 1086-1093
L.D. Dai, C. Pu, H.P. Li, H.Y. Hu, K.X. Liu, L.F. Yang, M.L. Hong. Characterization of metallization and amorphization for GaP under different hydrostatic environments in diamond anvil cell up to 40.0 GPa. Rev. Sci. Instrum., 90 (2019), Article 066103
R. Dasgupta, M.M. Hirschmann. The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett., 298 (2010), pp. 1-13
N.L. Dobretsov, A.F. Shatskiy. Deep carbon cycle and geodynamics: The role of the core and carbonatite melts in the lower mantle. Russ. Geol. Geophys., 53 (2012), pp. 1117-1132
G. Farfan, S. Wang, H. Ma, R. Caracas, W.L. Mao. Bonding and structural changes in siderite at high pressure. Am. Mineral., 97 (2012), pp. 1421-1426
D.L. Graf. Crystallographic tables for the rhombohedral carbonates. Am. Mineral., 46 (1961), pp. 1283-1316
M.L. Hong, L.D. Dai, H.Y. Hu, X.Y. Zhang, C. Li. High-temperature and high-pressure phase transition of natural barite investigated by Raman spectroscopy and electrical conductivity. Front. Earth Sci., 10 (2022), Article 864183
H.Y. Hu, L.D. Dai, H.P. Li, K.S. Hui, J. Li. Temperature and pressure dependence of electrical conductivity in synthetic anorthite. Solid State Ionics, 276 (2015), pp. 136-141
M. Javoy. The major volatile elements of the Earth: Their origin, behavior, and fate. Geophys. Res. Lett., 24 (1997), pp. 177-180
Larson, A.C., Von Dreele, R.B., 2005. General structure analysis system (GSAS) Los Alamos National Laboratory Report LAUR 86–748.
B. Lavina, P. Dera, R.T. Downs, V. Prakapenka, M. Rivers, S. Sutton, M. Nicol. Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition. Geophys. Res. Lett., 36 (2009), Article L23306
B. Lavina, P. Dera, R.T. Downs, W. Yang, S. Sinogeikin, Y. Meng, G. Shen, D. Schiferl. Structure of siderite FeCO3 to 56 GPa and hysteresis of its spin-pairing transition. Phys. Rev. B, 82 (2010), Article 064110
J.F. Lin, S.T. Weir, D.D. Jackson, W.J. Evans, Y.K. Vohra, W. Qiu, C.S. Yoo. Electrical conductivity of the lower-mantle ferropericlase across the electronic spin transition. Geophys. Res. Lett., 34 (2007), Article L16305
J.F. Lin, C. Jacobs, V.B. Prakapenka. Vibrational and elastic properties of ferromagnesite across the electronic spin-pairing transition of iron. Am. Mineral., 97 (2012), pp. 583-591
J.F. Lin, S. Speziale, Z. Mao, H. Marquardt. Effects of the electronic spin transitions of iron in lower mantle minerals: Implications for deep mantle geophysics and geochemistry. Rev. Geophys., 51 (2013), pp. 244-275
K.D. Litasov, E. Ohtani. Solidus and phase relations of carbonated peridotite in the system CaO–Al2O3–MgO–SiO2–Na2O–CO2 to the lower mantle depths. Phys. Earth Planet. Inter., 177 (2009), pp. 46-58
J. Liu, J.F. Lin, Z. Mao, V.B. Prakapenka. Thermal equation of state and spin transition of magnesiosiderite at high pressure and temperature. Am. Mineral., 99 (2014), pp. 84-93
J. Liu, J.F. Lin, V.B. Prakapenka. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier. Sci. Rep., 5 (2015), p. 7640
C.E. Manning. A piece of the deep carbon puzzle. Nat. Geosci., 7 (2014), pp. 333-334
H.K. Mao, J. Xu, P.M. Bell. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions.. J. Geophys. Res. Solid Earth, 91 (1986), pp. 4673-4676
W.F. McDonough, S.S. Sun. The composition of the Earth. Chem. Geol., 120 (1995), pp. 223-253
J. Müller, S. Speziale, I. Efthimiopoulos, S. Jahn, M. Koch-Müller. Raman spectroscopy of siderite at high pressure: evidence for a sharp spin transition. Am. Mineral., 101 (2016), pp. 2638-2644
J. Müller, I. Efthimiopoulos, S. Jahn, M. Koch-Müller. Effect of temperature on the pressure-induced spin transition in siderite and iron-bearing magnesite: A Raman spectroscopy study. Eur. J. Mineral., 29 (2017), pp. 785-793
K. Ohta, K. Hirose, S. Onoda, K. Shimizu. The effect of iron spin transition on the electrical conductivity of (Mg, Fe)O magnesiowüstite. Proc. Jpn. Acad. Ser. B, 83 (2007), pp. 97-100
K. Ohta, S. Onoda, K. Hirose, R. Sinmyo, K. Shimizu, N. Sata, Y. Ohishi, A. Yasuhara. The electrical conductivity of post-perovskite in Earth’s D“ layer. Science, 320 (2008), pp. 89-91
K. Ohta, K. Hirose, K. Shimizu, N. Sata, Y. Ohishi. The electrical resistance measurements of (Mg, Fe)SiO3 perovskite at high pressures and implications for electronic spin transition of iron. Phys. Earth Planet. Inter., 180 (2010), pp. 154-158
H.N. Rutt, J.H. Nicola. Raman spectra of carbonates of calcite structure. J. Phys. C: Solid State Phys., 7 (1974), pp. 4522-4528
J. Santillán, Q. Williams. A high-pressure infrared and X-ray study of FeCO3 and MnCO3: comparison with CaMg(CO3)2-dolomite. Phys. Earth Planet. Inter., 143 (2004), pp. 291-304
Y. Seto, D. Hamane, T. Nagai, F. Fujino. Fate of carbonates within oceanic plates subducted to the lower mantle, and a possible mechanism of diamond formation. Phys. Chem. Minerals, 35 (2008), pp. 223-229
A. Spivak, N. Solopova, V. Cerantola, E. Bykova, E. Zakharchenko, L. Dubrovinsky, Y. Litvin. Raman study of MgCO3–FeCO3 carbonate solid solution at high pressures up to 55 GPa. Phys. Chem. Minerals, 41 (2014), pp. 633-638
P. Tarits, M. Mandea. The heterogeneous electrical conductivity structure of the lower mantle. Phys. Earth Planet. Inter., 183 (2010), pp. 115-125
V. Trnovcová, I. Furár, F. Hanic. Influence of technological texture on electrical properties of industrial ceramics. J. Phys. Chem. Solids, 68 (2007), pp. 1135-1139
A. Wang, J.D. Pasteris, H.O.A. Meyer, M.L. Dele-Duboi. Magnesite-bearing inclusion assemblage in natural diamond. Earth Planet. Sci. Lett., 141 (1996), pp. 293-306
Y.G. Wang, Z.Y. Zhou, T. Wen, Y.N. Zhou, N. Li, F. Han, Y.M. Xiao, P. Chow, J.L. Sung, M. Pravica, A.L. Cornelius, W.G. Yang, Y.S. Zhao. Pressure-driven cooperative spin-crossover, large-volume collapse, and semiconductor-to-metal transition in manganese (II) honeycomb lattices. J. Am. Chem. Soc., 138 (2016), pp. 15751-15757
L.F. Yang, L.D. Dai, H.P. Li, H.Y. Hu, M.L. Hong, X.Y. Zhang, P.F. Liu. High-pressure investigations on the isostructural phase transition and metallization in realgar with diamond anvil cells. Geosci. Front., 12 (2021), pp. 1031-1037
T. Yoshino, E. Ito, T. Katsura, D. Yamazaki, S.M. Shan, X.Z. Gou, M. Nishi, Y. Higo, K. Funakoshi. Effect of iron content on electrical conductivity of ferropericlase with implications for the spin transition pressure. J. Geophys Res. Solid Earth, 116 (2011), Article B04202
C.S. Zhao, H.P. Li, J.J. Jiang, Y. He, W. Liang. Phase transition and vibration properties of MnCO3 at high pressure and high-temperature by Raman spectroscopy. High Pressure Res., 38 (2018), pp. 212-223
C.S. Zhao, L.X. Xu, W.B. Gui, J. Liu. Phase stability and vibrational properties of iron-bearing carbonates at high pressure. Minerals, 10 (2020), p. 1142

Accesses

Citations

Detail

Sections
Recommended

/