Stabilizing inverse ringwoodite with defects, and a possible origin for the 560-km seismic discontinuity
Xuwei Zhao , Joshua M.R. Muir , Mingda Lv , Zhigang Zhang , Xinjian Bao , Xi Liu
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101896
Stabilizing inverse ringwoodite with defects, and a possible origin for the 560-km seismic discontinuity
Ringwoodite is an important mineral in the mantle transition zone, and its cationic disorder can profoundly affect its physicochemical properties, but there is currently much controversy about this disorder. In this study, we investigate the cation disorder states of pure Mg2SiO4-ringwoodite and defective ringwoodite under mantle transition zone conditions through DFT calculations and thermodynamic models. Two stable endmembers are seen, one with normal ringwoodite structure and the other with inverted structure (its Si atoms and half of its Mg atoms have swapped sites). Our results indicate that pure ringwoodite does not invert (swap Mg and Si cations) under normal mantle temperatures but the introduction of a Si-excess, Mg-deficient defect induces a swap at normal mantle temperatures and this swap is likely induced by a wide range of defects including water. Thus, in the presence of such a defect or similar defects the olivine phase transition sequence may then go from olivine to wadsleyite to inverse ringwoodite, and then normal ringwoodite. We calculate the seismic properties of normal and inverse ringwoodite and find significantly slower wave speeds in inverted ringwoodite. Due to this difference the presence of inverse ringwoodite may provide a potential explanation for the discontinuous interface of seismic waves at the depth of ∼560 km.
Normal ringwoodite / Inverse ringwoodite / Cation disorder / Defects / 560-km seismic discontinuity
| [1] |
M.R. Agius, C.A. Rychert, N. Harmon, G. Laske. Mapping the mantle transition zone beneath Hawaii from Ps receiver functions: Evidence for a hot plume and cold mantle downwellings. Earth Planet. Sci. Lett., 474 (2017), pp. 226-236, |
| [2] |
M. Akaogi, E. Ito, A. Navrotsky. Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application. J. Geophys. Res., 94 (1989), pp. 15671-15685, |
| [3] |
G.B. Andreozzi, F. Princivalle, H. Skogby, A. Della Giusta. Cation ordering and structural variations with temperature in MgAl2O4 spinel: An X-ray single-crystal study. Am. Mineral., 85 (2000), pp. 1164-1171, |
| [4] |
S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi. Phonons and related crystal properties from density-functional perturbation theory. Rev. Modern Phys., 73 (2001), pp. 515-562, |
| [5] |
D. Belmonte, M. La Fortezza, F. Menescardi. Ab initio thermal expansion and thermoelastic properties of ringwoodite (γ-Mg2SiO4) at mantle transition zone conditions. Eur. J. Mineral., 34 (2022), pp. 167-182, |
| [6] |
L. Bindi, W.L. Griffin, W.R. Panero, E. Sirotkina, A. Bobrov, T. Irifune. Synthesis of inverse ringwoodite sheds light on the subduction history of Tibetan ophiolites. Sci. Rep., 8 (2018), p. 5457, |
| [7] |
P.E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 50 (1994), pp. 17953-17979, |
| [8] |
H.B. Callen, S.E. Harrison, C.J. Kriessman. Cation distributions in ferrospinels: theoretical. Phys. Rev., 103 (1956), pp. 851-856, |
| [9] |
D.M. Ceperley, B.J. Alder. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett., 45 (1980), pp. 566-569, |
| [10] |
S. Da Rocha, P. Thibaudeau. Ab initio high-pressure thermodynamics of cationic disordered MgAl2O4 spinel. J. Phys. Condensed Matter, 15 (2003), pp. 7103-7115, |
| [11] |
A. Deuss, J. Woodhouse. Seismic observations of splitting of the mid-transition zone discontinuity in Earth’s mantle. Science, 294 (2001), pp. 354-357, |
| [12] |
A.M. Dziewonski, D.L. Anderson. Preliminary reference Earth model. Phys. Earth Planet. In., 25 (1981), pp. 297-356, |
| [13] |
H. Fei, T. Katsura. High water solubility of ringwoodite at mantle transition zone temperature. Earth Planet. Sci. Lett., 531 (2020), Article 115987, |
| [14] |
Y. Fei, S.K. Saxena. A thermochemical data base for phase equilibria in the system Fe-Mg-Si-O at high pressure and temperature. Phys. Chem. Minerals, 13 (1986), pp. 311-324, |
| [15] |
A.J. Fernandez-Carrion, K. Al Saghir, E. Veron, A.I. Becerro, F. Porcher, W. Wisniewski, G. Matzen, F. Fayon, M. Allix. Local disorder and tunable luminescence in Sr1-x/2Al2-xSixO4 (0.2 ≤ x ≤ 0.5) transparent ceramics. Inorg. Chem., 56 (2017), pp. 14446-14458, |
| [16] |
D.J. Frost. The upper mantle and transition zone. Elements, 4 (2008), pp. 171-176, |
| [17] |
X. Gonze, C. Lee. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B, 55 (1997), pp. 10355-10368, |
| [18] |
W.L. Griffin, J.C. Afonso, E.A. Belousova, S.E. Gain, X.-H. Gong, J.M. González-Jiménez, D. Howell, J.-X. Huang, N. McGowan, N.J. Pearson, T. Satsukawa, R. Shi, P. Williams, Q. Xiong, J.-S. Yang, M. Zhang, S.Y. O’Reilly. Mantle recycling: Transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. J. Petrol., 57 (2016), pp. 655-684, |
| [19] |
R.M. Hazen, R.T. Downs, L.W. Finger. Crystal chemistry of ferromagnesian silicate spinels: Evidence for Mg-Si disorder. Am. Mineral., 78 (1993), pp. 1320-1323 |
| [20] |
G. Helffrich. Topography of the transition zone seismic discontinuities. Rev. Geophys., 38 (2000), pp. 141-158, |
| [21] |
R. Hill. The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. Sect. A, 65 (1952), pp. 349-354, |
| [22] |
E. Ito, E. Takahashi. Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. J. Geophys. Res., 94 (1989), pp. 10637-10646, |
| [23] |
M.H.G. Jacobs, B.H.W.S. de Jong. An investigation into thermodynamic consistency of data for the olivine, wadsleyite and ringwoodite form of (Mg, Fe)2Si. Geochim. Cosmochim. Acta, 69 (2005), pp. 4361-4375, |
| [24] |
T. Katsura, E. Ito. The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel. J. Geophys. Res., 94 (1989), pp. 15663-15670, |
| [25] |
T. Katsura, A. Yoneda, D. Yamazaki, T. Yoshino, E. Ito. Adiabatic temperature profile in the mantle. Phys. Earth Planet. In., 183 (2010), pp. 212-218, |
| [26] |
B.L.N. Kennett, E.R. Engdahl, R. Buland. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int., 122 (1995), pp. 108-124, |
| [27] |
B. Kiefer, L. Stixrude, R. Wentzcovitch. Normal and inverse ringwoodite at high pressures. Am. Mineral., 84 (1999), pp. 288-293, |
| [28] |
D.L. Kohlstedt, H. Keppler, D.C. Rubie. Solubility of water in the α, β, γ phases of (Mg, Fe)2SiO4. Contrib. Miner. Petrol., 123 (1996), pp. 345-357, |
| [29] |
G. Kresse, J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54 (1996), pp. 11169-11186, |
| [30] |
G. Kresse, J. Hafner. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 47 (1993), pp. 558-561, |
| [31] |
G. Kresse, J. Hafner. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condensed Matter, 6 (1994), pp. 8245-8257, |
| [32] |
B. Li. Compressional and shear wave velocities of ringwoodite γ-Mg2SiO4 to 12 GPa. Am. Mineral., 88 (2003), pp. 1312-1317, |
| [33] |
L. Li, P. Carrez, D. Weidner. Effect of cation ordering and pressure on spinel elasticity by ab initio simulation. Am. Mineral., 92 (2007), pp. 174-178, |
| [34] |
J.-F. Lin, S. Speziale, Z. Mao, H. Marquardt. Effect of the electronic spin transitions of iron in lower mantle minerals: implications for deep mantle geophysics and geochemistry. Rev. Geophys., 51 (2013), pp. 244-275, |
| [35] |
X. Liu, Z. Xiong, L. Chang, Q. He, F. Wang, S.R. Shieh, C. Wu, B. Li, L. Zhang. Anhydrous ringwoodites in the mantle transition zone: their bulk modulus, solid solution behavior, compositional variation, and sound velocity feature. Solid Earth Sci., 1 (2016), pp. 28-47, |
| [36] |
X. Liu, Z. Sui, H. Fei, W. Yan, Y. Ma, Y. Ye. IR features of hydrous Mg2SiO4-ringwoodite, unannealed and annealed at 200–600 °C and 1 atm, with implications to hydrogen defects and water-coupled cation disorder. Minerals, 10 (2020), p. 499, |
| [37] |
Y. Ma, X. Liu. Kinetics and thermodynamics of Mg-Al disorder in MgAl2O4-spinel: a review. Molecules, 24 (2019), p. 1704, |
| [38] |
C. Ma, O. Tschauner, L. Bindi, J.R. Beckett, X. Xie. A vacancy-rich, partially inverted spinelloid silicate, (Mg, Fe, Si)2(Si,□)O4, as a major matrix phase in shock melt veins of the Tenham and Suizhou L6 chondrites. Meteorit. Planet. Sci., 54 (2019), pp. 1907-1918, |
| [39] |
Y. Nishihara, E. Takahashi, K.N. Matsukage, T. Iguchi, K. Nakayama, K. Funakoshi. Thermal equation of state of (Mg0.91Fe0.09)2SiO4 ringwoodite. Phys. Earth Planet. In., 143–144 (2004), pp. 33-46, |
| [40] |
M. Núñez-Valdez, E. Bruschini, S. Speziale, F. Bosi, R.A. Fregola, V. D’Ippolito, G.B. Andreozzi. Reexploring the cation ordering and magnetic cation substitution effects on the elastic anisotropy of aluminum spinels. J. Appl. Phys., 124 (2018), Article 175901, |
| [41] |
H. O’Neill, C. St, A. Navrotsky. Simple spinels: crystallographic parameters, cation radii, lattice energies and cation distribution. Am. Mineral., 68 (1983), pp. 181-194 |
| [42] |
E. Ohtani, H. Mizobata, H. Yurimoto. Stability of dense hydrous magnesium silicate phases in the systems Mg2SiO4-H2O and MgSiO3-H2O at pressures up to 27 GPa. Phys. Chem. Minerals, 27 (2000), Article 533544, |
| [43] |
K. Okhotnikov, T. Charpentier, S. Cadars. Supercell program: a combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals. J. Cheminf., 8 (2016), p. 17, |
| [44] |
Y.L. Page, P. Saxe. Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B, 65 (2002), Article 104104, |
| [45] |
W.R. Panero. Cation disorder in ringwoodite and its effects on wave speeds in the Earth’s transition zone. J. Geophys. Res., 113 (2008), p. B10204, |
| [46] |
S.M. Rigden, G.D. Gwanmesia, J.D. Fitz Gerald, L. Jackson, R.C. Liebermann. Spinel elasticity and seismic structure of the transition zone of the mantle. Nature, 354 (1991), pp. 143-145, |
| [47] |
A.E. Ringwood. Composition and Petrology of the Earth’s Mantle. McGraw-Hill, New York. (1975) |
| [48] |
A.E. Ringwood. Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochim. Cosmochim. Acta, 55 (1991), pp. 2083-2110, |
| [49] |
A.E. Ringwood, A. Major. The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures. Phys. Earth Planet. In., 3 (1970), pp. 89-108, |
| [50] |
A. Saikia, D.J. Frost, D.C. Rubie. Splitting of the 520-kilometer seismic discontinuity and chemical heterogeneity in the mantle. Science, 319 (2008), pp. 1515-1518, |
| [51] |
S. Sasaki, C.T. Prewitt, Y. Sato, E. Ito. Single-crystal X ray study of γ Mg2SiO4. J. Geophys. Res., 87 (1982), pp. 7829-7832, |
| [52] |
A. Seko, K. Yuge, F. Oba, A. Kuwabara, I. Tanaka, T. Yamamoto. First-principles study of cation disordering in MgAl2O4 spinel with cluster expansion and Monte Carlo simulation. Phys. Rev. B, 73 (2006), Article 094116, |
| [53] |
J.F. Stebbins, W.R. Panero, J.R. Smyth, D.J. Frost. Forsterite, wadsleyite, and ringwoodite (Mg2SiO4): 29Si NMR constraints on structural disorder and effects of paramagnetic impurity ions. Am. Mineral., 94 (2009), pp. 626-629, |
| [54] |
L. Stixrude, C. Lithgow-Bertelloni. Thermodynamics of mantle minerals-II. Phase Equilibria. Geophys. J. Int., 184 (2011), pp. 1180-1213, |
| [55] |
M.N. Taran, M. Koch-Müller, R. Wirth, I. Abs-Wurmbach, D. Rhede, A. Greshake. Spectroscopic studies of synthetic and natural ringwoodite, γ-(Mg, Fe)2SiO4. Phys. Chem. Minerals, 36 (2009), pp. 217-232, |
| [56] |
D. Tian, M. Lv, S.S. Wei, S.M. Dorfman, P.M. Shearer. Global variations of Earth’s 520- and 560-km discontinuities. Earth Planet. Sci. Lett., 552 (2020), Article 116600, |
| [57] |
A. Togo, I. Tanaka. First principles phonon calculations in material science. Scr. Mater., 108 (2015), pp. 1-5, |
| [58] |
X. Wang, Q. Chen, F. Niu, S. Wei, J. Ning, J. Li, W. Wang, J. Buchen, L. Liu. Distinct slab interfaces imaged within the mantle transition zone. Nat. Geosci., 13 (2020), pp. 822-827, |
| [59] |
V. Wang, N. Xu, J.C. Liu, G. Tang, W.T. Geng. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun., 267 (2021), Article 108033, |
| [60] |
B.J. Wood, R.J. Kirkpatrick, B. Montez. Order-disorder phenomena in MgAl2O4 spinel. Am. Mineral., 71 (1986), pp. 996-1006 |
| [61] |
B.J. Wood, D.C. Rubie. The effect of alumina on phase transformations at the 660-kilometer discontinuity from Fe-Mg partitioning experiments. Science, 273 (1996), pp. 1522-1524, |
| [62] |
W. Xu, C. Lithgow-Bertelloni, L. Stixrude, J. Ritsema. The effect of bulk composition and temperature on mantle seismic structure. Earth Planet. Sci. Lett., 275 (2008), pp. 70-79, |
| [63] |
Y. Zhu, J.D. Poplawsky, S. Li, R.R. Unocic, L.G. Bland, C.D. Taylor, J.S. Locke, E.A. Marquis, G.S. Frankel. Localized corrosion at nm-scale hardening precipitates in Al-Cu-Li alloys. Acta Mater., 189 (2020), pp. 204-213, |
/
| 〈 |
|
〉 |