Oxygen fugacity-mediated carbonate reactions with siliceous fluids in shallow subduction zones

Fengxia Sun, Jun Hu, Weibin Gui, Ao Deng, Penghui Sun, Fahui Xiong, Jin Liu

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101891.

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101891. DOI: 10.1016/j.gsf.2024.101891

Oxygen fugacity-mediated carbonate reactions with siliceous fluids in shallow subduction zones

Author information +
History +

Abstract

Sediments are one of the main carbon sinks in subduction zones, with CaCO3 and SiO2 being the main components in sediments. Their chemical stability plays a significant role in the form of carbon in the Earth’s mantle. Here we report the reactions of CaCO3 with SiO2 in hydrated sediments at 0.8–2.0 GPa, 400–500 ℃ and redox-buffered conditions relevant to shallow subduction zones. Our results show that the reaction CaCO3 + SiO2 = CaSiO3 + C + O2(fluid) occurs under CoCoO and IW buffered conditions to generate wollastonite (CaSiO3) and carbonaceous material (CM). Moreover, wollastonite is formed by the dissolution-crystallization process, which may be significantly affected by oxygen fugacity, leading to distinct crystallization habits (Yui, 1966, Schott et al., 2012). Anhydrous experiments indicate that the reaction proceeds only in the presence of H2O within the pressure and temperature (P-T) range of this study. The reaction occurs more rapidly with aragonite-structured than calcite-structured CaCO3. Further, the experiment buffered with natural olivine at 1.0 GPa and 400 ℃ proves that the above reaction can occur during serpentinization processes in shallow subduction zones. More importantly, nanoscale CM may be generated under relatively reducing conditions, exhibiting Raman characteristics of kerogen. These results provide new insights into how deep carbon is distributed in the Earth’s interior.

Keywords

Subduction zone / Sediments / Carbonate stability / Fugacity / Graphite / Wollastonite

Cite this article

Download citation ▾
Fengxia Sun, Jun Hu, Weibin Gui, Ao Deng, Penghui Sun, Fahui Xiong, Jin Liu. Oxygen fugacity-mediated carbonate reactions with siliceous fluids in shallow subduction zones. Geoscience Frontiers, 2025, 16(1): 101891 https://doi.org/10.1016/j.gsf.2024.101891

References

M.M. Abu El-Enen, M. Okrusch, T.M. Will. Contact metamorphism and metasomatism at a dolerite-limestone contact in the Gebel Yelleq area, Northern Sinai Egypt. Mineral. Petrol., 81 (2004), pp. 135-164,
CrossRef Google scholar
P. Agard, P. Yamato, L. Jolivet, E. Burov. Exhumation of oceanic blueschists and eclogites in subduction zones: timing and mechanisms. Earth-Sci. Rev., 92 (2009), pp. 53-79,
CrossRef Google scholar
J.J. Ague, S. Tassara, M.E. Holycross, J.-L. Li, E. Cottrell, E.M. Schwarzenbach, C. Fassoulas, T. John. Slab-derived devolatilization fluids oxidized by subducted metasedimentary rocks. Nat. Geosci., 15 (2022), pp. 320-326,
CrossRef Google scholar
D.E. Allen, W.E. Seyfried. Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: an experimental study at 400°C, 500 bars. Geochim. Cosmochim. Acta, 67 (2003), pp. 1531-1542,
CrossRef Google scholar
M.R. Ammar, N. Galy, J.N. Rouzaud, N. Toulhoat, C.E. Vaudey, P. Simon, N. Moncoffre. Characterizing various types of defects in nuclear graphite using Raman scattering: heat treatment, ion irradiation and polishing. Carbon, 95 (2015), pp. 364-373,
CrossRef Google scholar
M. Andreani, I. Daniel, M. Pollet-Villard. Aluminum speeds up the hydrothermal alteration of olivine. Am. Mineral., 98 (2013), pp. 1738-1744,
CrossRef Google scholar
Anenburg, M., O’Neill, H.St.C., 2019. Redox in Magmas: Comment on a Recent Treatment of the Kaiserstuhl Volcanics (Braunger et al., Journal of Petrology, 59, 1731–1762, 2018) and Some Other Misconceptions. J. Petrol. egz046. https://doi.org/10.1093/petrology/egz046.
A. Aparicio, C.C.G. Tassinari, R. García, V. Araña. Sr and Nd isotope composition of the metamorphic, sedimentary and ultramafic xenoliths of Lanzarote (Canary Islands): implications for magma sources. J. Volcanol. Geotherm. Res., 189 (2010), pp. 143-150,
CrossRef Google scholar
J.F. Barrenechea, F.J. Luque, D. Millward, L. Ortega, O. Beyssac, M. Rodas. Graphite morphologies from the Borrowdale deposit (NW England, UK): Raman and SIMS data. Contrib. Mineral. Petrol., 158 (2009), pp. 37-51,
CrossRef Google scholar
G.E. Bebout, M.D. Barton. Fluid flow and metasomatism in a subduction zone hydrothermal system: Catalina Schist terrane. California. Geology, 17 (1989), p. 976,
CrossRef Google scholar
O. Beyssac, B. Goffé, C. Chopin, J.N. Rouzaud. Raman spectra of carbonaceous material in metasediments: a new geothermometer. J. Metamorph. Geol., 20 (2002), pp. 859-871,
CrossRef Google scholar
O. Beyssac, F. Brunet, J.-P. Petitet, B. Goffé, J.-N. Rouzaud. Experimental study of the microtextural and structural transformations of carbonaceous materials under pressure and temperature. Eur. J. Mineral., 15 (2004), pp. 937-951,
CrossRef Google scholar
J. Blackwood, F. McGrory. The carbon-steam reaction at high pressure. Aust. J. Chem., 11 (1958), p. 16,
CrossRef Google scholar
A. Boutier, I. Martinez, O. Sissmann, S. Agostini, I. Daniel, M. Van Baalen, S. Mana, A. Vitale Brovarone. Complexity of graphite formation in response to metamorphic methane generation and transformation in an orogenic ultramafic body. Geochim. Cosmochim. Acta, 364 (2024), pp. 166-183,
CrossRef Google scholar
L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-Paniago, M.A. Pimenta. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett., 88 (2006), Article 163106,
CrossRef Google scholar
L.B. Childress, S.D. Jacobsen. High-pressure high-temperature Raman spectroscopy of kerogen: relevance to subducted organic carbon. Am. Mineral., 102 (2017), pp. 391-403,
CrossRef Google scholar
J. Cook-Kollars, G.E. Bebout, N.C. Collins, S. Angiboust, P. Agard. Subduction zone metamorphic pathway for deep carbon cycling: I. evidence from HP/UHP metasedimentary rocks. Italian Alps. Chem. Geol., 386 (2014), pp. 31-48,
CrossRef Google scholar
J. Dai, L. Zhao, B. Lin, P. Tang, M. Fu. Thermal infrared spectroscopy studies on skarn minerals for exploration of the Jiama Cu-Mo deposit, Tibet China. Ore Geol. Rev., 157 (2023), Article 105437,
CrossRef Google scholar
S. Das, A.R. Basu, B.K. Mukherjee. In situ peridotitic diamond in Indus ophiolite sourced from hydrocarbon fluids in the mantle transition zone. Geology, 45 (8) (2017), pp. 755-758,
CrossRef Google scholar
R. Dasgupta, M.M. Hirschmann. The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett., 298 (2010), pp. 1-13,
CrossRef Google scholar
K. De Corte, P. Cartigny, V.S. Shatsky, N.V. Sobolev, M. Javoy. Evidence of fluid inclusions in metamorphic microdiamonds from the Kokchetav massif, northern Kazakhstan. Geochim. Cosmochim. Acta, 62 (1998), pp. 3765-3773,
CrossRef Google scholar
L.F. Dobrzhinetskaya, H.W. Green. Diamond synthesis from graphite in the presence of water and SiO2: implications for diamond formation in quartzites from Kazakhstan. Int. Geol. Rev., 49 (2007), pp. 389-400,
CrossRef Google scholar
M.S. Duncan, R. Dasgupta. Rise of Earth’s atmospheric oxygen controlled by efficient subduction of organic carbon. Nat. Geosci., 10 (2017), pp. 387-392,
CrossRef Google scholar
E. Essene. High-pressure transformations in CaSiO3. Contrib. Mineral. Petrol., 45 (1974), pp. 247-250,
CrossRef Google scholar
G. Etiope, B. Sherwood Lollar. Abiotic methane of Earth. Rev. Geophys., 51 (2013), pp. 276-299,
CrossRef Google scholar
K.A. Evans, M.J. Bickle, A.D.L. Skelton, M. Hall, H. Chapman. Reductive deposition of graphite at lithological margins in East Central Vermont: a Sr, C and O isotope study. J. Metamorph. Geol., 20 (2002), pp. 781-798,
CrossRef Google scholar
S. Farsang, M. Louvel, C. Zhao, M. Mezouar, A.D. Rosa, R.N. Widmer, X. Feng, J. Liu, S.A.T. Redfern. Deep carbon cycle constrained by carbonate solubility. Nat. Commun., 12 (2021), p. 4311,
CrossRef Google scholar
N. Ferralis, E.D. Matys, A.H. Knoll, C. Hallmann, R.E. Summons. Rapid, direct and non-destructive assessment of fossil organic matter via microRaman spectroscopy. Carbon, 108 (2016), pp. 440-449,
CrossRef Google scholar
J.M. Ferry, B.A. Wing, D. Rumble. Formation of wollastonite by chemically reactive fluid flow during contact metamorphism, Mt. Morrison Pendant, Sierra Nevada, California. USA. J. Petrol., 42 (2001), pp. 1705-1728,
CrossRef Google scholar
D.I. Foustoukos. Metastable equilibrium in the C-H-O system: graphite deposition in crustal fluids. Am. Mineral., 97 (2012), pp. 1373-1380,
CrossRef Google scholar
M.-L. Frezzotti, J.-M. Huizenga, R. Compagnoni, J. Selverstone. Diamond formation by carbon saturation in C-O–H fluids during cold subduction of oceanic lithosphere. Geochim. Cosmochim. Acta, 143 (2014), pp. 68-86,
CrossRef Google scholar
M.L. Frezzotti, J. Selverstone, Z.D. Sharp, R. Compagnoni. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat. Geosci., 4 (2011), pp. 703-706,
CrossRef Google scholar
B.R. Frost. Mineral equilibria involving mixed-volatiles in a C-O-H fluid phase; the stabilities of graphite and siderite. Am. J. Sci., 279 (1979), pp. 1033-1059,
CrossRef Google scholar
M.L. Gerdes, J.W. Valley. Fluid flow and mass transport at the Valentine wollastonite deposit, Adirondack Mountains, New York State. J. Metamorph. Geol., 12 (1994), pp. 589-608,
CrossRef Google scholar
T.A. Grammatikopoulos, A.H. Clark. A comparative study of wollastonite skarn genesis in the Central Metasedimentary Belt, southeastern Ontario Canada. Ore Geol. Rev., 29 (2006), pp. 146-161,
CrossRef Google scholar
W. Gui, K. Shen, J. Liu. Phase stability and reactions of subducting CaCO3 under upper mantle conditions. Acta Geol. Sin. - Engl. Ed., 97 (2023), pp. 309-315,
CrossRef Google scholar
C. Henmi, A. Kawahara, K. Henmi, I. Kusachi, Y. Takeuchi. The 3T, 4T and 5T polytypes of wollastonite from Kushiro, Hiroshima Prefecture. Japan. Am. Mineral., 68 (1983), pp. 156-163
D.G. Henry, I. Jarvis, G. Gillmore, M. Stephenson. Raman spectroscopy as a tool to determine the thermal maturity of organic matter: application to sedimentary, metamorphic and structural geology. Earth-Sci. Rev., 198 (2019), Article 102936,
CrossRef Google scholar
T. Holland, R. Powell. A Compensated-Redlich-Kwong (CORK) equation for volumes and fugacities of CO2 and H2O in the range 1 bar to 50 kbar and 100–1600℃. Contrib. Mineral. Petrol., 109 (1991), pp. 265-273,
CrossRef Google scholar
T.J.B. Holland, R. Powell. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol., 16 (1998), pp. 309-343,
CrossRef Google scholar
T.J.B. Holland, R. Powell. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol., 29 (2011), pp. 333-383,
CrossRef Google scholar
H. Hu, L. Zhang, C. Lan, Z. Liu. Petrological evidence for deep subduction of organic carbon to subarc depths. Commun. Earth Environ., 4 (2023), p. 418,
CrossRef Google scholar
R. Huang, W. Sun, X. Ding, Y. Zhao, M. Song. Effect of pressure on the kinetics of peridotite serpentinization. Phys. Chem. Miner., 47 (2020), p. 33,
CrossRef Google scholar
T. Itaya. Carbonaceous material in pelitic schists of the Sanbagawa metamorphic belt in central Shikoku, Japan. Lithos, 14 (1981), pp. 215-224,
CrossRef Google scholar
D.E. Jacob, R. Wirth, F. Enzmann, A. Kronz, A. Schreiber. Nano-inclusion suite and high resolution micro-computed-tomography of polycrystalline diamond (framesite) from Orapa Botswana. Earth Planet. Sci. Lett., 308 (2011), pp. 307-316,
CrossRef Google scholar
P.B. Kelemen, C.E. Manning. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl. Acad. Sci., 112 (2015), pp. E3997-E4006,
CrossRef Google scholar
A.F. Khokhryakov, D.V. Nechaev, A.G. Sokol, Y.N. Palyanov. Formation of various types of graphite inclusions in diamond: experimental data. Lithos, 112 (2009), pp. 683-689,
CrossRef Google scholar
F. Klein, N.G. Grozeva, J.S. Seewald. Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions. Proc. Natl. Acad. Sci., 116 (2019), pp. 17666-17672,
CrossRef Google scholar
Y. Kouketsu, T. Mizukami, H. Mori, S. Endo, M. Aoya, H. Hara, D. Nakamura, S. Wallis. A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width. Isl. Arc, 23 (2014), pp. 33-50,
CrossRef Google scholar
S.J. Kridelbaugh. The kinetics of the reaction: calcite + quartz = wollastonite + carbon dioxide at elevated temperatures and pressures. Am. J. Sci., 273 (1973), pp. 757-777,
CrossRef Google scholar
C. Lan, R. Tao, F. Huang, R. Jiang, L. Zhang. High-pressure experimental and thermodynamic constraints on the solubility of carbonates in subduction zone fluids. Earth Planet. Sci. Lett., 603 (2023), Article 117989,
CrossRef Google scholar
Y. Li. Immiscible C-H-O fluids formed at subduction zone conditions. Geochem. Perspect. Lett., 3 (2016), pp. 12-21,
CrossRef Google scholar
F.J. Luque, L. Ortega, J.F. Barrenechea, D. Millward, O. Beyssac, J.-M. Huizenga. Deposition of highly crystalline graphite from moderate-temperature fluids. Geology, 37 (2009), pp. 275-278,
CrossRef Google scholar
B. Malvoisin, C. Chopin, F. Brunet, M.E. Galvez. Low-temperature wollastonite formed by carbonate reduction: a marker of serpentinite redox conditions. J. Petrol., 53 (2012), pp. 159-176,
CrossRef Google scholar
O.A. Maslova, M.R. Ammar, G. Guimbretière, J.-N. Rouzaud, P. Simon. Determination of crystallite size in polished graphitized carbon by Raman spectroscopy. Phys. Rev. B, 86 (2012), Article 134205,
CrossRef Google scholar
M.J. Matthews, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, M. Endo. Origin of dispersive effects of the Raman D band in carbon materials. Phys. Rev. B, 59 (1999), pp. R6585-R6588,
CrossRef Google scholar
E. Mazzucato, A.F. Gualtieri. Wollastonite polytypes in the CaO-SiO2 system. Phys. Chem. Miner., 27 (2000), pp. 565-574,
CrossRef Google scholar
S. Milani, D. Comboni, P. Lotti, P. Fumagalli, L. Ziberna, J. Maurice, M. Hanfland, M. Merlini. Crystal structure evolution of CaSiO3 polymorphs at Earth’s mantle pressures. Minerals, 11 (2021), p. 652,
CrossRef Google scholar
V. Milesi, F. Guyot, F. Brunet, L. Richard, N. Recham, M. Benedetti, J. Dairou, A. Prinzhofer. Formation of CO2, H2 and condensed carbon from siderite dissolution in the 200–300°C range and at 50MPa. Geochim. Cosmochim. Acta, 154 (2015), pp. 201-211,
CrossRef Google scholar
R. Milke, W. Heinrich. Diffusion-controlled growth of wollastonite rims between quartz and calcite: comparison between nature and experiment. J. Metamorph. Geol., 20 (2002), pp. 467-480,
CrossRef Google scholar
M. Miura, S. Arai, T. Mizukami. Raman spectroscopy of hydrous inclusions in olivine and orthopyroxene in ophiolitic harzburgite: Implications for elementary processes in serpentinization. J. Mineral. Petrol. Sci., 106 (2011), pp. 91-96,
CrossRef Google scholar
Y. Mori, M. Shigeno, T. Nishiyama. Fluid-metapelite interaction in an ultramafic mélange: implications for mass transfer along the slab-mantle interface in subduction zones. Earth Planets Space, 66 (2014), p. 47,
CrossRef Google scholar
Y. Nakamura, T. Yoshino, M. Satish-Kumar. Pressure dependence of graphitization: implications for rapid recrystallization of carbonaceous material in a subduction zone. Contrib. Mineral. Petrol., 175 (2020), p. 32,
CrossRef Google scholar
T. Nakatani, M. Nakamura. Experimental constraints on the serpentinization rate of fore-arc peridotites: Implications for the upwelling condition of the slab-derived fluid. Geochem. Geophys. Geosystems, 17 (2016), pp. 3393-3419,
CrossRef Google scholar
A. Neubeck, D.T. Nguyen, G. Etiope. Low-temperature dunite hydration: evaluating CH4 and H2 production from H2O and CO2. Geofluids, 16 (2016), pp. 408-420,
CrossRef Google scholar
A.R. Oganov, C.W. Glass, S. Ono. High-pressure phases of CaCO3: Crystal structure prediction and experiment. Earth Planet. Sci. Lett., 241 (2006), pp. 95-103,
CrossRef Google scholar
Y. Ogasawara, M. Ohta, K. Fukasawa, I. Katayama, S. Maruyama. Diamond-bearing and diamond-free metacarbonate rocks from Kumdy-Kol in the Kokchetav Massif, northern Kazakhstan. Isl. Arc, 9 (2000), pp. 400-416,
CrossRef Google scholar
Y. Ohtomo, T. Kakegawa, A. Ishida, T. Nagase, M.T. Rosing. Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks. Nat. Geosci., 7 (2014), pp. 25-28,
CrossRef Google scholar
J.D. Pasteris, I.-M. Chou. Fluid-deposited graphitic inclusions in quartz: Comparison between KTB (German Continental Deep-Drilling) core samples and artificially reequilibrated natural inclusions. Geochim. Cosmochim. Acta, 62 (1998), pp. 109-122,
CrossRef Google scholar
J.D. Pasteris, B. Wopenka. Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life. Astrobiology, 3 (2003), pp. 727-738,
CrossRef Google scholar
Y. Peng, M. Mookherjee, A. Hermann, G. Manthilake, D. Mainprice. Anomalous elasticity of talc at high pressures: implications for subduction systems. Geosci. Front., 13 (2022), Article 101381,
CrossRef Google scholar
M. Perraki, A. Proyer, E. Mposkos, R. Kaindl, G. Hoinkes. Raman micro-spectroscopy on diamond, graphite and other carbon polymorphs from the ultrahigh-pressure metamorphic Kimi Complex of the Rhodope Metamorphic Province NE Greece. Earth Planet. Sci. Lett., 241 (2006), pp. 672-685,
CrossRef Google scholar
F. Piccoli, A. Vitale Brovarone, O. Beyssac, I. Martinez, J.J. Ague, C. Chaduteau. Carbonation by fluid–rock interactions at high-pressure conditions: Implications for carbon cycling in subduction zones. Earth Planet. Sci. Lett., 445 (2016), pp. 146-159,
CrossRef Google scholar
F. Piccoli, J. Hermann, T. Pettke, J.A.D. Connolly, E.D. Kempf, J.F. Vieira Duarte. Subducting serpentinites release reduced, not oxidized, aqueous fluids. Sci. Rep., 9 (2019), p. 19573,
CrossRef Google scholar
M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, R. Saito. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys., 9 (2007), pp. 1276-1290,
CrossRef Google scholar
T. Plank, C.H. Langmuir. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol., 145 (1998), pp. 325-394,
CrossRef Google scholar
T. Plank, C.E. Manning. Subducting carbon. Nature, 574 (2019), pp. 343-352,
CrossRef Google scholar
S. Poli, E. Franzolin, P. Fumagalli, A. Crottini. The transport of carbon and hydrogen in subducted oceanic crust: an experimental study to 5 GPa. Earth Planet. Sci. Lett., 278 (2009), pp. 350-360,
CrossRef Google scholar
F. Princivalle, A. De Min, D. Lenaz, M. Scarbolo, A. Zanetti. Ultramafic xenoliths from Damaping (Hannuoba region, NE-China): Petrogenetic implications from crystal chemistry of pyroxenes, olivine and Cr-spinel and trace element content of clinopyroxene. Lithos, 188 (2014), pp. 3-14,
CrossRef Google scholar
K. Sato, R. Saito, Y. Oyama, J. Jiang, L.G. Cançado, M.A. Pimenta, A. Jorio, Ge.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus. D-band Raman intensity of graphitic materials as a function of laser energy and crystallite size. Chem. Phys. Lett., 427 (2006), pp. 117-121,
CrossRef Google scholar
A. Schito, D.K. Muirhead, J. Parnell. Towards a kerogen-to-graphite kinetic model by means of Raman spectroscopy. Earth-Sci. Rev., 237 (2023), Article 104292,
CrossRef Google scholar
J. Schott, O.S. Pokrovsky, O. Spalla, F. Devreux, A. Gloter, J.A. Mielczarski. Formation, growth and transformation of leached layers during silicate minerals dissolution: the example of wollastonite. Geochim. Cosmochim. Acta, 98 (2012), pp. 259-281,
CrossRef Google scholar
Y. Seto, D. Nishio-Hamane, T. Nagai, N. Sata. Development of a Software suite on X-ray diffraction experiments. Rev. High Press. Sci. Technol., 20 (2010), pp. 269-276,
CrossRef Google scholar
S.K. Simakov. Metastable nanosized diamond formation from a C-H-O fluid system. J. Mater. Res., 25 (2010), pp. 2336-2340,
CrossRef Google scholar
S.K. Simakov. Nano- and micron-sized diamond genesis in nature: an overview. Geosci. Front., 9 (2018), pp. 1849-1858,
CrossRef Google scholar
T. Stachel, R.W. Luth. Diamond formation — where, when and how?. Lithos, 220–223 (2015), pp. 200-220,
CrossRef Google scholar
A. Steele, F.M. McCubbin, M.D. Fries, D.C. Golden, D.W. Ming, L.G. Benning. Graphite in the martian meteorite Allan Hills 84001. Am. Mineral., 97 (2012), pp. 1256-1259,
CrossRef Google scholar
E.M. Stewart, J.J. Ague, J.M. Ferry, C.M. Schiffries, R.-B. Tao, T.T. Isson, N.J. Planavsky. Carbonation and decarbonation reactions: Implications for planetary habitability. Am. Mineral., 104 (2019), pp. 1369-1380,
CrossRef Google scholar
D.A. Sverjensky, V. Stagno, F. Huang. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. Nat. Geosci., 7 (2014), pp. 909-913,
CrossRef Google scholar
V. Szlachta, K. Vlasov, H. Keppler. On the stability of acetate in subduction zone fluids. Geochem. Perspect. Lett., 21 (2022), pp. 28-31,
CrossRef Google scholar
S.B. Tanner, D.M. Kerrick, A.C. Lasaga. Experimental kinetic study of the reaction: calcite + quartz=wollastonite + carbon dioxide, from 1 to 3 kilobars and 500°C to 850°C. Am. J. Sci., 285 (1985), pp. 577-620,
CrossRef Google scholar
R. Tao, L. Zhang, M. Tian, J. Zhu, X. Liu, J. Liu, H.E. Höfer, V. Stagno, Y. Fei. Formation of abiotic hydrocarbon from reduction of carbonate in subduction zones: constraints from petrological observation and experimental simulation. Geochim. Cosmochim. Acta, 239 (2018), pp. 390-408,
CrossRef Google scholar
L. Toffolo, S. Tumiati, A. Villa, P. Fumagalli, A. Amalfa, F. Miozzi. Experimental dissolution of carbonaceous materials in water at 1 GPa and 550°C: assessing the role of carbon forms and redox state on COH fluid production and composition during forearc subduction of organic matter. Front. Earth Sci., 11 (2023), p. 1013014,
CrossRef Google scholar
S. Tumiati, C. Tiraboschi, D.A. Sverjensky, T. Pettke, S. Recchia, P. Ulmer, F. Miozzi, S. Poli. Silicate dissolution boosts the CO2 concentrations in subduction fluids. Nat. Commun., 8 (2017), p. 616,
CrossRef Google scholar
S. Tumiati, C. Tiraboschi, F. Miozzi, A. Vitale-Brovarone, C.E. Manning, D.A. Sverjensky, S. Milani, S. Poli. Dissolution susceptibility of glass-like carbon versus crystalline graphite in high-pressure aqueous fluids and implications for the behavior of organic matter in subduction zones. Geochim. Cosmochim. Acta, 273 (2020), pp. 383-402,
CrossRef Google scholar
M.A. Van Zuilen, A. Lepland, J. Teranes, J. Finarelli, M. Wahlen, G. Arrhenius. Graphite and carbonates in the 3.8 Ga old Isua Supracrustal Belt, southern West Greenland. Precambrian Res., 126 (2003), pp. 331-348,
CrossRef Google scholar
A. Vitale Brovarone, I. Martinez, A. Elmaleh, R. Compagnoni, C. Chaduteau, C. Ferraris, I. Esteve. Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps. Nat. Commun., 8 (2017), p. 14134,
CrossRef Google scholar
Y. Wang, D.C. Alsmeyer, R.L. McCreery. Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem. Mater., 2 (1990), pp. 557-563,
CrossRef Google scholar
C. Wang, R. Tao, J.B. Walters, H.E. Höfer, L. Zhang. Favorable P-T–ƒO2 conditions for abiotic CH4 production in subducted oceanic crusts: a comparison between CH4-bearing ultrahigh- and CO2-bearing high-pressure eclogite. Geochim. Cosmochim. Acta, 336 (2022), pp. 269-290,
CrossRef Google scholar
H.-R. Wenk. Polymorphism of wollastonite. Contrib. Mineral. Petrol., 22 (1969), pp. 238-247,
CrossRef Google scholar
B. Wopenka, J.D. Pasteris. Structural characterization of kerogens to granulite-facies gaphite: applicability of raman microprobe spectroscopy. Am. Mineral., 78 (1993), pp. 533-557
S. Yui. Decomposition of siderite to magnetite at lower oxygen fugacities: a thermochemical interpretation and geological implications. Econ. Geol., 61 (1966), pp. 768-776,
CrossRef Google scholar
J. Zhu, L. Zhang, R. Tao, Y. Fei. The formation of graphite-rich eclogite vein in S.W. Tianshan (China) and its implication for deep carbon cycling in subduction zone. Chem. Geol., 533 (2020), Article 119430,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/