Oxygen fugacity-mediated carbonate reactions with siliceous fluids in shallow subduction zones

Fengxia Sun , Jun Hu , Weibin Gui , Ao Deng , Penghui Sun , Fahui Xiong , Jin Liu

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101891

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101891 DOI: 10.1016/j.gsf.2024.101891

Oxygen fugacity-mediated carbonate reactions with siliceous fluids in shallow subduction zones

Author information +
History +
PDF

Abstract

Sediments are one of the main carbon sinks in subduction zones, with CaCO3 and SiO2 being the main components in sediments. Their chemical stability plays a significant role in the form of carbon in the Earth’s mantle. Here we report the reactions of CaCO3 with SiO2 in hydrated sediments at 0.8–2.0 GPa, 400–500 ℃ and redox-buffered conditions relevant to shallow subduction zones. Our results show that the reaction CaCO3 + SiO2 = CaSiO3 + C + O2(fluid) occurs under CoCoO and IW buffered conditions to generate wollastonite (CaSiO3) and carbonaceous material (CM). Moreover, wollastonite is formed by the dissolution-crystallization process, which may be significantly affected by oxygen fugacity, leading to distinct crystallization habits (Yui, 1966, Schott et al., 2012). Anhydrous experiments indicate that the reaction proceeds only in the presence of H2O within the pressure and temperature (P-T) range of this study. The reaction occurs more rapidly with aragonite-structured than calcite-structured CaCO3. Further, the experiment buffered with natural olivine at 1.0 GPa and 400 ℃ proves that the above reaction can occur during serpentinization processes in shallow subduction zones. More importantly, nanoscale CM may be generated under relatively reducing conditions, exhibiting Raman characteristics of kerogen. These results provide new insights into how deep carbon is distributed in the Earth’s interior.

Keywords

Subduction zone / Sediments / Carbonate stability / Fugacity / Graphite / Wollastonite

Cite this article

Download citation ▾
Fengxia Sun, Jun Hu, Weibin Gui, Ao Deng, Penghui Sun, Fahui Xiong, Jin Liu. Oxygen fugacity-mediated carbonate reactions with siliceous fluids in shallow subduction zones. Geoscience Frontiers, 2025, 16(1): 101891 DOI:10.1016/j.gsf.2024.101891

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Fengxia Sun: Data curation, Writing – original draft, Investigation, Methodology. Jun Hu: Formal analysis. Weibin Gui: Conceptualization. Ao Deng: Investigation. Penghui Sun: Conceptualization, Software. Fahui Xiong: Writing – review & editing, Methodology. Jin Liu: Conceptualization, Writing – review & editing, Supervision, Resources.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank for Peng Wang and Junfeng Zhang for constructive discussions and technical support. This work is supported by the National Key Research and Development Program of China (Grant No. 2023YFF0804100) and the United Laboratory of High-Pressure Physics and Earthquake Science (Grant No. 2022HPPES01). Some experiments are supported by the Synergic Extreme Condition User Facility (SECUF).

References

[1]

M.M. Abu El-Enen, M. Okrusch, T.M. Will. Contact metamorphism and metasomatism at a dolerite-limestone contact in the Gebel Yelleq area, Northern Sinai Egypt. Mineral. Petrol., 81 (2004), pp. 135-164,

[2]

P. Agard, P. Yamato, L. Jolivet, E. Burov. Exhumation of oceanic blueschists and eclogites in subduction zones: timing and mechanisms. Earth-Sci. Rev., 92 (2009), pp. 53-79,

[3]

J.J. Ague, S. Tassara, M.E. Holycross, J.-L. Li, E. Cottrell, E.M. Schwarzenbach, C. Fassoulas, T. John. Slab-derived devolatilization fluids oxidized by subducted metasedimentary rocks. Nat. Geosci., 15 (2022), pp. 320-326,

[4]

D.E. Allen, W.E. Seyfried. Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: an experimental study at 400°C, 500 bars. Geochim. Cosmochim. Acta, 67 (2003), pp. 1531-1542,

[5]

M.R. Ammar, N. Galy, J.N. Rouzaud, N. Toulhoat, C.E. Vaudey, P. Simon, N. Moncoffre. Characterizing various types of defects in nuclear graphite using Raman scattering: heat treatment, ion irradiation and polishing. Carbon, 95 (2015), pp. 364-373,

[6]

M. Andreani, I. Daniel, M. Pollet-Villard. Aluminum speeds up the hydrothermal alteration of olivine. Am. Mineral., 98 (2013), pp. 1738-1744,

[7]

Anenburg, M., O’Neill, H.St.C., 2019. Redox in Magmas: Comment on a Recent Treatment of the Kaiserstuhl Volcanics (Braunger et al., Journal of Petrology, 59, 1731–1762, 2018) and Some Other Misconceptions. J. Petrol. egz046. https://doi.org/10.1093/petrology/egz046.

[8]

A. Aparicio, C.C.G. Tassinari, R. García, V. Araña. Sr and Nd isotope composition of the metamorphic, sedimentary and ultramafic xenoliths of Lanzarote (Canary Islands): implications for magma sources. J. Volcanol. Geotherm. Res., 189 (2010), pp. 143-150,

[9]

J.F. Barrenechea, F.J. Luque, D. Millward, L. Ortega, O. Beyssac, M. Rodas. Graphite morphologies from the Borrowdale deposit (NW England, UK): Raman and SIMS data. Contrib. Mineral. Petrol., 158 (2009), pp. 37-51,

[10]

G.E. Bebout, M.D. Barton. Fluid flow and metasomatism in a subduction zone hydrothermal system: Catalina Schist terrane. California. Geology, 17 (1989), p. 976,

[11]

O. Beyssac, B. Goffé, C. Chopin, J.N. Rouzaud. Raman spectra of carbonaceous material in metasediments: a new geothermometer. J. Metamorph. Geol., 20 (2002), pp. 859-871,

[12]

O. Beyssac, F. Brunet, J.-P. Petitet, B. Goffé, J.-N. Rouzaud. Experimental study of the microtextural and structural transformations of carbonaceous materials under pressure and temperature. Eur. J. Mineral., 15 (2004), pp. 937-951,

[13]

J. Blackwood, F. McGrory. The carbon-steam reaction at high pressure. Aust. J. Chem., 11 (1958), p. 16,

[14]

A. Boutier, I. Martinez, O. Sissmann, S. Agostini, I. Daniel, M. Van Baalen, S. Mana, A. Vitale Brovarone. Complexity of graphite formation in response to metamorphic methane generation and transformation in an orogenic ultramafic body. Geochim. Cosmochim. Acta, 364 (2024), pp. 166-183,

[15]

L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-Paniago, M.A. Pimenta. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett., 88 (2006), Article 163106,

[16]

L.B. Childress, S.D. Jacobsen. High-pressure high-temperature Raman spectroscopy of kerogen: relevance to subducted organic carbon. Am. Mineral., 102 (2017), pp. 391-403,

[17]

J. Cook-Kollars, G.E. Bebout, N.C. Collins, S. Angiboust, P. Agard. Subduction zone metamorphic pathway for deep carbon cycling: I. evidence from HP/UHP metasedimentary rocks. Italian Alps. Chem. Geol., 386 (2014), pp. 31-48,

[18]

J. Dai, L. Zhao, B. Lin, P. Tang, M. Fu. Thermal infrared spectroscopy studies on skarn minerals for exploration of the Jiama Cu-Mo deposit, Tibet China. Ore Geol. Rev., 157 (2023), Article 105437,

[19]

S. Das, A.R. Basu, B.K. Mukherjee. In situ peridotitic diamond in Indus ophiolite sourced from hydrocarbon fluids in the mantle transition zone. Geology, 45 (8) (2017), pp. 755-758,

[20]

R. Dasgupta, M.M. Hirschmann. The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett., 298 (2010), pp. 1-13,

[21]

K. De Corte, P. Cartigny, V.S. Shatsky, N.V. Sobolev, M. Javoy. Evidence of fluid inclusions in metamorphic microdiamonds from the Kokchetav massif, northern Kazakhstan. Geochim. Cosmochim. Acta, 62 (1998), pp. 3765-3773,

[22]

L.F. Dobrzhinetskaya, H.W. Green. Diamond synthesis from graphite in the presence of water and SiO2: implications for diamond formation in quartzites from Kazakhstan. Int. Geol. Rev., 49 (2007), pp. 389-400,

[23]

M.S. Duncan, R. Dasgupta. Rise of Earth’s atmospheric oxygen controlled by efficient subduction of organic carbon. Nat. Geosci., 10 (2017), pp. 387-392,

[24]

E. Essene. High-pressure transformations in CaSiO3. Contrib. Mineral. Petrol., 45 (1974), pp. 247-250,

[25]

G. Etiope, B. Sherwood Lollar. Abiotic methane of Earth. Rev. Geophys., 51 (2013), pp. 276-299,

[26]

K.A. Evans, M.J. Bickle, A.D.L. Skelton, M. Hall, H. Chapman. Reductive deposition of graphite at lithological margins in East Central Vermont: a Sr, C and O isotope study. J. Metamorph. Geol., 20 (2002), pp. 781-798,

[27]

S. Farsang, M. Louvel, C. Zhao, M. Mezouar, A.D. Rosa, R.N. Widmer, X. Feng, J. Liu, S.A.T. Redfern. Deep carbon cycle constrained by carbonate solubility. Nat. Commun., 12 (2021), p. 4311,

[28]

N. Ferralis, E.D. Matys, A.H. Knoll, C. Hallmann, R.E. Summons. Rapid, direct and non-destructive assessment of fossil organic matter via microRaman spectroscopy. Carbon, 108 (2016), pp. 440-449,

[29]

J.M. Ferry, B.A. Wing, D. Rumble. Formation of wollastonite by chemically reactive fluid flow during contact metamorphism, Mt. Morrison Pendant, Sierra Nevada, California. USA. J. Petrol., 42 (2001), pp. 1705-1728,

[30]

D.I. Foustoukos. Metastable equilibrium in the C-H-O system: graphite deposition in crustal fluids. Am. Mineral., 97 (2012), pp. 1373-1380,

[31]

M.-L. Frezzotti, J.-M. Huizenga, R. Compagnoni, J. Selverstone. Diamond formation by carbon saturation in C-O–H fluids during cold subduction of oceanic lithosphere. Geochim. Cosmochim. Acta, 143 (2014), pp. 68-86,

[32]

M.L. Frezzotti, J. Selverstone, Z.D. Sharp, R. Compagnoni. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat. Geosci., 4 (2011), pp. 703-706,

[33]

B.R. Frost. Mineral equilibria involving mixed-volatiles in a C-O-H fluid phase; the stabilities of graphite and siderite. Am. J. Sci., 279 (1979), pp. 1033-1059,

[34]

M.L. Gerdes, J.W. Valley. Fluid flow and mass transport at the Valentine wollastonite deposit, Adirondack Mountains, New York State. J. Metamorph. Geol., 12 (1994), pp. 589-608,

[35]

T.A. Grammatikopoulos, A.H. Clark. A comparative study of wollastonite skarn genesis in the Central Metasedimentary Belt, southeastern Ontario Canada. Ore Geol. Rev., 29 (2006), pp. 146-161,

[36]

W. Gui, K. Shen, J. Liu. Phase stability and reactions of subducting CaCO3 under upper mantle conditions. Acta Geol. Sin. - Engl. Ed., 97 (2023), pp. 309-315,

[37]

C. Henmi, A. Kawahara, K. Henmi, I. Kusachi, Y. Takeuchi. The 3T, 4T and 5T polytypes of wollastonite from Kushiro, Hiroshima Prefecture. Japan. Am. Mineral., 68 (1983), pp. 156-163

[38]

D.G. Henry, I. Jarvis, G. Gillmore, M. Stephenson. Raman spectroscopy as a tool to determine the thermal maturity of organic matter: application to sedimentary, metamorphic and structural geology. Earth-Sci. Rev., 198 (2019), Article 102936,

[39]

T. Holland, R. Powell. A Compensated-Redlich-Kwong (CORK) equation for volumes and fugacities of CO2 and H2O in the range 1 bar to 50 kbar and 100–1600℃. Contrib. Mineral. Petrol., 109 (1991), pp. 265-273,

[40]

T.J.B. Holland, R. Powell. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol., 16 (1998), pp. 309-343,

[41]

T.J.B. Holland, R. Powell. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol., 29 (2011), pp. 333-383,

[42]

H. Hu, L. Zhang, C. Lan, Z. Liu. Petrological evidence for deep subduction of organic carbon to subarc depths. Commun. Earth Environ., 4 (2023), p. 418,

[43]

R. Huang, W. Sun, X. Ding, Y. Zhao, M. Song. Effect of pressure on the kinetics of peridotite serpentinization. Phys. Chem. Miner., 47 (2020), p. 33,

[44]

T. Itaya. Carbonaceous material in pelitic schists of the Sanbagawa metamorphic belt in central Shikoku, Japan. Lithos, 14 (1981), pp. 215-224,

[45]

D.E. Jacob, R. Wirth, F. Enzmann, A. Kronz, A. Schreiber. Nano-inclusion suite and high resolution micro-computed-tomography of polycrystalline diamond (framesite) from Orapa Botswana. Earth Planet. Sci. Lett., 308 (2011), pp. 307-316,

[46]

P.B. Kelemen, C.E. Manning. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl. Acad. Sci., 112 (2015), pp. E3997-E4006,

[47]

A.F. Khokhryakov, D.V. Nechaev, A.G. Sokol, Y.N. Palyanov. Formation of various types of graphite inclusions in diamond: experimental data. Lithos, 112 (2009), pp. 683-689,

[48]

F. Klein, N.G. Grozeva, J.S. Seewald. Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions. Proc. Natl. Acad. Sci., 116 (2019), pp. 17666-17672,

[49]

Y. Kouketsu, T. Mizukami, H. Mori, S. Endo, M. Aoya, H. Hara, D. Nakamura, S. Wallis. A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width. Isl. Arc, 23 (2014), pp. 33-50,

[50]

S.J. Kridelbaugh. The kinetics of the reaction: calcite + quartz = wollastonite + carbon dioxide at elevated temperatures and pressures. Am. J. Sci., 273 (1973), pp. 757-777,

[51]

C. Lan, R. Tao, F. Huang, R. Jiang, L. Zhang. High-pressure experimental and thermodynamic constraints on the solubility of carbonates in subduction zone fluids. Earth Planet. Sci. Lett., 603 (2023), Article 117989,

[52]

Y. Li. Immiscible C-H-O fluids formed at subduction zone conditions. Geochem. Perspect. Lett., 3 (2016), pp. 12-21,

[53]

F.J. Luque, L. Ortega, J.F. Barrenechea, D. Millward, O. Beyssac, J.-M. Huizenga. Deposition of highly crystalline graphite from moderate-temperature fluids. Geology, 37 (2009), pp. 275-278,

[54]

B. Malvoisin, C. Chopin, F. Brunet, M.E. Galvez. Low-temperature wollastonite formed by carbonate reduction: a marker of serpentinite redox conditions. J. Petrol., 53 (2012), pp. 159-176,

[55]

O.A. Maslova, M.R. Ammar, G. Guimbretière, J.-N. Rouzaud, P. Simon. Determination of crystallite size in polished graphitized carbon by Raman spectroscopy. Phys. Rev. B, 86 (2012), Article 134205,

[56]

M.J. Matthews, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, M. Endo. Origin of dispersive effects of the Raman D band in carbon materials. Phys. Rev. B, 59 (1999), pp. R6585-R6588,

[57]

E. Mazzucato, A.F. Gualtieri. Wollastonite polytypes in the CaO-SiO2 system. Phys. Chem. Miner., 27 (2000), pp. 565-574,

[58]

S. Milani, D. Comboni, P. Lotti, P. Fumagalli, L. Ziberna, J. Maurice, M. Hanfland, M. Merlini. Crystal structure evolution of CaSiO3 polymorphs at Earth’s mantle pressures. Minerals, 11 (2021), p. 652,

[59]

V. Milesi, F. Guyot, F. Brunet, L. Richard, N. Recham, M. Benedetti, J. Dairou, A. Prinzhofer. Formation of CO2, H2 and condensed carbon from siderite dissolution in the 200–300°C range and at 50MPa. Geochim. Cosmochim. Acta, 154 (2015), pp. 201-211,

[60]

R. Milke, W. Heinrich. Diffusion-controlled growth of wollastonite rims between quartz and calcite: comparison between nature and experiment. J. Metamorph. Geol., 20 (2002), pp. 467-480,

[61]

M. Miura, S. Arai, T. Mizukami. Raman spectroscopy of hydrous inclusions in olivine and orthopyroxene in ophiolitic harzburgite: Implications for elementary processes in serpentinization. J. Mineral. Petrol. Sci., 106 (2011), pp. 91-96,

[62]

Y. Mori, M. Shigeno, T. Nishiyama. Fluid-metapelite interaction in an ultramafic mélange: implications for mass transfer along the slab-mantle interface in subduction zones. Earth Planets Space, 66 (2014), p. 47,

[63]

Y. Nakamura, T. Yoshino, M. Satish-Kumar. Pressure dependence of graphitization: implications for rapid recrystallization of carbonaceous material in a subduction zone. Contrib. Mineral. Petrol., 175 (2020), p. 32,

[64]

T. Nakatani, M. Nakamura. Experimental constraints on the serpentinization rate of fore-arc peridotites: Implications for the upwelling condition of the slab-derived fluid. Geochem. Geophys. Geosystems, 17 (2016), pp. 3393-3419,

[65]

A. Neubeck, D.T. Nguyen, G. Etiope. Low-temperature dunite hydration: evaluating CH4 and H2 production from H2O and CO2. Geofluids, 16 (2016), pp. 408-420,

[66]

A.R. Oganov, C.W. Glass, S. Ono. High-pressure phases of CaCO3: Crystal structure prediction and experiment. Earth Planet. Sci. Lett., 241 (2006), pp. 95-103,

[67]

Y. Ogasawara, M. Ohta, K. Fukasawa, I. Katayama, S. Maruyama. Diamond-bearing and diamond-free metacarbonate rocks from Kumdy-Kol in the Kokchetav Massif, northern Kazakhstan. Isl. Arc, 9 (2000), pp. 400-416,

[68]

Y. Ohtomo, T. Kakegawa, A. Ishida, T. Nagase, M.T. Rosing. Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks. Nat. Geosci., 7 (2014), pp. 25-28,

[69]

J.D. Pasteris, I.-M. Chou. Fluid-deposited graphitic inclusions in quartz: Comparison between KTB (German Continental Deep-Drilling) core samples and artificially reequilibrated natural inclusions. Geochim. Cosmochim. Acta, 62 (1998), pp. 109-122,

[70]

J.D. Pasteris, B. Wopenka. Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life. Astrobiology, 3 (2003), pp. 727-738,

[71]

Y. Peng, M. Mookherjee, A. Hermann, G. Manthilake, D. Mainprice. Anomalous elasticity of talc at high pressures: implications for subduction systems. Geosci. Front., 13 (2022), Article 101381,

[72]

M. Perraki, A. Proyer, E. Mposkos, R. Kaindl, G. Hoinkes. Raman micro-spectroscopy on diamond, graphite and other carbon polymorphs from the ultrahigh-pressure metamorphic Kimi Complex of the Rhodope Metamorphic Province NE Greece. Earth Planet. Sci. Lett., 241 (2006), pp. 672-685,

[73]

F. Piccoli, A. Vitale Brovarone, O. Beyssac, I. Martinez, J.J. Ague, C. Chaduteau. Carbonation by fluid–rock interactions at high-pressure conditions: Implications for carbon cycling in subduction zones. Earth Planet. Sci. Lett., 445 (2016), pp. 146-159,

[74]

F. Piccoli, J. Hermann, T. Pettke, J.A.D. Connolly, E.D. Kempf, J.F. Vieira Duarte. Subducting serpentinites release reduced, not oxidized, aqueous fluids. Sci. Rep., 9 (2019), p. 19573,

[75]

M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, R. Saito. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys., 9 (2007), pp. 1276-1290,

[76]

T. Plank, C.H. Langmuir. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol., 145 (1998), pp. 325-394,

[77]

T. Plank, C.E. Manning. Subducting carbon. Nature, 574 (2019), pp. 343-352,

[78]

S. Poli, E. Franzolin, P. Fumagalli, A. Crottini. The transport of carbon and hydrogen in subducted oceanic crust: an experimental study to 5 GPa. Earth Planet. Sci. Lett., 278 (2009), pp. 350-360,

[79]

F. Princivalle, A. De Min, D. Lenaz, M. Scarbolo, A. Zanetti. Ultramafic xenoliths from Damaping (Hannuoba region, NE-China): Petrogenetic implications from crystal chemistry of pyroxenes, olivine and Cr-spinel and trace element content of clinopyroxene. Lithos, 188 (2014), pp. 3-14,

[80]

K. Sato, R. Saito, Y. Oyama, J. Jiang, L.G. Cançado, M.A. Pimenta, A. Jorio, Ge.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus. D-band Raman intensity of graphitic materials as a function of laser energy and crystallite size. Chem. Phys. Lett., 427 (2006), pp. 117-121,

[81]

A. Schito, D.K. Muirhead, J. Parnell. Towards a kerogen-to-graphite kinetic model by means of Raman spectroscopy. Earth-Sci. Rev., 237 (2023), Article 104292,

[82]

J. Schott, O.S. Pokrovsky, O. Spalla, F. Devreux, A. Gloter, J.A. Mielczarski. Formation, growth and transformation of leached layers during silicate minerals dissolution: the example of wollastonite. Geochim. Cosmochim. Acta, 98 (2012), pp. 259-281,

[83]

Y. Seto, D. Nishio-Hamane, T. Nagai, N. Sata. Development of a Software suite on X-ray diffraction experiments. Rev. High Press. Sci. Technol., 20 (2010), pp. 269-276,

[84]

S.K. Simakov. Metastable nanosized diamond formation from a C-H-O fluid system. J. Mater. Res., 25 (2010), pp. 2336-2340,

[85]

S.K. Simakov. Nano- and micron-sized diamond genesis in nature: an overview. Geosci. Front., 9 (2018), pp. 1849-1858,

[86]

T. Stachel, R.W. Luth. Diamond formation — where, when and how?. Lithos, 220–223 (2015), pp. 200-220,

[87]

A. Steele, F.M. McCubbin, M.D. Fries, D.C. Golden, D.W. Ming, L.G. Benning. Graphite in the martian meteorite Allan Hills 84001. Am. Mineral., 97 (2012), pp. 1256-1259,

[88]

E.M. Stewart, J.J. Ague, J.M. Ferry, C.M. Schiffries, R.-B. Tao, T.T. Isson, N.J. Planavsky. Carbonation and decarbonation reactions: Implications for planetary habitability. Am. Mineral., 104 (2019), pp. 1369-1380,

[89]

D.A. Sverjensky, V. Stagno, F. Huang. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. Nat. Geosci., 7 (2014), pp. 909-913,

[90]

V. Szlachta, K. Vlasov, H. Keppler. On the stability of acetate in subduction zone fluids. Geochem. Perspect. Lett., 21 (2022), pp. 28-31,

[91]

S.B. Tanner, D.M. Kerrick, A.C. Lasaga. Experimental kinetic study of the reaction: calcite + quartz=wollastonite + carbon dioxide, from 1 to 3 kilobars and 500°C to 850°C. Am. J. Sci., 285 (1985), pp. 577-620,

[92]

R. Tao, L. Zhang, M. Tian, J. Zhu, X. Liu, J. Liu, H.E. Höfer, V. Stagno, Y. Fei. Formation of abiotic hydrocarbon from reduction of carbonate in subduction zones: constraints from petrological observation and experimental simulation. Geochim. Cosmochim. Acta, 239 (2018), pp. 390-408,

[93]

L. Toffolo, S. Tumiati, A. Villa, P. Fumagalli, A. Amalfa, F. Miozzi. Experimental dissolution of carbonaceous materials in water at 1 GPa and 550°C: assessing the role of carbon forms and redox state on COH fluid production and composition during forearc subduction of organic matter. Front. Earth Sci., 11 (2023), p. 1013014,

[94]

S. Tumiati, C. Tiraboschi, D.A. Sverjensky, T. Pettke, S. Recchia, P. Ulmer, F. Miozzi, S. Poli. Silicate dissolution boosts the CO2 concentrations in subduction fluids. Nat. Commun., 8 (2017), p. 616,

[95]

S. Tumiati, C. Tiraboschi, F. Miozzi, A. Vitale-Brovarone, C.E. Manning, D.A. Sverjensky, S. Milani, S. Poli. Dissolution susceptibility of glass-like carbon versus crystalline graphite in high-pressure aqueous fluids and implications for the behavior of organic matter in subduction zones. Geochim. Cosmochim. Acta, 273 (2020), pp. 383-402,

[96]

M.A. Van Zuilen, A. Lepland, J. Teranes, J. Finarelli, M. Wahlen, G. Arrhenius. Graphite and carbonates in the 3.8 Ga old Isua Supracrustal Belt, southern West Greenland. Precambrian Res., 126 (2003), pp. 331-348,

[97]

A. Vitale Brovarone, I. Martinez, A. Elmaleh, R. Compagnoni, C. Chaduteau, C. Ferraris, I. Esteve. Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps. Nat. Commun., 8 (2017), p. 14134,

[98]

Y. Wang, D.C. Alsmeyer, R.L. McCreery. Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem. Mater., 2 (1990), pp. 557-563,

[99]

C. Wang, R. Tao, J.B. Walters, H.E. Höfer, L. Zhang. Favorable P-T–ƒO2 conditions for abiotic CH4 production in subducted oceanic crusts: a comparison between CH4-bearing ultrahigh- and CO2-bearing high-pressure eclogite. Geochim. Cosmochim. Acta, 336 (2022), pp. 269-290,

[100]

H.-R. Wenk. Polymorphism of wollastonite. Contrib. Mineral. Petrol., 22 (1969), pp. 238-247,

[101]

B. Wopenka, J.D. Pasteris. Structural characterization of kerogens to granulite-facies gaphite: applicability of raman microprobe spectroscopy. Am. Mineral., 78 (1993), pp. 533-557

[102]

S. Yui. Decomposition of siderite to magnetite at lower oxygen fugacities: a thermochemical interpretation and geological implications. Econ. Geol., 61 (1966), pp. 768-776,

[103]

J. Zhu, L. Zhang, R. Tao, Y. Fei. The formation of graphite-rich eclogite vein in S.W. Tianshan (China) and its implication for deep carbon cycling in subduction zone. Chem. Geol., 533 (2020), Article 119430,

AI Summary AI Mindmap
PDF

274

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/