Stabilizing inverse ringwoodite with defects, and a possible origin for the 560-km seismic discontinuity
Xuwei Zhao, Joshua M.R. Muir, Mingda Lv, Zhigang Zhang, Xinjian Bao, Xi Liu
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101896.
Stabilizing inverse ringwoodite with defects, and a possible origin for the 560-km seismic discontinuity
Ringwoodite is an important mineral in the mantle transition zone, and its cationic disorder can profoundly affect its physicochemical properties, but there is currently much controversy about this disorder. In this study, we investigate the cation disorder states of pure Mg2SiO4-ringwoodite and defective ringwoodite under mantle transition zone conditions through DFT calculations and thermodynamic models. Two stable endmembers are seen, one with normal ringwoodite structure and the other with inverted structure (its Si atoms and half of its Mg atoms have swapped sites). Our results indicate that pure ringwoodite does not invert (swap Mg and Si cations) under normal mantle temperatures but the introduction of a Si-excess, Mg-deficient defect induces a swap at normal mantle temperatures and this swap is likely induced by a wide range of defects including water. Thus, in the presence of such a defect or similar defects the olivine phase transition sequence may then go from olivine to wadsleyite to inverse ringwoodite, and then normal ringwoodite. We calculate the seismic properties of normal and inverse ringwoodite and find significantly slower wave speeds in inverted ringwoodite. Due to this difference the presence of inverse ringwoodite may provide a potential explanation for the discontinuous interface of seismic waves at the depth of ∼560 km.
Normal ringwoodite / Inverse ringwoodite / Cation disorder / Defects / 560-km seismic discontinuity
M.R. Agius, C.A. Rychert, N. Harmon, G. Laske. Mapping the mantle transition zone beneath Hawaii from Ps receiver functions: Evidence for a hot plume and cold mantle downwellings. Earth Planet. Sci. Lett., 474 (2017), pp. 226-236,
CrossRef
Google scholar
|
M. Akaogi, E. Ito, A. Navrotsky. Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application. J. Geophys. Res., 94 (1989), pp. 15671-15685,
CrossRef
Google scholar
|
G.B. Andreozzi, F. Princivalle, H. Skogby, A. Della Giusta. Cation ordering and structural variations with temperature in MgAl2O4 spinel: An X-ray single-crystal study. Am. Mineral., 85 (2000), pp. 1164-1171,
CrossRef
Google scholar
|
S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi. Phonons and related crystal properties from density-functional perturbation theory. Rev. Modern Phys., 73 (2001), pp. 515-562,
CrossRef
Google scholar
|
D. Belmonte, M. La Fortezza, F. Menescardi. Ab initio thermal expansion and thermoelastic properties of ringwoodite (γ-Mg2SiO4) at mantle transition zone conditions. Eur. J. Mineral., 34 (2022), pp. 167-182,
CrossRef
Google scholar
|
L. Bindi, W.L. Griffin, W.R. Panero, E. Sirotkina, A. Bobrov, T. Irifune. Synthesis of inverse ringwoodite sheds light on the subduction history of Tibetan ophiolites. Sci. Rep., 8 (2018), p. 5457,
CrossRef
Google scholar
|
P.E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 50 (1994), pp. 17953-17979,
CrossRef
Google scholar
|
H.B. Callen, S.E. Harrison, C.J. Kriessman. Cation distributions in ferrospinels: theoretical. Phys. Rev., 103 (1956), pp. 851-856,
CrossRef
Google scholar
|
D.M. Ceperley, B.J. Alder. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett., 45 (1980), pp. 566-569,
CrossRef
Google scholar
|
S. Da Rocha, P. Thibaudeau. Ab initio high-pressure thermodynamics of cationic disordered MgAl2O4 spinel. J. Phys. Condensed Matter, 15 (2003), pp. 7103-7115,
CrossRef
Google scholar
|
A. Deuss, J. Woodhouse. Seismic observations of splitting of the mid-transition zone discontinuity in Earth’s mantle. Science, 294 (2001), pp. 354-357,
CrossRef
Google scholar
|
A.M. Dziewonski, D.L. Anderson. Preliminary reference Earth model. Phys. Earth Planet. In., 25 (1981), pp. 297-356,
CrossRef
Google scholar
|
H. Fei, T. Katsura. High water solubility of ringwoodite at mantle transition zone temperature. Earth Planet. Sci. Lett., 531 (2020), Article 115987,
CrossRef
Google scholar
|
Y. Fei, S.K. Saxena. A thermochemical data base for phase equilibria in the system Fe-Mg-Si-O at high pressure and temperature. Phys. Chem. Minerals, 13 (1986), pp. 311-324,
CrossRef
Google scholar
|
A.J. Fernandez-Carrion, K. Al Saghir, E. Veron, A.I. Becerro, F. Porcher, W. Wisniewski, G. Matzen, F. Fayon, M. Allix. Local disorder and tunable luminescence in Sr1-x/2Al2-xSixO4 (0.2 ≤ x ≤ 0.5) transparent ceramics. Inorg. Chem., 56 (2017), pp. 14446-14458,
CrossRef
Google scholar
|
D.J. Frost. The upper mantle and transition zone. Elements, 4 (2008), pp. 171-176,
CrossRef
Google scholar
|
X. Gonze, C. Lee. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B, 55 (1997), pp. 10355-10368,
CrossRef
Google scholar
|
W.L. Griffin, J.C. Afonso, E.A. Belousova, S.E. Gain, X.-H. Gong, J.M. González-Jiménez, D. Howell, J.-X. Huang, N. McGowan, N.J. Pearson, T. Satsukawa, R. Shi, P. Williams, Q. Xiong, J.-S. Yang, M. Zhang, S.Y. O’Reilly. Mantle recycling: Transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. J. Petrol., 57 (2016), pp. 655-684,
CrossRef
Google scholar
|
R.M. Hazen, R.T. Downs, L.W. Finger. Crystal chemistry of ferromagnesian silicate spinels: Evidence for Mg-Si disorder. Am. Mineral., 78 (1993), pp. 1320-1323
|
G. Helffrich. Topography of the transition zone seismic discontinuities. Rev. Geophys., 38 (2000), pp. 141-158,
CrossRef
Google scholar
|
R. Hill. The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. Sect. A, 65 (1952), pp. 349-354,
CrossRef
Google scholar
|
E. Ito, E. Takahashi. Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. J. Geophys. Res., 94 (1989), pp. 10637-10646,
CrossRef
Google scholar
|
M.H.G. Jacobs, B.H.W.S. de Jong. An investigation into thermodynamic consistency of data for the olivine, wadsleyite and ringwoodite form of (Mg, Fe)2Si. Geochim. Cosmochim. Acta, 69 (2005), pp. 4361-4375,
CrossRef
Google scholar
|
T. Katsura, E. Ito. The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel. J. Geophys. Res., 94 (1989), pp. 15663-15670,
CrossRef
Google scholar
|
T. Katsura, A. Yoneda, D. Yamazaki, T. Yoshino, E. Ito. Adiabatic temperature profile in the mantle. Phys. Earth Planet. In., 183 (2010), pp. 212-218,
CrossRef
Google scholar
|
B.L.N. Kennett, E.R. Engdahl, R. Buland. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int., 122 (1995), pp. 108-124,
CrossRef
Google scholar
|
B. Kiefer, L. Stixrude, R. Wentzcovitch. Normal and inverse ringwoodite at high pressures. Am. Mineral., 84 (1999), pp. 288-293,
CrossRef
Google scholar
|
D.L. Kohlstedt, H. Keppler, D.C. Rubie. Solubility of water in the α, β, γ phases of (Mg, Fe)2SiO4. Contrib. Miner. Petrol., 123 (1996), pp. 345-357,
CrossRef
Google scholar
|
G. Kresse, J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54 (1996), pp. 11169-11186,
CrossRef
Google scholar
|
G. Kresse, J. Hafner. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 47 (1993), pp. 558-561,
CrossRef
Google scholar
|
G. Kresse, J. Hafner. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condensed Matter, 6 (1994), pp. 8245-8257,
CrossRef
Google scholar
|
B. Li. Compressional and shear wave velocities of ringwoodite γ-Mg2SiO4 to 12 GPa. Am. Mineral., 88 (2003), pp. 1312-1317,
CrossRef
Google scholar
|
L. Li, P. Carrez, D. Weidner. Effect of cation ordering and pressure on spinel elasticity by ab initio simulation. Am. Mineral., 92 (2007), pp. 174-178,
CrossRef
Google scholar
|
J.-F. Lin, S. Speziale, Z. Mao, H. Marquardt. Effect of the electronic spin transitions of iron in lower mantle minerals: implications for deep mantle geophysics and geochemistry. Rev. Geophys., 51 (2013), pp. 244-275,
CrossRef
Google scholar
|
X. Liu, Z. Xiong, L. Chang, Q. He, F. Wang, S.R. Shieh, C. Wu, B. Li, L. Zhang. Anhydrous ringwoodites in the mantle transition zone: their bulk modulus, solid solution behavior, compositional variation, and sound velocity feature. Solid Earth Sci., 1 (2016), pp. 28-47,
CrossRef
Google scholar
|
X. Liu, Z. Sui, H. Fei, W. Yan, Y. Ma, Y. Ye. IR features of hydrous Mg2SiO4-ringwoodite, unannealed and annealed at 200–600 °C and 1 atm, with implications to hydrogen defects and water-coupled cation disorder. Minerals, 10 (2020), p. 499,
CrossRef
Google scholar
|
Y. Ma, X. Liu. Kinetics and thermodynamics of Mg-Al disorder in MgAl2O4-spinel: a review. Molecules, 24 (2019), p. 1704,
CrossRef
Google scholar
|
C. Ma, O. Tschauner, L. Bindi, J.R. Beckett, X. Xie. A vacancy-rich, partially inverted spinelloid silicate, (Mg, Fe, Si)2(Si,□)O4, as a major matrix phase in shock melt veins of the Tenham and Suizhou L6 chondrites. Meteorit. Planet. Sci., 54 (2019), pp. 1907-1918,
CrossRef
Google scholar
|
Y. Nishihara, E. Takahashi, K.N. Matsukage, T. Iguchi, K. Nakayama, K. Funakoshi. Thermal equation of state of (Mg0.91Fe0.09)2SiO4 ringwoodite. Phys. Earth Planet. In., 143–144 (2004), pp. 33-46,
CrossRef
Google scholar
|
M. Núñez-Valdez, E. Bruschini, S. Speziale, F. Bosi, R.A. Fregola, V. D’Ippolito, G.B. Andreozzi. Reexploring the cation ordering and magnetic cation substitution effects on the elastic anisotropy of aluminum spinels. J. Appl. Phys., 124 (2018), Article 175901,
CrossRef
Google scholar
|
H. O’Neill, C. St, A. Navrotsky. Simple spinels: crystallographic parameters, cation radii, lattice energies and cation distribution. Am. Mineral., 68 (1983), pp. 181-194
|
E. Ohtani, H. Mizobata, H. Yurimoto. Stability of dense hydrous magnesium silicate phases in the systems Mg2SiO4-H2O and MgSiO3-H2O at pressures up to 27 GPa. Phys. Chem. Minerals, 27 (2000), Article 533544,
CrossRef
Google scholar
|
K. Okhotnikov, T. Charpentier, S. Cadars. Supercell program: a combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals. J. Cheminf., 8 (2016), p. 17,
CrossRef
Google scholar
|
Y.L. Page, P. Saxe. Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B, 65 (2002), Article 104104,
CrossRef
Google scholar
|
W.R. Panero. Cation disorder in ringwoodite and its effects on wave speeds in the Earth’s transition zone. J. Geophys. Res., 113 (2008), p. B10204,
CrossRef
Google scholar
|
S.M. Rigden, G.D. Gwanmesia, J.D. Fitz Gerald, L. Jackson, R.C. Liebermann. Spinel elasticity and seismic structure of the transition zone of the mantle. Nature, 354 (1991), pp. 143-145,
CrossRef
Google scholar
|
A.E. Ringwood. Composition and Petrology of the Earth’s Mantle. McGraw-Hill, New York. (1975)
|
A.E. Ringwood. Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochim. Cosmochim. Acta, 55 (1991), pp. 2083-2110,
CrossRef
Google scholar
|
A.E. Ringwood, A. Major. The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures. Phys. Earth Planet. In., 3 (1970), pp. 89-108,
CrossRef
Google scholar
|
A. Saikia, D.J. Frost, D.C. Rubie. Splitting of the 520-kilometer seismic discontinuity and chemical heterogeneity in the mantle. Science, 319 (2008), pp. 1515-1518,
CrossRef
Google scholar
|
S. Sasaki, C.T. Prewitt, Y. Sato, E. Ito. Single-crystal X ray study of γ Mg2SiO4. J. Geophys. Res., 87 (1982), pp. 7829-7832,
CrossRef
Google scholar
|
A. Seko, K. Yuge, F. Oba, A. Kuwabara, I. Tanaka, T. Yamamoto. First-principles study of cation disordering in MgAl2O4 spinel with cluster expansion and Monte Carlo simulation. Phys. Rev. B, 73 (2006), Article 094116,
CrossRef
Google scholar
|
J.F. Stebbins, W.R. Panero, J.R. Smyth, D.J. Frost. Forsterite, wadsleyite, and ringwoodite (Mg2SiO4): 29Si NMR constraints on structural disorder and effects of paramagnetic impurity ions. Am. Mineral., 94 (2009), pp. 626-629,
CrossRef
Google scholar
|
L. Stixrude, C. Lithgow-Bertelloni. Thermodynamics of mantle minerals-II. Phase Equilibria. Geophys. J. Int., 184 (2011), pp. 1180-1213,
CrossRef
Google scholar
|
M.N. Taran, M. Koch-Müller, R. Wirth, I. Abs-Wurmbach, D. Rhede, A. Greshake. Spectroscopic studies of synthetic and natural ringwoodite, γ-(Mg, Fe)2SiO4. Phys. Chem. Minerals, 36 (2009), pp. 217-232,
CrossRef
Google scholar
|
D. Tian, M. Lv, S.S. Wei, S.M. Dorfman, P.M. Shearer. Global variations of Earth’s 520- and 560-km discontinuities. Earth Planet. Sci. Lett., 552 (2020), Article 116600,
CrossRef
Google scholar
|
A. Togo, I. Tanaka. First principles phonon calculations in material science. Scr. Mater., 108 (2015), pp. 1-5,
CrossRef
Google scholar
|
X. Wang, Q. Chen, F. Niu, S. Wei, J. Ning, J. Li, W. Wang, J. Buchen, L. Liu. Distinct slab interfaces imaged within the mantle transition zone. Nat. Geosci., 13 (2020), pp. 822-827,
CrossRef
Google scholar
|
V. Wang, N. Xu, J.C. Liu, G. Tang, W.T. Geng. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun., 267 (2021), Article 108033,
CrossRef
Google scholar
|
B.J. Wood, R.J. Kirkpatrick, B. Montez. Order-disorder phenomena in MgAl2O4 spinel. Am. Mineral., 71 (1986), pp. 996-1006
|
B.J. Wood, D.C. Rubie. The effect of alumina on phase transformations at the 660-kilometer discontinuity from Fe-Mg partitioning experiments. Science, 273 (1996), pp. 1522-1524,
CrossRef
Google scholar
|
W. Xu, C. Lithgow-Bertelloni, L. Stixrude, J. Ritsema. The effect of bulk composition and temperature on mantle seismic structure. Earth Planet. Sci. Lett., 275 (2008), pp. 70-79,
CrossRef
Google scholar
|
Y. Zhu, J.D. Poplawsky, S. Li, R.R. Unocic, L.G. Bland, C.D. Taylor, J.S. Locke, E.A. Marquis, G.S. Frankel. Localized corrosion at nm-scale hardening precipitates in Al-Cu-Li alloys. Acta Mater., 189 (2020), pp. 204-213,
CrossRef
Google scholar
|
/
〈 |
|
〉 |