Geochronological and genetic characterization of basaltic basement from western offshore basins in India

Piyush Gupta , Shakti Singh Rathore , Sandeep Singh

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101871

PDF
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101871 DOI: 10.1016/j.gsf.2024.101871

Geochronological and genetic characterization of basaltic basement from western offshore basins in India

Author information +
History +
PDF

Abstract

40Ar-39Ar geochronology, geochemistry, and Sr-Nd isotopic compositions of 30 core samples from 24 offshore drill wells in the Western offshore basins have been used to characterize the genetics of the volcanic basement from the Kutch, Mumbai, and Kerala-Konkan offshore basins. Findings from the volcanic basement rocks demonstrate extremely varied isotopic and geochemical fingerprints, which are suggestive of significantly diverse parent magma compositions and emplacement processes.

Keywords

40Ar-39Ar geochronology / Western offshore basins / Kutch offshore basin / Mumbai offshore basin / Kerala-Konkan offshore basin

Cite this article

Download citation ▾
Piyush Gupta, Shakti Singh Rathore, Sandeep Singh. Geochronological and genetic characterization of basaltic basement from western offshore basins in India. Geoscience Frontiers, 2024, 15(5): 101871 DOI:10.1016/j.gsf.2024.101871

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Piyush Gupta: Conceptualization, Formal analysis, Investigation, Writing – original draft, Writing – review & editing. Shakti Singh Rathore: Conceptualization, Data curation, Methodology, Supervision. Sandeep Singh: Conceptualization, Methodology, Project administration, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors thank the Director (Exploration), ONGC, Dehradun, for their kind permission to publish this paper. The views expressed in this paper are those of the authors and not necessarily that of the organization they represent. This work forms part of Piyush’s Ph.D. work. The authors are also thankful to IIT Roorkee for providing all administrative and other facilities for carrying out this work. Comments from five anonymous reviewers improved the initial manuscript.

References

[1]

S. Agrawal, M. Guevara, S.P. Verma. Tectonic discrimination of basic and ultrabasic volcanic rocks through log-transformed ratios of immobile trace elements. Int. Geol. Review, 50 (12) (2008), pp. 1057-1079,

[2]

C.J. Allègre, J.L. Birck, F. Capmas, V. Courtillot. Age of the Deccan traps using 187Re–187Os systematics. Earth Planet. Sci. Lett., 170 (3) (1999), pp. 197-204,

[3]

B. Ashalatha, C. Subrahmanyam, R.N. Singh. Origin and compensation of Chagos-Laccadive ridge, Indian Ocean, from admittance analysis of gravity and bathymetry data. Earth Planet. Sci. Lett., 105 (1–3) (1991), pp. 47-54,

[4]

M.G. Babechuk, M. Widdowson, B.S. Kamber. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chem. Geol., 363 (2014), pp. 56-75,

[5]

A.K. Baksi. Critical evaluation of the age of the Deccan Traps, India: implications for flood-basalt volcanism and faunal extinctions. Geology, 15 (2) (1987), pp. 147-150,

[6]

A.K. Baksi. Geochronological studies on whole-rock basalts, Deccan Traps, India: evaluation of the timing of volcanism relative to the KT boundary. Earth Planet. Sci. Lett., 121 (1–2) (1994), pp. 43-56,

[7]

Bastia, R., Radhakrishna, M. 2012. Basin evolution and petroleum prospectivity of the continental margins of India. Elsevier, Amsterdam, 432 p. https://doi.org/10.1016/c2009-0-30625-x.

[8]

D.N. Basu, A. Banerjee, D.M. Tamhane. Source areas and migration trends of oil and gas in Bombay offshore basin, India. AAPG Bull., 64 (2) (1980), pp. 209-220,

[9]

D.N. Basu, A. Banerjee, D.M. Tamhane. Facies distribution and petroleum geology of the Bombay offshore basin, India. J. Petrol. Geol., 5 (1) (1982), pp. 51-75,

[10]

A.R. Basu, A. Saha-Yannopoulos, P. Chakrabarty. A precise geochemical volcano-stratigraphy of the Deccan traps. Lithos, 376 (2020), Article 105754,

[11]

J.E. Beane, C.A. Turner, P.R. Hooper, K.V. Subbarao, J.N. Walsh. Stratigraphy, composition and form of the Deccan basalts, Western Ghats, India. Bull. Volcanol., 48 (1) (1986), pp. 61-83,

[12]

Bhattacharya, G.C., Chaubey, A.K. 2001. Western Indian Ocean–A Glimpse. The Indian Ocean: A Perspective, 2, 691.

[13]

M. Bisen, K. Sriram, S.S. Gupte. Structure and Tectonics of Deep-Water Kutch-Saurashtra area, Western India. In: 8th Bi. Int. Conf. & Expo. Petrol. Geophy. SPG India (2010), p. 244

[14]

S.K. Biswas. Rift basins in western margin of India and their hydrocarbon prospects with special reference to Kutch basin. AAPG Bull., 66 (10) (1982), pp. 1497-1513,

[15]

S.K. Biswas. Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics, 135 (4) (1987), pp. 307-327,

[16]

S.K. Biswas. A review of structure and tectonics of Kutch basin, western India, with special reference to earthquakes. Curr. Sci., 88 (10) (2005), pp. 1592-1600,

[17]

S.K. Biswas, N.K. Singh. Western continental margin of India and hydrocarbon potential of deep-sea basins. Proc. S. E. Asia Pet. Expl. Soc., 8 (1988), pp. 100-113

[18]

Cabanis, B., Lecolle, M., 1989. Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale. Comptes rendus de l'Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de la Terre 309 (20), 2023–2029 (in French).

[19]

D. Campanile, C.G. Nambiar, P. Bishop, M. Widdowson, R. Brown. Sedimentation record in the Konkan-Kerala Basin: implications for the evolution of the Western Ghats and the Western Indian passive margin. Basin Res., 20 (1) (2008), pp. 3-22,

[20]

C. Class, K. Lehnert. PetDB expert MORB (mid-ocean ridge basalt) compilation. EarthChem Lib. (2012), pp. pp. 1-2

[21]

J.S. Collier, V. Sansom, O. Ishizuka, R.N. Taylor, T.A. Minshull, R.B. Whitmarsh. Age of Seychelles-India break-up. Earth Planet. Sci. Lett., 272 (1–2) (2008), pp. 264-277,

[22]

V. Courtillot, J. Besse, D. Vandamme, R. Montigny, J.J. Jaeger, H. Cappetta. Deccan flood basalts at the Cretaceous/Tertiary boundary?. Earth Planet. Sci. Lett., 80 (3–4) (1986), pp. 361-374,

[23]

V. Courtillot, F. Fluteau, J. Besse. Evidence for volcanism triggering extinctions: a short history of IPGP contributions with emphasis on paleomagnetism. A. Schmidt, K. Fristad, L. Elkins-Tanton (Eds.), Volcanism and Global Environmental Change, Cambridge University Press (2015), pp. 228-243

[24]

C. Cucciniello, E.I. Demonterova, H. Sheth, K. Pande, A. Vijayan. 40Ar/39Ar geochronology and geochemistry of the Central Saurashtra mafic dyke swarm: insights into magmatic evolution, magma transport, and dyke-flow relationships in the northwestern Deccan Traps. Bull. Volcanol., 77 (5) (2015), pp. 1-19,

[25]

C. Cucciniello, H. Sheth, R.A. Duraiswami, W. Wegner, C. Koeberl, T. Das, V. Ghule. The Southeastern Saurashtra dyke swarm, Deccan Traps: magmatic evolution of a tholeiitic basalt–basaltic andesite–andesite–rhyolite suite. Lithos, 376 (2020), Article 105759

[26]

Das, K.C. 2013. Mesozoic Enigma in Kerala-Konkan Basin: An alternate explanation for deep water sub-basalt reflections. 10th Bi. Int. Conf. Expo. Kochi, pp. 1–7.

[27]

C.W. Devey, P.C. Lightfoot. Volcanological and tectonic control of stratigraphy and structure in the western Deccan Traps. Bull. Volcanol., 48 (4) (1986), pp. 195-207,

[28]

M.M. Dixit, N. Satya Vani, D. Sarkar, P. Khare, P.R. Reddy. Velocity inversion in the Lodhika area, Saurashtra peninsula, Western India. First Break, 18 (2000), pp. 499-504,

[29]

K.E. Donnelly, S.L. Goldstein, C.H. Langmuir, M. Spiegelman. Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth Planet. Sci. Lett., 226 (3–4) (2004), pp. 347-366

[30]

S.G. Driese. Pedogenic translocation of Fe in modern and ancient vertisols and implications for interpretations of the Hekpoort paleosol (2.25 Ga). J. Geol., 112 (2004), pp. 543-560,

[31]

R.A. Duncan, J. Backman, L.C. Peterson. The volcanic record of the Réunion hotspot. Proc. Ocean Drill. Prog., Sci. Res., 115 (1990), pp. 3-10,

[32]

R.A. Duncan, R.B. Hargraves. 40Ar/39Ar geochronology of basement rocks from the Mascarene Plateau, the Chagos Bank, and the Maldives Ridge. Proc. Ocean Drill. Prog., Sci. Res., 115 (1990), pp. 43-51,

[33]

R.A. Duncan, D.G. Pyle. Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary. Nature, 333 (6176) (1988), pp. 841-843,

[34]

J. DymeNt, J. Lin, E.T. Baker. Ridge-hotspot interactions: What mid-ocean ridges tell us about deep Earth processes. Oceanography, 20 (1) (2007), pp. 102-115,

[35]

M.R. Fisk, B.G.J. Upton, C.E. Ford, W.M. White. Geochemical and experimental study of the genesis of magmas of Réunion Island, Indian Ocean. J. Geophy. Res. Solid Earth, 93 (B5) (1988), pp. 4933-4950,

[36]

M.R. Fisk, R.A. Duncan, A.N. Baxter, J.D. Greenough, R.B. Hargraves, Y. Tatsumi. Réunion hotspot magma chemistry over the past 65 my: Results from Leg 115 of the Ocean Drilling Program. Geology, 17 (10) (1989), pp. 934-937,

[37]

J.G. Fitton. The OIB paradox. Spec. Papers – Geol. Soc. Amer., 430 (2007), p. 387,

[38]

J.G. Fitton, A.D. Saunders, M.J. Norry, B.S. Hardarson, R.N. Taylor. Thermal and chemical structure of the Iceland plume. Earth Planet. Sci. Lett., 153 (3–4) (1997), pp. 197-208

[39]

Goswami, B.G., Singh, H., Bhatnagar, A.K., Sinha, A.K., Singh, R.R. 2007. Petroleum systems of the Mumbai offshore basin, India. AAPG ann. Conv., Long Beach, California, 1 (4).

[40]

A.W. Hofmann. Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. Treatise Geochem., 2 (2003), p. 568,

[41]

C. Hofmann, G. Feraud, V. Courtillot. 40Ar/39Ar dating of mineral separates and whole rocks from the Western Ghats lava pile: further constraints on duration and age of the Deccan traps. Earth Planet. Sci. Lett., 180 (1–2) (2000), pp. 13-27,

[42]

K. Hollocher, P. Robinson, E. Walsh, D. Roberts. Geochemistry of amphibolite-facies volcanics and gabbros of the Støren Nappe in extensions west and southwest of Trondheim, Western Gneiss Region, Norway: A key to correlations and paleotectonic settings. Am. J. Sci., 312 (4) (2012), pp. 357-416

[43]

S. Ingle, D. Weis, S. Doucet, N. Mattielli, Ma. Hf isotope constraints on mantle sources and shallow-level contaminants during Kerguelen hot spot activity since∼. Geochem. Geophys. Geosyst., 4 (8) (2003), p. 1068,

[44]

J.J. Jaeger, V. Courtillot, P. Tapponnier. Paleontological view of the ages of the Deccan Traps, the Cretaceous/Tertiary boundary, and the India-Asia collision. Geology, 17 (4) (1989), pp. 316-319,

[45]

S. Joseph, C.G. Nambiar. Alkaline nature and taphrogenetic affinity of felsic volcanic rocks of St. Mary Islands, off Mangalore coast. Curr. Sci., 70 (9) (1996), pp. 858-860

[46]

I. Kaneoka. 40Ar/39Ar dating on volcanic rocks of the Deccan Traps, India. Earth Planet. Sci. Lett., 46 (2) (1980), pp. 233-243,

[47]

N.R. Karmalkar, M.G. Kale, R.A. Duraiswami, M. Jonalgadda. Magma underplating and storage in the crust-building process beneath the Kutch region, NW India. Curr. Sci. (2008), pp. 1582-1588

[48]

N.R. Karmalkar, R.A. Duraiswami, M.K. Jonnalagadda, W.L. Griffin. Mid-Cretaceous lamproite from the Kutch region, Gujarat, India: Genesis and tectonic implications. Gondwana Res., 26 (3–4) (2014), pp. 942-956

[49]

R. Kretz. Symbols for rock-forming minerals. Am. Mineral., 68 (1–2) (1983), pp. 277-279

[50]

P. Kumar, A.K. Chaubey. Extension of flood basalt on the northwestern continental margin of India. J. Earth Syst. Sci., 128 (4) (2019), pp. 1-14,

[51]

M.J. Le Bas, R.L. Maitre, A. Streckeisen, B. Zanettin, IUGS Subcommission on the Systematics of Igneous Rocks. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol., 27 (3) (1986), pp. 745-750,

[52]

J.J. Mahoney, J.H. Natland, W.M. White, R. Poreda, S.H. Bloomer, R.L. Fisher, A.N. Baxter. Isotopic and geochemical provinces of the western Indian Ocean spreading centers. J. Geophy. Res. Solid Earth, 94 (B4) (1989), pp. 4033-4052,

[53]

J.J. Mahoney, R.A. Duncan, W. Khan, E. Gnos, G.R. McCormick. Cretaceous volcanic rocks of the South Tethyan suture zone, Pakistan: implications for the Réunion hotspot and Deccan Traps. Earth Planet. Sci. Lett., 203 (1) (2002), pp. 295-310,

[54]

R.B. Mathur, K.M. Nair. Exploration of Bombay OffshoreBasin. S.K. Biswas, A. Dave, P. Garg, J. Pandey, A. Maithani, N.J. Thomas (Eds.), Proceedings of the Second Seminar on Petroliferous Basins of India. Indian Petroleum Publishers (1993), pp. 365-396

[55]

W.F. McDonough, S.S. Sun. The composition of the earth. Chem. Geol., 120 (3–4) (1995), pp. 223-253,

[56]

S.A. Merkouriev, N.A. Sotchevanova. Structure and evolution of the Carlsberg Ridge: Evidence for non-stationary spreading on old and modern spreading centres. Curr. Sci., 85 (3) (2003), pp. 334-338

[57]

M. Meschede. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb, 1bZr, 1bY diagram. Chem. Geol., 56 (3–4) (1986), pp. 207-218,

[58]

Morgan, W.J. 1981. 13. Hotspot tracks and the opening of the Atlantic and Indian Oceans. Ocean. Lithosph. 7, 443.

[59]

Murali, A.V., Schuraytz, B.C., Parekh, P.P. 1988. Deccan volcanism and KT boundary signatures. In: Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts. Volcanism and Mass Mortality 673, 128.

[60]

Naini, B.R., Talwani, M. 1982. Structural framework and the evolutionary history of the continental margin of Western India: rifted margins: field investigations of margin structure and stratigraphy. In: Watkins, J.S., Drake, C.L. (Eds.), Studies in Continental Margin Geology. AAPG Mem, pp. 167-191. https://doi.org/10.1306/M34430C9.

[61]

H.W. Nesbitt, R.E. Wilson. Recent chemical weathering of basalts. Am. J. Sci., 292 (10) (1992), pp. 740-777,

[62]

H.W. Nesbitt, G.M. Young. Formation and diagenesis of weathering profiles. J. Geol., 97 (2) (1989), pp. 129-147,

[63]

I.O. Norton, J.G. Sclater. A model for the evolution of the Indian Ocean and the breakup of Gondwanaland. J. Geophy. Res. Solid Earth, 84 (B12) (1979), pp. 6803-6830,

[64]

T. Ohta, H. Arai. Statistical empirical index of chemical weathering in igneous rocks: A new tool for evaluating the degree of weathering. Chem. Geol., 240 (3–4) (2007), pp. 280-297,

[65]

K. Pande, T.R. Venkatesan, K. Gopalan, P. Krishnamurthy, J.D. Macdougall. 40Ar-39Ar ages of alkali basalts from Kutch, Deccan volcanic province, India. Mem. Geol. Soc. India, 10 (1988), pp. 145-150

[66]

K. Pande, H.C. Sheth, R. Bhutani. 40Ar–39Ar age of the St. Mary’s Islands volcanics, southern India: Record of India-Madagascar break-up on the Indian subcontinent. Earth Planet. Sci. Lett., 193 (1–2) (2001), pp. 39-46,

[67]

K. Pande, V. Yatheesh, H. Sheth. 40Ar/39Ar dating of the Mumbai tholeiites and Panvel flexure: Intense 62.5 Ma onshore–offshore Deccan magmatism during India-Laxmi Ridge-Seychelles breakup. Geophys. J. Int., 210 (2) (2017), pp. 1160-1170,

[68]

Pandey, J., Dave, A. 1998. Stratigraphy of Indian petroliferous basins. National Inst. Oceanography.

[69]

D.K. Pandey, S. Rajan, A. Pandey. Seismic imaging of Paleogene sediments of Kachchh Shelf (western Indian margin) and their correlation with sea-level fluctuations. Marine Pet. Geol., 27 (6) (2010), pp. 1166-1174,

[70]

D.K. Pandey, A. Pandey, S.A. Whattam. Relict subduction initiation along a passive margin in the northwest Indian Ocean. Nat. Commun., 10 (2019), p. 2248,

[71]

G. Parida, Y.K. Mishra. A late Paleocene-early Eocene fan delta in Bombay offshore basin. ONGC Bull., 29 (2) (1992)

[72]

D.K. Paul, A. Ray, B. Das, S.K. Patil, S.K. Biswas. Petrology, geochemistry and paleomagnetism of the earliest magmatic rocks of Deccan Volcanic Province, Kutch, Northwest India. Lithos, 102 (1–2) (2008), pp. 237-259,

[73]

J.A. Pearce. A user’s guide to basalt discrimination diagrams. Trace element geochemistry of volcanic rocks: Applications for massive sulphide exploration. Geol. Assoc. Canada, Short Course Notes, 12 (79) (1996), p. 113

[74]

J.A. Pearce. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100 (1–4) (2008), pp. 14-48,

[75]

J.A. Pearce, J.R. Cann. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet. Sci. Let., 19 (2) (1973), pp. 290-300,

[76]

J.A. Pearce, M.J. Norry. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib. Mineral. Pet., 69 (1) (1979), pp. 33-47,

[77]

J.A. Pearce, D.W. Peate. Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci., 23 (1995), pp. 251-286,

[78]

Z.X. Peng, J. Mahoney, P. Hooper, C. Harris, J. Beane. A role for lower continental crust in flood basalt genesis? Isotopic and incompatible element study of the lower six formations of the western Deccan Traps. Geochim. Cosmochim. Acta, 58 (1) (1994), pp. 267-288,

[79]

Z.X. Peng, J.J. Mahoney. Drillhole lavas from the northwestern Deccan Traps, and the evolution of Réunion hotspot mantle. Earth Planet. Sci. Lett., 134 (1–2) (1995), pp. 169-185,

[80]

M.R. Perfit, D.J. Fornari, M.C. Smith, J.F. Bender, C.H. Langmuir, R.M. Haymon. Small-scale spatial and temporal variations in mid-ocean ridge crest magmatic processes. Geology, 22 (4) (1994), pp. 375-379,

[81]

U. Raval, K. Veeraswamy. India-Madagascar separation: breakup along a pre-existing mobile belt and chipping of the craton. Gond. Res., 6 (3) (2003), pp. 467-485,

[82]

D. Ray, S. Misra, M. Widdowson, C.H. Langmuir. A common parentage for Deccan continental flood basalt and Central Indian Ocean Ridge basalt? A geochemical and isotopic approach. J. Asian Earth Sci., 84 (2014), pp. 188-200,

[83]

A. Ray, S.K. Patil, D.K. Paul, S.K. Biswas, B. Das, N.C. Pant. Petrology, geochemistry and magnetic properties of Sadara sill: Evidence of rift related magmatism from Kutch basin, northwest India. J. Asian Earth Sci., 27 (6) (2006), pp. 907-921,

[84]

P.R. Renne, C.J. Sprain, M.A. Richards, S. Self, L. Vanderkluysen, K. Pande. State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact. Science, 350 (6256) (2015), pp. 76-78,

[85]

M.A. Richards, R.A. Duncan, V.E. Courtillot. Flood basalts and hot-spot tracks: Plume heads and tails. Science, 246 (4926) (1989), pp. 103-107,

[86]

M.A. Richards, W. Alvarez, S. Self, L. Karlstrom, P.R. Renne, M. Manga, C.J. Sprain, J. Smit, L. Vanderkluysen, S.A. Gibson. Triggering of the largest Deccan eruptions by the Chicxulub impact. GSA Bull., 127 (11–12) (2015), pp. 1507-1520,

[87]

S.C. Roychoudhury, S.V. Deshpande. Regional distribution of carbonate facies, Bombay offshore region, India. AAPG Bull., 66 (10) (1982), pp. 1483-1496,

[88]

J.Y. Royer, J.G. Sclater, D.T. Sandwell. A preliminary tectonic fabric chart of the Indian Ocean. Proc. Ind. Acad. Sci. – Earth Planet. Sci., 98 (1) (1989), pp. 7-24,

[89]

B. Sahay. Geology of Bombay high and adjoining structures. Off. S. E. Asia Conf. (1978), pp. 80-99

[90]

S. Schöbel, H. de Wall, M. Ganerød, M.K. Pandit, C. Rolf. Magnetostratigraphy and 40Ar–39Ar geochronology of the Malwa Plateau region (Northern Deccan Traps), central western India: Significance and correlation with the main Deccan Large Igneous Province sequences. J. Asian Earth Sci., 89 (2014), pp. 28-45,

[91]

B. Schoene, M.P. Eddy, K.M. Samperton, C.B. Keller, G. Keller, T. Adatte, S.F. Khadri. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science, 363 (6429) (2019), pp. 862-866,

[92]

G. Sen, M. Bizimis, R. Das, D.K. Paul, A. Ray, S. Biswas. Deccan plume, lithosphere rifting, and volcanism in Kutch, India. Earth Planet. Sci. Lett., 277 (1–2) (2009), pp. 101-111,

[93]

G. Sen, W.E. Hames, D.K. Paul, S.K. Biswas, A. Ray, I.S. Sen. Pre-Deccan and Deccan magmatism in Kutch, India: implications of new 40Ar/39Ar ages of intrusions. Spec. Publ. J. Geol. Soc. India, 6 (2016), pp. 211-222, 10.17491/cgsi/2016/105422

[94]

S. Sen, A. Kundan, V. Kalpande, M. Kumar. The present-day state of tectonic stress in the offshore Kutch-Saurashtra Basin, India. Marine Petrol. Geol., 102 (2019), pp. 751-758,

[95]

R.B. Senapati, N.K. Singh, A. Kumar, C.L. Tikku. Hydrocarbon prospect of Patan area, Patan-Sanchar Block, North Cambay basin India, India. ONGC Bull., 30 (2) (1993)

[96]

H.C. Sheth, R.A. Duncan, D. Chandrasekharam, J.J. Mahoney. Deccan Trap dioritic gabbros from the western Satpura-Tapi region. Curr. Sci., 72 (10) (1997), pp. 755-757

[97]

H.C. Sheth, K. Pande, R. Bhutani. 40Ar-39Ar ages of Bombay trachytes: Evidence for a Palaeocene phase of Deccan volcanism. Geophys. Res. Lett., 28 (18) (2001), pp. 3513-3516,

[98]

H.C. Sheth, J.J. Mahoney, A.N. Baxter. Geochemistry of lavas from Mauritius, Indian Ocean: Mantle sources and petrogenesis. Int. Geol. Rev., 45 (9) (2003), pp. 780-797,

[99]

K. Shimizu, A.E. Saal, C.E. Myers, A.N. Nagle, E.H. Hauri, D.W. Forsyth, V.S. Kamenetsky, Y. Niu. Two-component mantle melting-mixing model for the generation of mid-ocean ridge basalts: Implications for the volatile content of the Pacific upper mantle. Geochim. Cosmochim. Acta, 176 (2016), pp. 44-80

[100]

J.P. Shrivastava, R.A. Duncan, M. Kashyap. Post-K/PB younger 40Ar–39Ar ages of the Mandla lavas: Implications for the duration of the Deccan volcanism. Lithos, 224 (2015), pp. 214-224,

[101]

A.D. Shukla, N. Bhandari, S. Kusumgar, P.N. Shukla, Z.G. Ghevariya, K. Gopalan, V. Balaram. Geochemistry and magnetostratigraphy of Deccan flows at Anjar, Kutch. J. Earth Syst. Sci., 110 (2) (2001), pp. 111-132,

[102]

A. Siawal, P.P. Dash, P.K. Saha. Architecture of Mesozoics of Kutch-Saurashtra, Western India. ONGC Bull., 55 (1) (2020), pp. 79-90

[103]

N.K. Singh, N.K. Lal. Geology and petroleum prospects of Konkan-Kerala basin. S.K. Biswas (Ed.), Proc. 2nd Sem. Petroli. Basins India, 2, Ind. Pet. Pub., Dehra Dun, India (1993), pp. 461-469

[104]

K. Singh, M. Radhakrishna, A.P. Pant. Geophysical structure of western offshore Basins of India and its implications to the evolution of the western Ghats. J. Geol. Soc. Ind., 70 (3) (2007), pp. 445-458

[105]

M. Storey, J.J. Mahoney, A.D. Saunders, R.A. Duncan, S.P. Kelley, M.F. Coffin. Timing of hot spot—related volcanism and the breakup of Madagascar and India. Science, 267 (5199) (1995), pp. 852-855,

[106]

K.R. Subrahmanya. Tectono-magmatic evolution of the west coast of India. Gond. Res., 1 (3–4) (1998), pp. 319-327,

[107]

S.S. Sun, W.F. McDonough. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc., London, Spec. Pub., 42 (1) (1989), pp. 313-345,

[108]

T.H. Torsvik, R.D. Tucker, L.D. Ashwal, E.A. Eide, N.A. Rakotosolofo, M.J. De Wit. Late Cretaceous magmatism in Madagascar: palaeomagnetic evidence for a stationary Marion hotspot. Earth Planet. Sci. Lett., 164 (1–2) (1998), pp. 221-232,

[109]

T.H. Torsvik, H. Amundsen, E.H. Hartz, F. Corfu, N. Kusznir, C. Gaina, P.V. Doubrovine, B. Steinberger, L.D. Ashwal, B. Jamtveit. A Precambrian microcontinent in the Indian Ocean. Nat. Geosci., 6 (3) (2013), pp. 223-227,

[110]

D. Vandamme, V. Courtillot, J. Besse, R. Montigny. Paleomagnetism and age determinations of the Deccan Traps (India): Results of a Nagpur-Bombay Traverse and review of earlier work. Rev. Geophy., 29 (2) (1991), pp. 159-190,

[111]

T.R. Venkatesan, K. Pande. A review of 40Ar-39Ar Ages from the Western Ghats, Deccan Trap Province, India: Implication for K/T events. Gond. Geol. Mag., 2 (1996), pp. 321-328

[112]

T.R. Venkatesan, K. Pande, K. Gopalan. Did Deccan volcanism pre-date the Cretaceous/Tertiary transition?. Earth Planet. Sci. Lett., 119 (1–2) (1993), pp. 181-189,

[113]

T.R. Venkatesan, K. Pande, Z.G. Ghevaria. 40Ar-39Ar ages of Anjar Traps, Western Deccan Province (India) and its relation to the Cretaceous/Tertiary Boundary events. Curr. Sci. (1996), pp. 990-996

[114]

W.M. White, E.M. Klein. Composition of the oceanic crust. Treatise on Geochemistry (Second. Edition), 4 (2014), pp. 457-496

[115]

White, W.M., Cheatham, M.M., Duncan, R.A. 1990. Isotope geochemistry of Leg 115 basalts and inferences on the history of the Réunion mantle plume. Proc. Ocean Drill. Prog. Sci. Res. DOI: 115.10.2973/odp.proc.sr.115.131.1990.

[116]

M. Widdowson, M.S. Pringle, O.A. Fernandez. A post K-T boundary (Early Palaeocene) age for Deccan-type feeder dykes, Goa, India. J. Petrol., 41 (7) (2000), pp. 1177-1194,

[117]

M. Wilson. . Igneous Petrogenesis, Springer Netherlands, Dordrecht (1989), pp. 466-pp

[118]

J.A. Winchester, P.A. Floyd. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol., 20 (1977), pp. 325-343,

[119]

D.A. Wood. The application of a ThHfTa diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth Planet. Sci. Lett., 50 (1) (1980), pp. 11-30,

[120]

V. Yatheesh. Structure and tectonics of the continental margins of India and the adjacent deep ocean basins: current status of knowledge and some unresolved problems. Episodes J. Int. Geosci., 43 (1) (2020), pp. 586-608, 10.18814/epiiugs/2020/020039

[121]

G.M. Young. Secular changes at the Earth's surface: evidence from palaeosols, some sedimentary rocks, and palaeoclimatic perturbations of the Proterozoic Eon. Gondwana Res., 24 (2013), pp. 453-467,

[122]

Zutshi, P.L., Mittal, S.K., Shah, L. 1993. Lithostratigraphy of Indian Petroliferous Basins - Document IV: Kutch - Saurashtra Basin, Unpub. ONGC document.

AI Summary AI Mindmap
PDF

325

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/