Lithium: A review of applications, occurrence, exploration, extraction, recycling, analysis, and environmental impact

V. Balaram , M. Santosh , M. Satyanarayanan , N. Srinivas , Harish Gupta

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101868

PDF
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101868 DOI: 10.1016/j.gsf.2024.101868

Lithium: A review of applications, occurrence, exploration, extraction, recycling, analysis, and environmental impact

Author information +
History +
PDF

Abstract

The energy transition challenges faced by modern civilization have significantly enhanced the demand for critical metals like lithium resulting in improved methods to explore, extract, and utilize these metals. In this comprehensive review, we discuss the different types of lithium resources, factors, and mechanisms controlling lithium enrichment in various geological settings including terrestrial and marine environments. Diverse exploration strategies including geological, geophysical, mineralogical, geochemical, and remote sensing techniques including drone-based techniques for lithium exploration studies in different terranes are summarized. An overview of the mining techniques, including beneficiation and extraction, and their principles, mechanisms, operations, and comparison of the various approaches and compatibility with different types of lithium deposits for obtaining maximum yield are evaluated. Lithium isotopic studies are useful in understanding geological processes such as past weathering events and riverine input into the oceans, as well as in understanding the source of lithium in diverse types of deposits. We also highlight the recent developments in other areas such as recycling, environmental impact, and state-of-the-art analytical techniques for determining lithium in different lithium ore deposits and other geological materials. Our overview provides the latest developments and insights in the various sectors related to lithium and prompt further developments to meet the growing demand for this valuable metal as the world transforms to clean energy.

Keywords

Lithium minerals / Pegmatite / Lithium brine deposits / Lithium sedimentary deposits / Exploration techniques

Cite this article

Download citation ▾
V. Balaram, M. Santosh, M. Satyanarayanan, N. Srinivas, Harish Gupta. Lithium: A review of applications, occurrence, exploration, extraction, recycling, analysis, and environmental impact. Geoscience Frontiers, 2024, 15(5): 101868 DOI:10.1016/j.gsf.2024.101868

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

V. Balaram: Writing – review & editing, Writing – original draft, Visualization, Data curation, Conceptualization. M. Santosh: Writing – original draft, Data curation. M. Satyanarayanan: Writing – original draft, Data curation. N. Srinivas: Writing – original draft, Data curation. Harish Gupta: Writing – original draft, Data curation.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Dr. V. Balaram and Dr. M. Satyanarayanan would like to acknowledge the support of Dr. Prakash Kumar, Director, CSIR-National Geophysical Research, Hyderabad, India. Prof. N. Srinivas acknowledges the support and encouragement from the Vice-Chancellor of GITAM University, Visakhapatnam, India. Prof. Harish Gupta thanks the Vice-Chancellor, Osmania University, Hyderabad, India. We thank the handling editor and two anonymous referees for their constructive comments.

References

[1]

M. Adeel, M. Zain, N. Shakoor, M.A. Ahmad, I. Azeem, M.A. Aziz, R.X.S. Tulcan, A. Rathore, M. Tahir, R. Horton, M. Xu, Y.K. Rui. Global navigation of Lithium in water bodies and emerging human health crisis. Npj Clean Water, 6 (2023), p. 33,

[2]

S. Afroze, M.S. Reza, K. Kuterbekov, A. Kabyshev, M.M. Kubenova, K.Z. Bekmyrza, A.K. Azad. Emerging and recycling of Li-ion batteries to aid in energy storage, a review. Recycling, 8 (2023), p. 48,

[3]

M.F. Alhadad, H.C. Oskierski, J. Chischi, G. Senanayake, B. Schulz, A.A. Suvorova, S.E.M. Gain, B.Z. Dlugogorski. Pressure leach of β-spodumene with carbonic acid: Weak acid process for extraction of lithium. Min. Engineer., 204 (2023), pp. 1-17,

[4]

J. Al-Jawad, J. Ford, E. Petavratzi, A. Hughes. Understanding the spatial variation in lithium concentration of high Andean Salars using diagnostic factors. Sci. Total Environ., 906 (2024), Article 167647,

[5]

R.N. Alonso, C. Helvacı, R.J. Sureda, J.G. Viramonte. A New Tertiary borax deposit in the Andes. Miner. Deposit., 23 (1988), pp. 299-305

[6]

A. Alsabbagh, S. Aljarrah, M. Almahasneh. Lithium enrichment optimization from Dead Sea end brine by chemical precipitation technique. Minerals Engineering, 170 (2021), Article 107038,

[7]

N.S. Amalian, W. Warmada, F. Anggara. Potensi Pengayaan Litium pada Lumpur Hasil Mud Volcanoes Lapindo Brantas, Gunung Anyar, dan Buncitan, Kabupaten Sidoarjo. Universitas Gadjah Mada, Provinsi Jawa Timur. (2020)

[8]

F.Y. An, X.Y. Zhang, X.L. Cheng, Z.Y. Ma, Y. Geng, J.Y. Li. The Spatial-temporal variation of weathering and migration of salt forming elements in potassium-rich granites of Golmud River catchment. Acta Petrologica Et Mineralogica, 40 (1) (2021), pp. 14-26

[9]

H. Aral, A. Vecchio-Sadus. Toxicity of lithium to humans and the environment—A literature review. Ecotoxicol. Environ. Safety, 70 (2008), pp. 349-356,

[10]

I. Arienzo, M. Liotta, L. Brusca, M. D’Antonio, F. Lupone, C. Cucciniello. Analytical method for Lithium isotopes determination by Thermal Ionization Mass Spectrometry: A useful tool for hydrogeochemical applications. Water, 12 (2020), p. 2182,

[11]

AWWA, 2022. Lithium in drinking water comparison of exposure sources, regulatory guidelines and public discussion of risks and benefit American Water Works Association. 1-15.

[12]

B. Ayling, P. Rose, S. Petty, E. Zemach, P. Drakos. QEMSCAN® (quantitative evaluation of minerals by scanning electron microscopy): capability and application to fracture characterization in geothermal systems. Proc., Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, SGP-TR-194 (2012)

[13]

S.L. Badea, V.C. Niculescu, A.M. Iordache. New trends in separation techniques of Lithium isotopes: A review of chemical separation methods. Materials, 16 (2023), p. 3817,

[14]

V. Balaram. Microwave dissolution techniques for the analysis of geological materials by ICP-MS. Cur. Sci., 73 (1997), pp. 1019-1023

[15]

V. Balaram. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front., 10 (4) (2019), pp. 1285-1303,

[16]

V. Balaram. Microwave Plasma Atomic Emission Spectrometry (MP-AES) and its applications -A critical review. Microchem. J., 159 (2020), p. 18,

[17]

V. Balaram, T.G. Rao. Rapid determination of REE and other trace elements in geological samples by microwave acid digestion and ICP-MS. At. Spectrosc., 24 (6) (2003), pp. 206-212, 10.46770/AS.2003.06.004

[18]

V. Balaram, M. Satyanarayanan. Data quality in geochemical elemental and isotopic analysis. Minerals, 12 (2022), p. 999,

[19]

V. Balaram, K.S.V. Subramanyam. Sample preparation for geochemical analysis: Strategies and significance. Adv. Samp. Prep., 1 (2022), Article 100010,

[20]

V. Balaram, S.S. Sawant. Indicator minerals, pathfinder elements, and portable analytical instruments in mineral exploration studies. Minerals, 12 (2022), p. 394,

[21]

B. Baraj, L.F.H. Niencheski, R.D. Trapaga, R.G. França, V. Valbona Cocoli, D. Robinson. Study of interference in the flame atomic absorption spectrometric determination of lithium by using factorial design. Fresenius J. Anal. Chem., 364 (1999), pp. 678-681

[22]

Z.P. Barber, A. Trench, D.I. Groves. Recent pegmatite-hosted spodumene discoveries in Western Australia: insights for lithium exploration in Australia and globally. Appl. Earth Sci., 131 (2) (2022), pp. 100-113,

[23]

H. Barbosa, A.M.V.M. Soares, E. Pereira, R. Freitas. Lithium: A review on concentrations and impacts in marine and coastal systems. Sci. Total Environ., 857 (2023), Article 159374,

[24]

R. Barros. Petrogenesis of the Leinster LCT (Li-Cs-Ta) pegmatite belt in southeast Ireland. PhD Thesis. University College Dublin, Ireland (2017), p. 287

[25]

P. Beck, M. Chaussidon, J.A. Barrat, P. Gillet, M. Bohn. Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: the case of pyroxene phenocrysts from nakhlite meteorites. Geochim. Cosmochim. Acta, 70 (2006), pp. 4813-4825

[26]

A. Belgibayeva, A. Rakhmetova, M. Rakhatkyzy, M. Kairova, I. Mukushev, N. Issatayev, G. Kalimuldina, A. Nurpeissova, Y.K. Sun, Z. Bakenov. Lithium-ion batteries for low-temperature applications: Limiting factors and solutions. Journal of Power Sources, 557 (2023), Article 232550,

[27]

D.R. Bell, R.L. Hervig, P.R. Buseck, S. Aulbach. Lithium isotope analysis of olivine by SIMS: Calibration of a matrix effect and application to magmatic phenocrysts. Chem. Geol., 258 (1–2) (2008), pp. 5-16,

[28]

T.R. Benson, M.A. Coble, J.H. Dilles. Hydrothermal enrichment of lithium in intracaldera illite-bearing claystones. Sci. Adv., 9 (2023), p. eadh8183

[29]

K. Berlo, V.V. Hinsberg, R. Lauzeral, F. Zwillich, F. Gonzalez. The analysis of volcanic brines by freezing stage tandem LIBS-ICP-MS. Chem. Geol., 603 (2022), Article 120910,

[30]

J. Bigeleisen, Mayer. Calculation of equilibrium constants for isotopic exchange reactions. J. Chem. Phys., 15 (1947), pp. 261-267,

[31]

K. Blutstein. Potential extraterrestrial sources of lithium. Geol. Quarterly, 65 (4) (2021), pp. 195-203,

[32]

A. Bobst, T.K. Lowenstein, T. Jordan, L.V. Godfrey, T.-L. Ku, S.D. Luo. A 106 ka paleoclimate record from the Salar de Atacama, northern Chile. Palaeogeo. Palaeoclimatol. Palaeoecol., 173 (1–2) (2001), pp. 21-42,

[33]

N. Bolan, A.S. Hoang, M. Tanveer, et al.. From mine to mind and mobiles – Lithium contamination and its risk management. Environmental Pollution, 290 (18) (2021), Article 118067,

[34]

Bolewski, A., Blaschke, W., Blaschke, Z., Pawlikowski, S., Smakowski, T., Wutcen, E., Żabiński ,W., 1976. Minerals of the world Al-Be-Li-Mg, Lit (Surowce mineralne świata Al-Be-Li-Mg, Lit). Warszawa, Wyd. Geol., pp. 225–271 (in Polish).

[35]

C. Bouman, T. Elliott, P.Z. Vroon. Lithium inputs to subduction zones. Chem. Geol., 212 (1–2) (2004), pp. 59-79,

[36]

W. Bourcier, M. Lin, G. Nix. Recovery of Minerals and Metals from Geothermal Fluids. Lawrence Livermore National Laboratory, Livermore, CA, USA (2003), p. 18

[37]

R.J. Bowell, L. Lagos, C.R. delos Hoyos, J. Declercq. Classification and characteristics of natural lithium resources. Elements, 16 (2020), pp. 259-264,

[38]

P. Braga, S. França, R. Neumann, M. Rodriguez, G. Rosales. Alkaline Process for Extracting Lithium from Spodumene. Hydroprocess 2019–11th Internat. Seminar Process Hydrometallurgy (2019), pp. 1-11

[39]

H. Brandl, M.A. Faramarzi. Microbe-metal-interactions for the biotechnological treatment of metal-containing solid waste. China Particuol., 4 (2) (2006), pp. 93-97

[40]

Brinkmann, P., 2022. NASA expands research into mining lunar ice, minerals to sustain humans on the moon. https://www.upi.com/Science_News/2022/03/07/NASA-lunar-mining-Artemis/7281646426839/ [Accessed 25 September 2023].

[41]

M. Broadley, J. Gines, O. Rhind, A. Baines. Future Energy: Imaging hidden lithium-rich brines with satellite imagery. 84th EAGE Annual Conference & Exhibition (2023), pp. 1-5,

[42]

K. Broberg, G. Concha, K. Engström, M. Lindvall, M. Grandér, M. Vahter. Lithium in drinking water and thyroid function. Environ Health Perspect., 119 (6) (2011), pp. 827-830

[43]

M. Brondi, M.D. Aglio, F. Vitrani. Lithium as a pathfinder element in the large scale hydrogeochemical exploration for hydrothermal systems. Geothermics, 2 (3–4) (1973), pp. 142-153

[44]

R.J. Brumbaugh, W.E. Fanus. Determination of lithium in spodumene by flame photometry. Anal. Chem., 26 (3) (1954), pp. 463-465,

[45]

E.N. Cameron, R.H. Jahns, A.H. McNair, L.R. Page. Internal structure of granitic pegmatites. Economic Geology Monograph, 2 (1949), p. 115

[46]

H.W. Cao, Q.M. Pei, M. Santosh, G.M. Li, L.K. Zhang, X.F. Zhang, Y.H. Zhang, H. Zou, Z.W. Dai, B. Lin, L. Tang, X. Yu. Himalayan leucogranites: A review of geochemical and isotopic characteristics, timing of formation, genesis, and rare metal mineralization. Earth-Science Rev., 234 (2022), Article 104229,

[47]

S.B. Castor, C.D. Henry. Lithium-rich claystone in the McDermitt Caldera, Nevada, USA: Geologic, mineralogical, and geochemical characteristics and possible origin. Minerals, 10 (2019), p. 68,

[48]

B. Charoy, F. Noronha, A. Lima. Spodumene–petalite– eucryptite: Mutual relationships and alteration style in Li-rich aplite–pegmatite dykes from northern Portugal. Can. Mineral., 39 (2001), pp. 729-746

[49]

Chassard-Bouchaud, C., Galle, P., Escaig, F., Miyawaki, M., 1984. Bioaccumulation of lithium by marine organisms in European, American, and Asian coastal zones: microanalytic study using secondary ion emission. Comptes Rendus de L'academie des sciences. Serie III, Sciences de la vie, 299(18), 719-724.

[50]

R. Chemnitzer. Strategies for Achieving the Lowest Possible Detection Limits in ICP-MS. Spectrosc., 34 (10) (2019), pp. 12-16

[51]

P.W. Chen, B. Liu, T.S. Wang, L.L. Zhou, Y.B. Wang, G.T. Sun, K.J. Hou, S.F. Weng, Q.D. Zeng, Z. Long, Y. Fu. Genesis of the Danping bauxite deposit in northern Guizhou, Southwest China: Constraints from in-situ elemental and sulfur isotope analyses in pyrite. Ore Geol. Rev., 148 (2022), Article 105056

[52]

W.H. Cheng, C.K. Yap, M.P. Zakaria, A.Z. Aris, S.G. Tan. Lithium levels in Peninsular Malaysian Coastal Areas: An assessment based on mangrove snail nerita lineata and surface sediments. Pertanika J. Trop. Agric. Sci., 38 (1) (2015), pp. 1-10

[53]

X. Chi, Y. Zhang, F. Hao, S. Kmiec, H. Dong, R. Xu, K.J. Zhao, Q. Ai, T. Terlier, L. Wang, L.H. Zhao, L.Q. Guo, J. Lou, H.L. Xin, S.W. Martin, Y. Yao. An electrochemically stable homogeneous glassy electrolyte formed at room temperature for all-solid-state sodium batteries. Nature Comm., 13 (1) (2022), p. 2854,

[54]

A.N. Chowdhury, B.K. Handa, A.K. Das. High Li, Rb and Cs contents of thermal spring water, spring sediments and borax deposits in Puga valley, Kashmir. India. Geochem. J., 8 (1974), pp. 61-65

[55]

O. Chukova, S.G. Nedilko, T. Voitenko, R. Minikayev, W. Paszkowicz, V. Stasiv, Y. Zhydachevskyy, A. Suchocki. Luminescence mechanisms in the 2V2O5–xLi2O–(98–x)B2O3 glass matrices developed for creation of glass–ceramic materials. J. Mater. Sci. Mater. Electron., 34 (2023), p. 651,

[56]

C. Clergue, M. Dellinger, H.L. Buss, J. Gaillardet, M.F. Benedetti, C. Dessert. Influence of atmospheric deposits and secondary minerals on Li isotopes budget in a highly weathered catchment, Guadeloupe (Lesser Antilles). Chem. Geol., 414 (2015), pp. 28-41,

[57]

D.M. Coffey, L.A. Munk, D.E. Ibarra, K.L. Butler, D.F. Boutt, J. Jenckes. Lithium storage and release from lacustrine sediments: Implications for lithium enrichment and sustainability in continental brines. Geochem. Geophy. Geosys., 22 (2021),

[58]

E.P. Comer. The lithium industry today. Lithium Needs and Resources. Proceedings of a Symposium Held in Corning, New York (1978), pp. 237-240,

[59]

European Commission, 2020. Proposal for a Regulation of the European Parliament and of the council concerning batteries and waste batteries, repealing directive 2006/66/EC and amending regulation (EU) No 2019/1020, page 9.

[60]

L.A. Coogan, S.A. Kasemann, S. Chakraborty. Rates of hydrothermal cooling of new oceanic upper crust derived from lithium-geospeedometry. Earth Planet. Sci. Lett., 240 (2005), pp. 415-424

[61]

H. Crookshank. Geology of southern Bastar and Jeypore from Bailadila to Eastern Ghats. Memoir Geol. Sur. India, 87 (1963), pp. 1-149

[62]

S. Dai, D. Ren, C.L. Chou, R.B. Finkelman, V.V. Seredin, Y. Zhou. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol., 94 (2012), pp. 3-21,

[63]

H.Z. Dai, D.H. Wang, L.J. Liu, Y. Yu, J.J. Dai. Geochronology and geochemistry of Li(Be)-bearing granitic pegmatites from the Jiajika Superlarge Li-polymetallic deposit in Western Sichuan, China. J. Earth Sci., 30 (4) (2019), pp. 707-727,

[64]

J.A. Dallas, S. Raval, S. Saydam, A.G. Dempster. Investigating extraterrestrial bodies as a source of critical minerals for renewable energy technology. Acta Astronautica., 186 (2021), pp. 74-86,

[65]

C.Y. Dang, A.S. Helal, L.P. Zhu, G.Y. Xu, M.F. Zhu. Industrial pathways to lithium extraction from seawater: Challenges and perspectives. Nano Res. Energy, 2 (2023), p. e9120059

[66]

S. Das, S.B. von der Geest, A. Mäkinen, A. Roos, E. Ikonen, T. Laurila. Sensitive detection of metal concentrations in aqueous solution using real-time micro-plasma emission spectroscopy. Anal. Let., 1–12 (2023),

[67]

S.K. Dash, S. Chakraborty, M. Roccotelli, U.K. Sahu. Hydrogen fuel for future mobility: Challenges and future aspects. Sustainability, 14 (2022), p. 8285,

[68]

A.M. Desaulty, D.M. Climent, G. Lefebvre, A.C. Tassi, D. Peralta, S. Perret, A. Urban, C. Guerrot. Tracing the origin of lithium in Li-ion batteries using lithium isotopes. Nat. Commu., 13 (2022), p. 4172,

[69]

T.C. Devaraju, N. Rajasekhar, C. Srikantappa, S.D. Khandali, G.S. Rao. Lithium pegmatites of Amareshwar, Raichur District, Karnataka, India. Developments in Precamb. Geol., 8 (1990), pp. 653-669,

[70]

S. Dewaele, N. Hulsbosch, Y. Cryns, A.D. Boyce, R. Burgess, P. Muchez. Geological setting and timing of the world-class Sn, Nb–Ta and Li mineralization of Manono-Kitotolo (Katanga, Democratic Republic of Congo). Ore Geol. Rev., 72 (2016), pp. 373-390,

[71]

F. Dias, R. Ribeiro, F. Gonçalves, A. Lima, E. Roda-Robles, T. Martins. Calibrating a handheld LIBS for Li exploration in the Barroso-Alvão aplite-pegmatite field, Northern Portugal: Textural precautions and procedures when analyzing spodumene and petalite. Minerals, 13 (2023), p. 470,

[72]

T. Ding, M. Zheng, S. Peng, Z. Nie, Y. Lin, Q. Wu. Recovery of lithium ions from salt lakes using nanofibers containing zeolite carriers. Front. Energy Res., 10 (2022), Article 895681,

[73]

A. Dini, P. Lattanzi, G. Ruggieri, E. Trumpy. Lithium occurrence in Italy—An overview. Minerals, 12 (2022), p. 945,

[74]

L. Donnelly, D. Pirrie, M. Power, I. Corfe, J. Kuva, S. Lukkari, Y. Lahaye, X. Liu, Q. Dehaine, E.M. Jolis, A. Butcher. The recycling of end-of-life lithium-ion batteries and the phase characterisation of black mass. Recycling, 8 (2023), p. 59,

[75]

E.J.M. Dugamin, A. Richard, M. Cathelineau, M.C. Boiron, F. Despinois, A. Brisset. Groundwater in sedimentary basins as potential lithium resource: a global prospective study. Scientific Rep., 11 (2021), p. 21091,

[76]

E.J.M. Dugamin, M. Cathelineau, M.C. Boiron, A. Richard, F. Despinois. Lithium enrichment processes in sedimentary formation waters. Chem. Geol., 635 (2023), Article 121626,

[77]

Eccles, D.R., Berhane, H., 2011. Geological introduction to lithium-rich formation water with emphasis on the Fox Creek area of west-central Alberta (NTS 83F and 83K). Energy Resour. Conserv. Board, ERCB/AGS Open File Report 2011-10, 22 p.

[78]

J.M. Edmond, C. Measures, R.E. McDuff, L.H. Chan, R. Collier, B. Grant, L.I. Gordon, J.B. Corliss. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data. Earth Planet. Sci. Let., 46 (1979), pp. 1-18

[79]

T. Egan. 2024: The Year of Intensity. Energy x. (2024)

[80]

M.E. Eliopoulos, C. Kanellopoulos. Abundance and genetic significance of lithium in karst-type bauxite deposits: A comparative review. Minerals, 13 (2023), p. 962,

[81]

R.K. Evans. Lithium (Chapter 10). A.G. Gunn (Ed.), Critical Metals Handbook, Chichester, UK, John Wiley & Sons Ltd (2014)

[82]

C. Fabre, M.C. Boiron, J. Dubessy, A. Chabiron, B. Charoy, T. Martin-Crespo. Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: An exploratory study. Geochim. Cosmochim. Acta, 66 (2002), pp. 1401-1407,

[83]

X. Fan, S. Kin, X. Chu, H. Jiang. Development of in situ Li isotope analysis using laser ablation quadrupole inductively coupled plasma mass spectrometry. Rapid Commu. Mass Spectrom., 38 (2) (2023), p. e9668

[84]

Feineman, M.D., White, T.S., Crescenzo, N., Pisupati, S., Rozelle, P., Benson, T.R., 2020. Field and Laboratory Identification of Lithium-Enriched Clay from the Mercer Formation in Central and Western Pennsylvania. Am. Geophy. Uni. Fall Meeting, abstract #V014-0006, 2020AGUFMV014.0006F.

[85]

J.C. Fernandes, A.A.C. Teodoro, A. Lima. Remote sensing data in lithium (Li) exploration: A new approach for the detection of Li-bearing pegmatites. International J. Appl. Earth Observ. Geoinform., 76 (2019), pp. 10-25,

[86]

J.C. Fernandes, A.C. Teodoro, A. Lima, M. Perrotta, E.R. Robles. Detecting lithium (Li) mineralisations from space: Current research and future perspectives. Appl. Sci., 10 (2020), p. 1785,

[87]

J.C. Fernandes, J. Silva, M.M. Perrotta, A. Lima, A.C. Teodoro, M.A. Ribeiro, F. Dias, O. Barrès, J. Cauzid, E. Roda-Robles. Interpretation of the reflectance spectra of lithium (Li) minerals and pegmatites: A case study for mineralogical and lithological identification in the Fregeneda-Almendra Area. Remote Sens., 13 (2021), p. 3688,

[88]

J.C. Fernandes, J. Lima, L. Lima, E. Roda-Robles, M. Köhler, S. Schaefer, A. Barth, A. Knobloch, M.A. Gonçalves, F. Gonçalves, A.C. Teodoro. Stream sediment analysis for Lithium (Li) exploration in the Douro region (Portugal): A comparative study of the spatial interpolation and catchment C., basin approaches. J. Geochem. Explor., 236 (2022), Article 106978,

[89]

R. Ferraz de Menezes, C.M. Harvey, M.E.M.M. Gerbi, Z.J. Smith, D. Smith, J.C. Ivaldi, A. Phillips, J.W. Chan, S. Wachsmann-Hogiu. Fs-laser ablation of teeth is temperature limited and provides information about the ablated components. J. Biophotonics, 10 (10) (2017), pp. 1292-1304,

[90]

A.Y. Fosu, N. Kanari, J. Vaughan, A. Chagnes. Literature review and thermodynamic modelling of roasting processes for lithium extraction from spodumene. Metals, 10 (10) (2020), p. 1312,

[91]

L. Fu, H. Xie, J. Huang, X. Chen, L. Chen. Determination of metal impurity elements in lithium hexafluorophosphate using inductively coupled plasma tandem mass spectrometry based on reaction gas mixtures. Spectrochim. Acta Part b: at. Spectrosc., 181 (2021), Article 106217,

[92]

Galeschuk, C., Vanstone, P., 2007. Exploration techniques for rare-element pegmatite in the Bird-River Greenstone Belt, southeastern Manitoba. In: Milkereit, B. (Ed.), Ore Deposits and Exploration Technology. Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration. Toronto, Ontario, Canada, Paper 55, p. 823–839.

[93]

K. Gallagher, T. Elliott. Fractionation of lithium isotopes in magmatic systems as a natural consequence of cooling. Earth Planet. Sci. Lett., 278 (3–4) (2009), pp. 286-296

[94]

M.Á. Galliski, M.F. Márquez-Zavalía, E. Roda-Robles, A. von Quadt. The Li-bearing pegmatites from the Pampean Pegmatite Province, Argentina: Metallogenesis and resources. Minerals, 12 (2022), p. 841,

[95]

K. Gao, J.R. Calabrese. The mechanisms of action of lithium in bipolar disorder. J. Quevedo, A.F. Carvalho, E. Vieta (Eds.), Neurobiology of Bipolar Disorder, Academic Press, Cambridge, MA, USA (2021), pp. 357-364

[96]

I. Garate-Olave, E. Roda-Robles, P.P. Gil-Crespo, A. Pesquera. Mica and feldspar as indicators of the evolution of a highly evolved granite-pegmatite system in the Tres Arroyos area (Central Iberian Zone, Spain). J. Iberian Geol., 44 (3) (2018), pp. 375-403,

[97]

L.V. Garcia, Y.C. Ho, M.M. Myo Thant, D.S. Han, J.W. Lim. Lithium in a sustainable circular economy: A comprehensive review. Processes, 11 (2023), p. 418,

[98]

D.E. Garrat. Handbook of Lithium and Natural Calcium Chloride, Their Deposits, Processing, Uses and Properties. Elsevier Academic Press (2004), p. 476

[99]

N. Gayathri, A.R. Sailesh, N. Srinivas. Effect of lithium on seed germination and plant growth of Amaranthus viridis. J. Appl. Natural Sci., 14 (1) (2022), pp. 133-139

[100]

A.J. Gelenberg, J.M. Kane, M.B. Keller, P. Lavori, J.F. Rosenbaum, K. Cole, J. Lavelle. Comparison of standard and low serum levels of lithium for maintenance treatment of bipolar disorder. N. Engl. J. Med., 321 (1989), pp. 1489-1493

[101]

U.S. Geological Survey. Mineral Commodity Summaries 2023; USGS: Reston, VA, USA, 2023, 200p. https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-lithium.pdf.

[102]

E. Gerold, C. Schinnerl, H. Antrekowitsch. Critical evaluation of the potential of organic acids for the environmentally friendly recycling of spent lithium-ion batteries. Recycling, 7 (2022), p. 4,

[103]

R. Göd. The spodumene deposit at “Weinebene”, Koralpe. Austria. Mineralium Deposita, 24 (4) (1989), pp. 270-278

[104]

F.A. Gomes, E. Brietzke, M. Bauer, R.M. Post. A call for improving lithium literacy among clinicians and patients. Int. J. Bipolar Disorders, 10 (2022), p. 5,

[105]

B. Gourcerol, E. Gloaguen, J. Melleton, J. Tuduri, X. Galiegue. Re-assessing the European lithium resource potential – A review of hard-rock resources and metallogeny. Ore Geol. Rev., 109 (2019), pp. 494-519,

[106]

S. Greenfield, I.L.I. Jones, C.T. Berry. High pressure plasmas as spectroscopic emission sources. Analyst, 89 (1964), pp. 713-720

[107]

E.S. Grew. The minerals of lithium. Elements, 16 (2020), pp. 235-240,

[108]

L.A. Groat, T. Mulja, M.H.F. Mauthner, T.S. Ercit, M. Raudsepp, R.A. Gault, H.A. Rollo. Geology and mineralogy of the Little Nahanni rare-element granitic pegmatites, Northwest Territories. Can. Mineral., 41 (2003), pp. 139-160

[109]

P.W. Gruber, P.A. Medina, G.A. Keoleian, S.E. Kesler, M.P. Everson, T.J. Wallington. Global Lithium Availability. J. Industrial Ecol., 15 (5) (2011), pp. 760-775,

[110]

K. Gu, X. Gu, Y. Wang, W. Qin, J. Han. A green strategy for recycling cathode materials from spent lithium-ion batteries using glutathione. Green Chem., 25 (2023), pp. 4362-4374,

[111]

H. Guo, G. Kuang, H. Wang, H. Yu, X. Zhao. Investigation of enhanced leaching of lithium from α-spodumene using hydrofluoric and sulfuric acid. Minerals, 7 (11) (2017), p. 205,

[112]

M.R. Hammer. A magnetically excited microwave plasma source for atomic emission spectroscopy with performance approaching that of the inductively coupled plasma. Spectrochim Acta Part B, 63 (2008), pp. 456-464,

[113]

J. Han, H. Jiang, J. Liu, J. Xu, W. Han, H. Zhang. Source analysis of lithium deposit in Dong-Xi-Taijinaier Salt Lake of Qaidam Basin, Qinghai-Tibet Plateau. J. Earth Sci., 34 (4) (2023), pp. 1083-1094,

[114]

D. Han, Z. Peng, E. Song, L. Shen. Leaching behavior of lithium-bearing bauxite with high-temperature bayer digestion process in K2O-Al2O3-H2O System. Metals, 11 (2021), p. 1148,

[115]

X.F. Hao, X.F. Fu, B. Liang, L.P. Yuan, M. Pan, Y. Tang. Formation ages of granite and X03 pegmatite vein in Jiajika, western Sichuan, and their geological significance. Mineral Deposits, 34 (6) (2015), pp. 1199-1208, 10.16111/j.0258-7106.2015.06.008

[116]

R.S. Harmon, G.S. Senesi. Laser-induced breakdown spectroscopy – A geochemical tool for the 21st century. AppL. Geochem., 128 (2021), Article 104929,

[117]

R.S. Harmon, M.A. Wise, A.C. Curry, J.S. Mistele, M.S. Mason, Z. Grimac. Rapid analysis of muscovites on a lithium pegmatite prospect by handheld LIBS. Minerals, 13 (2023), p. 697,

[118]

M.Y. He, J.B. Dong, Z.D. Jin, C.Y. Liu, J. Xiao, F. Zhang, H. Sun, Z.Q. Zhao, L.F. Gou, W.G. Liu, C.G. Luo, Y.G. Song, L. Ma, L.I. Deng. Pedogenic processes in loess-paleosol sediments: Clues from Li isotopes of leachate in Luochuan loess. Geochim. Cosmochim. Acta., 299 (2021) (2021), pp. 151-162,

[119]

L. He, L. Li, P. Shen, S. Wang, Z.Y. Li, N.N. Zhou, R.J. Chen, K.Z. Qin. Geophysical approaches to the exploration of lithium pegmatites and a case study in Koktohay. Earth Sci. Front., 30 (5) (2023), pp. 244-254, 10.13745/j.esf.sf.2023.5.14

[120]

Y. He, X. Wang, S. Guo, A. Li, X. Xu, N. Wazir, C.J. Ding, T.Q. Lu, L.L. Xie, M. Zhang, Y. Hao, W. Guo, R.B. Liu. Lithium-ion detection in liquid with low detection limit by laser-induced breakdown spectroscopy. Appli. Optics, 58 (2) (2019), pp. 422-427,

[121]

J.R. Hean, K. Mizeill, A. Koschinsky, T.A. Conrad. Deep-ocean mineral deposits as a source of critical metals for high-and green-technology applications: Comparison with land-based resources. Ore Geol. Rev., 51 (2013), pp. 1-14,

[122]

J.R. Hein, K. Mizell, A. Koschinsky, T.T. Conrad. Deep-ocean mineral deposits as a source of critical metals for high- and green technology applications: comparison with land-based resources. Ore Geol. Rev., 51 (2013), pp. 1-14,

[123]

J.R. Hein, A. Koschinsky, T. Kuhn. Deep-ocean polymetallic nodules as a resource for critical materials. Nat. Rev. Earth Environ., 1 (2020), pp. 158-169,

[124]

C. Heller, T. Kuhn, G.J.M. Versteegh, A.V. Wegorzewski, S. Kasten. The geochemical behavior of metals during early diagenetic alteration of buried manganese nodules. Deep Sea Research Part I: Oceanogra. Oceanogra. Res. Pap. (2018),

[125]

C. Helvaci, H. Mordogan, W. Colak, I. Gundogan. Presence and distribution of lithium in borate deposits and some recent lake waters of West-Central Turkey. Int. Geol. Rev., 46 (2004), pp. 177-190,

[126]

J. Hennessy, S. Nikzad. Atomic layer deposition of lithium fluoride optical coatings for the ultraviolet. Inorganics, 6 (2) (2018), p. 46,

[127]

C.D. Henry, S.B. Castor, W.A. Starkel, B.S. Ellis, J.A. Wol, J.A. Laravie, W.C. McIntosh, M.T. Heizler. Geology and evolution of the McDermitt caldera, northern Nevada and southeastern Oregon, USA. Geosphere, 13 (2017), pp. 1066-1112,

[128]

C. Hickson, M. Coolbaugh. Do geothermal systems play a role in lithium brine enrichment in Nevada Playas?. GRC Transactions, 41 (2017), pp. 1-15

[129]

J. Hoefs. Stable Isotope Geochemistry. (6th ed.), Springer, Berlin, Germany (2009), p. 285

[130]

E.L. Horstman. The distribution of lithium, rubidium and caesium in igneous and sedimentary rocks. Geochim. Cosmochim. Acta, 12 (1–2) (1957), pp. 1-28,

[131]

Hou, X., Amais, R.S., Jones, B.I., Donati, G.L., 2016. Inductively Coupled Plasma Optical Emission Spectrometry. Encyclopaedia of Analytical Chemistry: Applications, Theory, and Instrumentation. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470027318.a5110.pub3.

[132]

X. Hou, B.T. Jones. Encyclopaedia of Analytical Chemistry. John Wiley & Sons Ltd (2000), p. 9468

[133]

F. Hu, X. Liu, S. He, J. Wang, F. Wu. Caesium-rubidium mineralization in Himalayan leucogranites. Science China Earth Sci., 66 (2) (2023), pp. 2827-2852,

[134]

F.Y. Hu, F.Y. Wu, G.H. Chen, L. Yang. The critical factors of lithium enrichment in the metasedimentary wall rocks of granitic pegmatite-type lithium deposit: Insights from the Ke'eryin area in the eastern Songpan-Ganzi Belt. Acta Petrologica Sinica, 38 (7) (2022), pp. 2017-2051, 10.18654/1000-0569/2022.03.19

[135]

S. Huang, Y. Fu. Enrichment characteristics and mechanisms of critical metals in marine Fe-Mn crusts and nodules: A review. Minerals, 13 (2023), p. 1532,

[136]

A. Ijiri, K. Iijima, U. Tsunogai, J. Ashi, F. Inagaki. Clay mineral suites in submarine mud volcanoes in the Kumano Forearc Basin, Nankai Trough: Constraints on the origin of mud volcano sediments. Geosciences, 8 (2018), p. 220,

[137]

T.J. Ikeh, B. Sun, C. Liu, Y. Liu, Y. Kong, X. Pan. Modes of occurrence and enrichment of trace elements in coal from the Anjialing Mine, Pingshuo Mining District, Ningwu Coalfield, Shanxi Province. ChinaMinerals, 12 (2022), p. 1082,

[138]

Ingraffia, J.T., 2020. Lithium at the Thacker Pass deposit, Humboldt County, Nevada, U.S.A. Ph.D. thesis, Department of Geology, University of Nevada, Reno, USA.

[139]

International Energy Agency. The Role of Critical Minerals in Clean Energy Transitions. IEA, Paris (2021), p. 283

[140]

D. Ionov, H.M. Seitz. Lithium abundances and isotopic compositions in mantle xenoliths from subduction and intra-plate settings: mantle sources vs. eruption histories. Earth Planet. Sci. Lett., 266 (2008), pp. 316-331

[141]

Izatt, R.M., Izatt, S.R., Izatt, N.E., Bruening, R.L., Krakowiak, K.E., 2017. Green chemistry molecular recognition processes applied to metal separations in ore beneficiation, element recycling, metal remediation, and elemental analysis. In: Beach, E.S., Kundu, S. (Eds.), Handbook of Green Chemistry Volume 10: Tools for Green Chemistry, first ed. Wiley-VCH Verlag,Weinheim, Germany, pp. 189-240.

[142]

R. Jackisch. Drone-based surveys of mineral deposits. Nat. Rev. Earth Environ., 1 (2020), p. 187,

[143]

A.B. Jeffcoate, T. Elliott, S.A. Kasemann, D. Ionov, K. Cooper, R. Brooker. Li isotope fractionation in peridotites and mafic melts. Geochim. Cosmochim. Acta, 71 (2007), pp. 202-218

[144]

K.K. Jena, A. Al Fantazi, A.T. Mayyas. Comprehensive review on concept and recycling evolution of Lithium-Ion Batteries (LIBs). Energy Fuels, 35 (2021), pp. 18257-18284,

[145]

Y.B. Jia, W.X. Yu, H.J. Wen, C.G. Luo, G.S. Yang, Y. Yang, Y. Cui. Geochemical characteristics and sedimentary environment of Li-rich clay rocks at the southern margin of the Central Yunnan Basin. Acta Sedimentologica Sinica, 41 (1) (2023), pp. 170-182, 10.14027/j.issn.1000-0550.2021.076

[146]

X. Jiang, X. Lin, D. Yao, S. Zhai, W. Guo. Geochemistry of lithium in marine ferromanganese oxide deposits. Deep-Sea Research Part i: Oceanographic Research Papers, 54 (2007), pp. 85-98

[147]

B. Jiu, W. Huang, B. Spiro, R. Hao, N. Mu, L. Wen, H. Hao. Distribution of Li, Ga, Nb, and REEs in coal as determined by LA-ICP-MS imaging: A case study from Jungar coalfield, Ordos Basin, China. Int. J. Coal Geol., 267 (2023), Article 104184,

[148]

A. Kabata-Pendias, H. Pendias. Trace Elements in Soils and Plants. (2nd ed.), London, CRC Press, Boca Raton (1992)

[149]

A.K. Kamalesh. Efficient Extraction of Valuable Metals from Polymetallic Shale Using Leaching and Adsorption Techniques. Master's thesis. University of Calgary, Calgary, Canada (2022)

[150]

L. Kavanagh, J. Keohane, J. Cleary, G.G. Cabellos, A. Lloyd. Lithium in the Natural Waters of the South East of Ireland. Int. J. Environ. Res. Public Health., 14 (2017), p. 561,

[151]

L. Kavanagh, J. Keohane, G.G. Cabellos, A. Lloyd, J. Cleary. Induced Plant Accumulation of Lithium. Geosciences, 8 (2018), p. 56,

[152]

T. Kawaguchi, X. Bian, T. Hatakeyama, H. Li, T. Ichitsubo. Influences of enhanced entropy in layered rocksalt oxide cathodes for lithium-ion batteries. ACS Appl. Energy Mat., 5 (4) (2022), p. 4369,

[153]

M. Kaya. State-of-the-art lithium-ion battery recycling technologies. Circular Economy, 1 (2022), Article 100015,

[154]

N.L. Keltner, D.G. Folks. Alternatives to lithium in the treatment of bipolar disorder. Perspect Psychiatr Care, 27 (2) (1991), pp. 36-37

[155]

T.L. Kesler. Occurrence, development, and long-range outlook of lithium-pegmatite ore in the Carolinas. USGS Professional Paper, 1005 (1976), pp. 45-50

[156]

S.E. Kesler, P.W. Gruber, R.A. Medina, G.A. Keoleian, M.P. Everson, T.J. Wallington. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geol. Rev., 48 (2012), pp. 55-69,

[157]

M.P. Ketris, Y.E. Yudovich. Estimations of Clarkes for carbonaceous biolithes: world average for trace element contents in black shales and coals. Int. J. Coal Geol., 78 (2) (2009), pp. 135-148,

[158]

W. Keyser, A. Müller, R. Steiner, M. Erambert, M. Kristoffersen, T. Unterweissacher. Alpine eclogite-facies modification of Li-Cs-Ta pegmatite from the Wolfsberg lithium deposit, Austria. Mineralium Deposita, 58 (2023), pp. 1191-1210,

[159]

A. Khalil, S. Mohammed, R. Hashaikeh, N. Hilal. Lithium recovery from brine: Recent developments and challenges. Desalination, 528 (2022), Article 115611,

[160]

H.J. Kim, J.H. Lee, M.K. Kim, T. Cserfalvi, P. Mezei. Development of open-air type electrolyte-as-cathode glow discharge-atomic emission spectrometry for determination of trace metals in water. Spectrochim. Acta Part B, 55 (7) (2000), pp. 823-831,

[161]

Kjølholt, J., Stuer-Lauridsen, F., Skibsted Mogensen, A., Havelund, S., 2003. The Elements in the Second Rank—Lithium. Miljoministeriet, Copenhagen, Denmar /www2.mst.dk/common/Udgivramme/Frame.asp?pg ¼ http://www2. mst.dk/udgiv/publications/2003/87-7972-491-4/html/bill08eng.htmS.

[162]

M. Kleoff, P. Kiler, P. Heretsch. Synthesis of odorants in flow and their applications in perfumery. Beilstein J. Org. Chem., 18 (2022), pp. 754-768,

[163]

M. Köhler, D. Hanelli, S. Schaefer, A. Barth, A. Knobloch, P. Hielscher, J. Cardoso-Fernandes, A. Lima, A.C. Teodoro. Lithium potential mapping using artificial neural networks: A case study from Central Portugal. Minerals, 11 (10) (2021), p. 1046,

[164]

L. Kölbel, T. Kölbel, L. Herrmann, E. Kaymakci, I. Ghergut, A. Poirel, A. Schneider. Lithium extraction from geothermal brines in the Upper Rhine Graben: A case study of potential and current state of the art. Hydrometallurgy, 221 (2023), Article 106131,

[165]

D. Kontak. Nature and origin of an LCT-suite pegmatite with late-stage sodium enrichment, Brazil Lake, Yarmouth County, Nova Scotia. I. Geological setting and petrology. Can. Mineral., 44 (3) (2006), pp. 563-598

[166]

A. Koschinsky, P. Halbach. Sequential leaching of marine ferromanganese precipitates: Genetic implications. Geochim. Cosmochim. Acta, 59 (24) (1995), pp. 5113-5132,

[167]

D. Kramer. Fears of a lithium supply crunch may be overblown. Physics Today, 74 (5) (2021), p. 20,

[168]

K.V. Krishna, G. Swathi, C.R. Sekhar, G. Veeraswamy, P.K. Kumari, R.D. Naidu, T.S. Rao, V. Asha. Major and Trace Elements in the Sediments of the Gollumutta Paya Estuary of the Krishna River, East Coast of India. N. Jayaraju, G. Sreenivasulu, M. Madakka, M. Manjulatha (Eds.), Coasts, Estuaries and Lakes, Springer, Switzerland AG (2023),

[169]

A. Kumari, M. Krishnakumar, A.M. Thomas, S.S. Nandakishore. Novel and rapid NH4HF2 assisted KH2PO4 fusion of pegmatite ores bearing refractory minerals for multi-element determination by atomic spectrometry. J. Anal. at. Spectrom., 39 (2024), pp. 525-535,

[170]

T. Kundu, S.S. Rath, S. Swagat, S.K. Das, P.K. Parhi, S.I. Angadi. Recovery of lithium from spodumene-bearing pegmatites: A comprehensive review on geological reserves, beneficiation, and extraction. Powder Technology, 415 (1) (2022), p. 18142,

[171]

N. Kuwata, M. Nakane, T. Miyazaki, K. Mitsuishi, J. Kawamura. Lithium diffusion coefficient in LiMn2O4 thin films measured by secondary ion mass spectrometry with ion-exchange method. Solid State Ionics, 320 (2018), pp. 266-271,

[172]

L.H. Lalasari, A. Lia, T. Arini, E. Sulistiyono, A.B. Prasetyo, F. Firdiyono, N.C. Natasha. Lithium extraction from brine water Tirtasanita Bogor, Indonesia by evaporation method. J. Physics Conference Series, 1450 (1) (2020), Article 012013,

[173]

S.T. Lancaster, T. Prohaska, J. Irrgeher. Characterisation of gas cell reactions for 70+ elements using N2O for ICP tandem mass spectrometry measurements. J. Anal. at. Spectrom., 38 (2023), p. 1135,

[174]

S. Larrain. Human rights and market rules in Chile’s water conflicts: A call for structural changes in water policy. Environ. Just., 5 (2012), pp. 82-88

[175]

C. Larsson, F. Larsson, J. Xu, K. Runesson, L.E. Asp. Effects of lithium insertion induced swelling of a structural battery negative electrode. Composites Sci. Technol., 244 (2022), Article 110299,

[176]

K.J. Lee, J. You, Y. Gao, T. Terlier. Release, transport, and accumulation of lithium in shale brines. Fuel, 356 (2024), Article 129629,

[177]

S. Lei, W. Sun, Y. Yang. Solvent extraction for recycling of spent lithium-ion batteries. J. Hazard. Mat., 424 (2021), Article 127654,

[178]

R. Lerchbammer, E. Gerold, H. Antrekowitsch. Gluconic acid leaching of spent lithium-ion batteries as an environmentally friendly approach to achieve high leaching efficiencies in the recycling of NMC active material. Metals, 13 (2023), p. 1330,

[179]

R.Q. Li, C.L. Liu, P.C. Jiao, J.Y. Wang. The tempo-spatial characteristics and forming mechanism of lithium-rich brines in China. China Geol., 1 (2018), pp. 72-83, 10.31035/cg2018009

[180]

A.M.C. Lima. Estrutura, mineralogia e génese dos filões aplitopegmatíticos com espodumena da Região Barroso-Alvão. PhD thesis. Universidade do Porto (2000), p. 270

[181]

Y.P. Lin. Geological characteristics and genesis of the lithium beryllium polymetallic deposits in Dahongliutan, Hetian County, Xinjiang. Xinjiang Nonferrous Metals, 45 (6) (2022), pp. 63-65, 10.16206/j.cnki.65-1136/TG.2022.06.028

[182]

J. Lin, Y. Liu, Z. Hu, L. Yang, K. Chen, H.H. Chen, K.Q. Zong, S. Gao. Accurate determination of lithium isotope ratios by MC-ICP-MS without strict matrix-matching by using a novel washing method. J. Anal. at. Spectrom., 31 (2016), pp. 390-397,

[183]

Y. Lin, M. Zheng, Y. Zhang, E. Xing, S.A.T. Redfern, J. Xu, J. Zhong, X. Niu. Mineralogical and geochemical characteristics of Triassic lithium-rich K-bentonite deposits in Xiejiacao Section, South China. Minerals, 10 (2020), p. 69,

[184]

Y. Lin, G.Q. Zou, W.Q. Zhou, F.F. Xiu, T.T. Zhang, S. Dong, X.R. Zhang. Determination of Li, Be, Nb, Ta, Rb, Cs in rare polymetallic ores by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) with microwave digestion. Chinese J. Inorganic Anal. Chem., 13 (8) (2023), pp. 825-830

[185]

B.D. Lindsey, K. Belitz, C.A. Cravotta III, P.L. Toccalino, N.M. Dubrovsky. Lithium in groundwater used for drinking-water supply in the United States. Sci. Tot. Environ., 767 (2021), Article 144691,

[186]

S. Liu, Y. Li, J. Liu, Y. Ju, J. Liu, Z. Yang, Y. Shi. Equilibrium lithium isotope fractionation in Li-bearing minerals. Geochim. Cosmochim. Acta, 235 (2018), pp. 360-375,

[187]

G. Liu, Z. Zhao, A. Ghahreman. Novel approaches for lithium extraction from salt-lake brines: A review. Hydrometallurgy, 187 (2019), pp. 81-100,

[188]

D. London. Ore-forming processes within granitic pegmatites. Ore Geol. Rev., 101 (2018), pp. 349-383,

[189]

T. Long, Z. Zhou, G. Hancke, Y. Bai, Q. Gao. A review of artificial intelligence technologies in mineral identification: Classification and visualization. J. Sens. Actuator Netw., 11 (3) (2022), p. 50,

[190]

M.D.S. Lopez. Geopolitics of the Li-ion battery value chain and the Lithium Triangle in South America. Lat. Am. Policy, 14 (2023), pp. 22-45,

[191]

S.J. Lv, G.C. Dong, Z.D. Zhao, Z.B. Luo, Y.B. Ketchaya, X.W. Li, W.M. Yuan. The genesis of the Chakabeishan Li-(Be) pegmatite deposit in the northern Tibetan Plateau: Evidence from fluid inclusion and lithium isotope. Ore Geol. Rev., 166 (2024), Article 105965,

[192]

Z. Ma, F. Han, T. Chen, L. Yi, X. Lu, F. Chen, X. Liu, W. Yuan. The forming age and the evolution process of the brine lithium deposits in the Qaidam Basin based on geochronology and mineral composition. Front. Earth Sci., 9 (2021), Article 702223,

[193]

L. Ma, X. Xi, Z. Zhang, Z. Lyu. Separation and comprehensive recovery of cobalt, nickel, and lithium from spent power lithium-ion batteries. Minerals, 12 (2022), p. 425,

[194]

G.L. Macpherson. Lithium, boron and barium in formation waters and sediments, Northwestern Gulf of Mexico Sedimentary Basin. The University of Texas, Austin, US (1989)

[195]

V. Marcinov, J. Klimko, Z. Takáˇcová, J. Pirošková, A. Miškufová, M. Sommerfeld, C. Dertmann, B. Friedrich, D. Orá. Lithium production and recovery methods: Overview of lithium losses. Metals, 13 (2023), p. 1213,

[196]

F. Margarido, N. Vieceli, F. Durão, C. Guimarães, C.A. Nogueira. Minero-metallurgical processes for lithium recovery from pegmatitic ores. Comunicações Geológicas 101. Especial, II (2014), pp. 795-798

[197]

Maulidia, A., Astuti, W., Petrus, H.T.B.M., 2022. Optimization of lithium extraction from mud using surface response methodology. The International Conference on Advanced Material and Technology (ICAMT) 2021 AIP Conference Proceedings. https://doi.org/10.1063/5.0123139.

[198]

A. Meixner, R.N. Alonso, F. Lucassen, L. Korte, S.A. Kasemann. Lithium and Sr isotopic composition of salar deposits in the Central Andes across space and time: the Salar de Pozuelos, Argentina. Mineralium Deposita, 57 (2022), pp. 255-278,

[199]

R. Mende, D. Kaiser, S. Pavón, M. Bertau. The COOL Process: A holistic approach towards lithium recycling. Waste and Biomass Valorization, 14 (2023), pp. 3027-3042,

[200]

E.A. Mends, P. Chu. Lithium extraction from unconventional aqueous resources – A review on recent technological development for seawater and geothermal brines. J. Environ. Chem. Eng., 11 (5) (2023), Article 110710,

[201]

M. Mertineit, M. Schramm. Lithium occurrences in brines from two German salt deposits (Upper Permian) and first results of leaching experiments. Minerals, 9 (2019), p. 766,

[202]

R.R. Meshram, B. Singh, M.K. Mishra, H. Hrushikesh, A. Siddiqui, D. Shukla, R. Akhtar, T.M. Meshram. Petrological and geochemical studies of lepidolite (LCT type) and non-lepidolite pegmatite’s from Chakrasila, Dhubri District, Assam. North East India. Open J. Geol., 11 (2021), pp. 81-104,

[203]

E. Michelini, P. Höschele, F. Ratz, M. Stadlbauer, W. Rom, C. Ellersdorfer, J. Moser. Potential and most promising second-life applications for automotive lithium-ion batteries considering technical, economic and legal aspects. Energies, 16 (2023), p. 2830,

[204]

V. Millischer, G.J. Matheson, S.E. Bergen, B.J. Coombes, et al.. Improving lithium dose prediction using population pharmacokinetics and pharmacogenomics: a cohort genome-wide association study in Sweden. The Lancet Psychiatry, 9 (6) (2022), pp. 447-457,

[205]

S. Misra, P.N. Froelicha. Measurement of lithium isotope ratios by quadrupole-ICP-MS: application to seawater and natural carbonates. J. Anal. at. Spectrom., 24 (2009), pp. 1524-1533,

[206]

B.J. Moran, D.F. Boutt, S.V. McKnight, J. Jenckes, L.A. Munk, D. Corkran, A. Kirshen. Relic Groundwater and prolonged drought confound interpretations of water sustainability and lithium extraction in arid lands. Earth's Future, 10 (2022), p. 7,

[207]

L.N. Morozova. Lithium Kolmozero deposit of rare metal pegmatites: New data on rare element composition (Kola Peninsula). Lithosphere (russia), 18 (1) (2018), pp. 82-98, 10.24930/1681-9004-2018-18-1-082-098

[208]

Mroczek, E., Climo, M., Li, Y., Evans, D., Carey, B., Gao, W., 2015. From waste to wealth: commercial recovery of products from New Zealand geothermal fluids. Proc. World Geothermal Congress. Melbourne, Australia, pp. 1–7.

[209]

S. Müller, J.A. Meima, H.E. Gäbler. Improving spatially-resolved lithium quantification in drill core samples of spodumene pegmatite by using laser-induced breakdown spectroscopy and pixel-matched reference areas. J. Geochem. Explor. (2023), Article 107235,

[210]

J. Mulwanda, G. Senanayake, H.C. Oskierski, M. Altarawneh, B.Z. Dlugogorski. Extraction of lithium from lepidolite by sodium bisulphate roasting, water leaching and precipitation as lithium phosphate from purified leach liquors. Hydrometallurgy, 222 (2023), Article 106139,

[211]

Munk, L. A., Jochens, H., 2011. Geochemistry of lithium-rich brines in Clayton Valley, Nevada, USA. 11th SGA Biennial Meeting Let's Talk Ore Deposits, Antofagasta, Chile, pp. 217-219.

[212]

Munk, L.A., Hynek, S.A., Bradley, D.C., Boutt, D., Labay, K., Jochens, H., 2016. Lithium Brines: A Global Perspective. In: Verplanck, P.L., Hitzman, M.W. (Eds.), Rare Earth and Critical Elements in Ore Deposits. Review in Economic Geology, Vol. 18. Society of Economic Geologists. https://doi.org/10.5382/Rev.18.14.

[213]

J.G. Murphy, A.S.C. Ahm, P.K. Swart, J.A. Higgins. Reconstructing the lithium isotopic composition (δ7Li) of seawater from shallow marine carbonate sediments. Geochim. Cosmochim. Acta, 337 (2022), pp. 140-154,

[214]

N. Nakamura, S. Ahn, T. Momma, T. Osaka. Future potential for lithium-sulfur batteries. J. Power Sourc., 558 (2023), Article 232566,

[215]

M.S. Navarro, G.M.P. Santos, T.D.P. Marteleto, J. Enzweil. Lithium isotopic ratios by single-collector ICP-SFMS: A critical evaluation using reference materials. Geostand. Geoanal. Res., 45 (4) (2021), pp. 701-718,

[216]

T. Necke, J. Stein, H.J. Kleebe, B. Balke-Grünewald. Lithium extraction and zeolite synthesis via mechanochemical treatment of the silicate minerals lepidolite, spodumene, and petalite. Minerals, 13 (2023), p. 1030,

[217]

Nicolas, M.P.B., 2017. Preliminary investigation of the potential for lithium in groundwater in sedimentary rocks in southwestern Manitoba; in Report of Activities 2017, Manitoba Growth, Enterprise and Trade, Manitoba Geol. Survey, pp. 183–190.

[218]

I.H. Oh, S.J. Yang, C.H. Heo, J.H. Lee, E.J. Kim, S.J. Cho. Study on the controlling factors of Li-bearing pegmatite intrusions for mineral exploration, Uljin, South Korea. Minerals, 12 (2022), p. 589,

[219]

I.G. Olave, R.R. Robles, P.P.G. Crespo, A. Pesquera. Mica and feldspar as indicators of the evolution of a highly evolved granite-pegmatite system in the Tres Arroyos area (Central Iberian Zone, Spain). J. Iberian Geol., 44 (2018), pp. 375-403,

[220]

K.A. Olive, D.N. Schramm. Astrophysical 7Li as a product of Big Bang nucleosynthesis and galactic cosmic-ray spallation. Nature, 360 (1992), pp. 439-442

[221]

Oliviera, G.A. C.D., Bustillos, J.O.V., Ferreira, J.C., Bergamaschi, V.S., et al., 2017. International Nuclear Atlantic Conference - INAC 2017 Belo Horizonte, MG. Brazil, Associação Brasileira De Energia Nuclear – Aben.

[222]

L.N. Ovchinnikov, S.N. Voronovskiy, L.B. Ovchinnikova. Radiogeochronology of granitic pegmatites. Doklady of the USSR Academy Sci., 223 (1975), pp. 1202-1205

[223]

M. Pagliaro, F. Meneguzzo. Lithium battery reusing and recycling: A circular economy insight. Heliyon, 5 (2019), p. e01866

[224]

S.S. Palinkaš, L. Palinkaš, F. Neubauer, R. Scholz, S.B. Šoštari, V. Bermanec. Formation conditions and 40Ar/39Ar age of the gem-bearing Boqueirão granitic pegmatite, Parelhas, Rio Grande do Norte. Brazil. Minerals, 9 (2019), p. 233,

[225]

M.P. Paranthaman, L. Li, J. Luo, T. Hoke, H. Ucar, B.A. Moyer, S. Harrison. Recovery of lithium from geothermal brine with lithium-aluminum layered double hydroxide chloride sorbents. Environ Sci Technol., 51 (22) (2017), pp. 13481-13486,

[226]

S. Park, T.P. McNulty, R.C. Ewing. Critical metal resources in Democratic People’s Republic of Korea. Int. Geol. Review, 65 (17) (2022), pp. 2717-2737,

[227]

S.S. Parker, B.S. Franklin, A. Williams, B.S. Cohen, M.J. Clifford, M.M. Rohde. Potential lithium extraction in the United States: Environmental, economic, and policy implications. The Nature Conservancy. (2022)

[228]

G.A. Partington, J. McNaughton, I.S. Williams. A review of the geology, mineralization and geochronology of the Greenbushes pegmatite, Western Australia. Econ. Geol., 90 (1995), pp. 616-635,

[229]

A.C. Pedrosa-Soares, C.P. Pinto, J. Custódio-Netto, M.C. Araújo, C. Castañeda, A.B. Achtschin, M.S. Basílio. A Província Gemológica Oriental do Brasil. C. Castañeda, J.E. Addad, A. Liccardo (Eds.), Gemas De Minas Gerais, SBG, Belo Horizonte (2001), pp. 16-33

[230]

L.T. Peiro, G.V. Mendez, R.U. Ayres. Lithium: Sources, production, uses, and recovery outlook. JOM, 65 (2013), p. 8,

[231]

Y. Peng, M. Zheng, Y. Zhang, E. Xing, B. Gui, F. Zuo. Geochronology and geochemistry of lithium-rich tuffs in the Sichuan basin, western Yangtze: Implication for the magmatic origin and final closure of eastern Paleo-Tethys. Geosci. Front., 14 (2023), Article 101480,

[232]

Y. Qin, D. Wang, Y. Zhao, Y. Yu, J. Gao, F. Yu, J. Zhong, Z. Liu. Source and enrichment mechanism of lithium in the Triassic argillaceous marine sediments from Huangjinkou, Sichuan, China. Acta Geologica Sinica-English Edition, 96 (2) (2022), pp. 536-545,

[233]

X. Qu, H. Xie, X. Chen, Y. Tang, B. Zhang, P. Xing, H. Yin. Recovery of LiCoO2 from spent lithium-ion batteries through a low-temperature ammonium chloride roasting approach: Thermodynamics and reaction mechanisms. ACS Sustainable Chem. Eng., 8 (16) (2020), pp. 6524-6532,

[234]

Rabe, B.A., Ravenelle, R.M., LeBlanc, R., 2020. Method of lithium extraction from sedimentary clay. US Patent no. US20220220578A1. https://patents.google.com/patent/US20220220578A1/en.

[235]

P.R. Rajani, R.V. Manoj, R.K. Joshi, B.K. Jishnu, M. Nagasundaram. Base metals- and lithium-rich ferromanganese oxide deposits from the South Andaman Sea, Northeastern Indian Ocean: Mode of occurrence and genesis. J. Asian Earth Sci., 234 (2022), Article 105272,

[236]

A.M. Ralls, K. Leong, J. Clayton, P. Fuelling, C. Mercer, V. Navarro, P.L. Menezes. The role of lithium-ion batteries in the growing trend of electric vehicles. Materials, 16 (2023), p. 6063,

[237]

J.E.H. Read, A. Thornton, D.J. Amon, S.N.R. Birchenough, et al.. A global horizon scan of issues impacting marine and coastal biodiversity conservation. Nature Ecol. Evol., 6 (2022), pp. 1262-1270,

[238]

R. Reich, K. Slunitschek, R.M. Danisi, E. Eiche, J. Kolb. Lithium extraction techniques and the application potential of different sorbents for lithium recovery from brines. Mineral Process. Extractive Metall. Rev., 44 (2022), p. 4,

[239]

R. Reich, R.M. Danisi, T. Kluge, E. Eiche, J. Kolb. Structural and compositional variation of zeolite 13X in lithium sorption experiments using synthetic solutions and geothermal brine. Microporous Mesoporous Mater., 359 (2023), Article 112623,

[240]

F.M. Richter, A.M. Davis, D.J. DePaolo, E.B. Watson. Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim. Cosmochim. Acta, 67 (2003), pp. 3905-3923

[241]

K. Rifai, M. Constantin, A. Yilmaz, L.Ç. Özcan, F.R. Doucet, N. Azami. Quantification of lithium and mineralogical mapping in crushed ore samples using laser induced breakdown spectroscopy. Minerals, 12 (2022), p. 253,

[242]

E.R. Robles, R. Vieira, A. Lima, J.E. Martin, A. Pesquera, J.C. Fernandes, I.G. Olave. Li-rich pegmatites and related peraluminous granites of the Fregeneda-Almendra field (Spain-Portugal): A case study of magmatic signature for Li enrichment. Lithos, 452–453 (2023), Article 107195,

[243]

J. Rogelj, O. Geden, A. Cowie, A. Reisinger. Net-zero emissions targets are vague: Three ways to fix. Nature, 591 (7850) (2021), pp. 365-368,

[244]

A. Rohiman, H. Setiyanto, V. Saraswaty, M.B. Amran. Review of analytical techniques for the determination of lithium: From conventional to modern technique. Mor. J. Chem., 11 (4) (2023), pp. 979-1012

[245]

Rohmah, M., Lalasari, L.H., Mudaryoto, J.W., Natasha, N.C., 2018. Lithium recovery from Bledug Kuwu Mud volcano using water leaching method. In: 2018 IEEE International Conference on Innovative Research and Development, ICIRD, Bangkok, Thailand, 2018, pp. 1-5. https://doi.org/10.1109/ICIRD.2018.8376336.

[246]

M. Rospabé, F. Kourim, A. Tamura, E. Takazawa, et al.. Ship-board determination of whole-rock (ultra-)trace element concentrations by laser ablation-inductively coupled plasma mass spectrometry analysis of pressed powder pellets aboard the D/V Chikyu. Sci. Dril., 30 (2022), pp. 75-99,

[247]

C. Rossi, L. Bateson, M. Bayaraa, A. Butcher, J. Ford, A. Hughes. Framework for remote sensing and modelling of lithium-brine deposit formation. Remote Sens., 14 (2022), p. 1383,

[248]

Rudnick, R.L., Gao, S., 2005. Composition of the continental crust. In: Rudnick, R.L. (Ed.), Treatise on Geochemistry, Volume 3: The Crust. Oxford, Elsevier-Pergamon, pp. 1–64.

[249]

R.L. Rudnick, P.B. Tomascak, H.B. Njo, L.R. Gardner. Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina. Chem. Geol., 212 (1–2) (2004), pp. 45-57

[250]

Rujanavech, C., Lessard, J., Chandler, S., Shannon, S., Dahmus, J., Guzz, R., 2016. Liam - An Innovation Story. pp. 1-8. https://www.apple.com.cn/environment/pdf/Liam_white_paper_Sept2016.pdf.

[251]

J.G. Ryan, C.H. Langmuir. The Systematics of Lithium Abundances in Young Volcanic Rocks. Geology Faculty Publications (1987), p. 166

[252]

H.A. Sabzkoohi, V. Dodier, G. Kolliopoulos. A validated analytical method to measure metals dissolved in deep eutectic solvents. RSC Adv., 13 (22) (2023), pp. 14887-14898,

[253]

E.B. Sal’nikova, A.M. Larin, S.Z. Yakovleva, A.B. Kotov, V.A. Glebovitskii, A.V. Tkachev, I.V. Anisimova, YuV. Plotkina, B.M. Gorokhovskii. Age of the Vishnyakovskoe deposit of rare-metal pegmatites (East Sayan): U-Pb geochronological study of manganotantalite. Dokl. Earth Sc., 441 (2011), pp. 1479-1483,

[254]

B. Sanjuan, B. Gourcerol, R. Millot, D. Rettenmaier, E. Jeandel, A. Rombaut. Lithium-rich geothermal brines in Europe: An up-date about geochemical characteristics and implications for potential Li resources. Geothermics, 101 (2022), Article 102385,

[255]

C. Sarbajn, P. Krishnamurthy. Rare-metal pegmatites of Marlagalla - Allapatna area, Mandhya district, Karnataka: Some aspects on pegmatite zonation and geochemistry of pegmatitic minerals. J. Atom. Miner. Sci., 2 (1994), pp. 29-43

[256]

C. Sarchi, F. Lucassen, A. Meixner, P.J. Caffe, R. Becchio, S.A. Kasemann. Lithium enrichment in the Salar de Diablillos, Argentina, and the influence of Cenozoic volcanism in a basin dominated by Paleozoic basement. Mineralium Deposita, 58 (2023), pp. 1351-1370,

[257]

N.A. Sari, I.W. Warmada, F. Anggara. The potential of lithium enrichment in Lapindo Brantas, Mount Anyar, and Buncitan Mud Volcanoes, Sidoarjo District, East Java Province. IOP Conference Series: Earth and Environmental Science, 851 (2021), Article 012040,

[258]

M. Satyanarayanan, V. Balaram, S.S. Sawant, K.S.V. Subramanyam, V. Krishna, B. Dasaram, C. Manikyamba. Rapid determination of REE, PGE and other trace elements in geological and environmental materials by High Resolution Inductively Coupled Plasma Mass Spectrometry. At. Spectrosc., 39 (1) (2018), pp. 1-15, 10.46770/AS.2018.01.001

[259]

V.K. Saxena, F. D'Amore. Aquifer chemistry of the Puga and Chumatang high temperature geothermal systems in India. J. Volcanol. Geotherm. Res., 21 (3–4) (1984), pp. 333-346,

[260]

Schmidt, N., 2019. Genesis and Distribution of Lithium Enriched Pore Brines at the Salar de Uyuni, Bolivia. Ph. D. Thesis, TU Freiberg, Freiberg, Germany.

[261]

W.H. Schlesinger, E.M. Klein, Z. Wang, A. Vengosh. Global biogeochemical cycle of lithium. Global Biogeochemical Cycles, 35 (8) (2021), Article e2021GB006999,

[262]

L. Schwich, B. Friedrich. Environmentally friendly recovery of lithium from lithium–sulfur batteries. Metals, 12 (2022), p. 1108,

[263]

Segovia-More, M.K., Torró, L., Benavent, C.V., Briones, J.R., Vallance, J., Monnier, L., Laurent, O., Salvi, S., 2023. High-resolution mineralogy of Lithium-rich Tuff from the Macusani Volcanic Field, Puno, Peru. In: Proc. 17th SGA Biennial Meeting on Mineral Resources in a Changing World (2023), SGA, Aug 2023, Zurich, Switzerland, pp. 303-306.

[264]

G. Serri, F. Innocenti, P. Manetti. Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of central Italy. Tectonophysics, 223 (1993), pp. 117-147

[265]

B. Shahzad, M. Tanveer, W. Hassan, A.N. Shah, S.A. Anjum, S.A. Cheema, I. Ali. Lithium toxicity in plants: Reasons, mechanisms and remediation possibilities – A review. Plant Physiol. Biochem., 107 (2016), pp. 104-115,

[266]

J. Shaikh, N. Tanwar, S. Misra. Precise determination of Lithium isotope ratios at sub-nanogram level by QQQ-ICP-MS: Application to natural waters and carbonates. J. Anal. at. Spectrom., 37 (2022), pp. 1541-1553,

[267]

Shanker, R., Absar. A., Srivastava, G.C., Pandey, S.N., 1999. Source and significance of anomalously high cesium in geothermal fluid at Puga, Ladakh, India. Proc. 21st New Zealand Geothermal Workshop, pp. 79-82.

[268]

P. Shao, H. Hou, W. Wang, K. Qin, W. Wang. Distribution and enrichment of Al-Li-Ga-REEs in the High-Alumina coal of the Datong Coalfield, Shanxi Province, China. Ore Geol. Rev., 140 (2022), Article 104597,

[269]

K.K. Sharma, S.C. Uppal. Final report on reginal geochemical survey for base metals and lithium in Salal Area, Udhampur District, Jammu and Kashmir (Field Season 1995–96 & 1996–97). Northern Region, Geological Survey of India, Lucknow (1999)

[270]

N. Sharma, P. Westerhoff, C. Zeng. Lithium occurrence in drinking water sources of the United States. Chemosphere, 305 (2022), Article 135458,

[271]

D.M. Shaw, N.V. Pérignon, M. John. Lithium in spilites. Geochim. Cosmochim. Acta, 41 (11) (1977), pp. 1601-1607,

[272]

J. Shen, X. Li, X. Shi, W. Wang, H. Zhou, J.W. Wu, X. Wang, J. Li. The toxicity of lithium to human cardiomyocytes. Environ Sci. Eur., 32 (2020), p. 59,

[273]

G.J. Simandl, C. Akam, M. Yakimoski, D. Richardson, A. Teucher, Y. Cui, S. Paradis, S. McPhail, F. Ferri. Potential of recovering elements from produced water at oil and gas fields, British Columbia, Canada. CIM Journal, 9 (4) (2018), pp. 195-214

[274]

Y. Singh. Attributes of lepidolite and amblygonite (lithium minerals) from Bastar Pegmatites, Central India. SGAT Bulletin, 21 (1) (2020), pp. 20-28

[275]

Y. Singh. Lithium potential of the Indian granitic pegmatites. J. Geol. Soc. India, 98 (2022), pp. 917-925,

[276]

Y. Singh, S.D. Rai, R.P. Sinha, R. Kaul. Lithium pegmatites in parts of Bastar Cration, Central India. Exploration and Research for Atomic Minerals, 4 (1991), pp. 93-108

[277]

J.P. Singh, S.N. Thakur. Laser-Induced Breakdown Spectroscopy. Elsevier, Amsterdam (2007), p. 429

[278]

J. Singhm, M.K. Kaistha. Report on search for tin, tungsten, and lithium mineralisation in Chaur granitoid complex, Sirmaur and Shimla districts, Himachal Pradesh. Geological Survey of India, Northern Region, Lucknow (1999), p. 12

[279]

J. Song, L.D. Nghiem, X. Li, T. He. Lithium extraction from Chinese salt-lake brines: opportunities, challenges, and future outlook. Environ. Sci. Water Res. Technol., 3 (4) (2017), pp. 593-597,

[280]

C. Sreekumaran, K.C. Pillai, T.R. Folsom. The concentrations of lithium, potassium, rubidium and caesium in some western American rivers and marine sediments. Geochim. Cosmochem. Acta, 32 (1968), pp. 1229-1234

[281]

B. Srinivasarao, A.K. Gupta, A.K. Shukla, A. Markandeyulu, R. Rajendran, D.K. Choudhury. Application of microgravity survey in the exploration of rare-metal bearing pegmatites - A case study from Marlagalla, Mandya District, Karnataka. J. Geol. Soc. India, 98 (2022), pp. 1126-1130,

[282]

C.J. Stanley, G.C. Jones, M.S. Rumsey, C. Balke, A.C. Roberts, J.A.R. Stirling, G.J.C. Carpenter, P.S. Whitfield, J.D. Grice, Y. Lepage. Jadarite, LiNaSiB3O7(OH), a new mineral species from the Jadar Basin. Serbia. Eur. J. Mineral., 19 (2007), pp. 575-580,

[283]

N. Stefanovic, N. Danilovic Hristic, J. Petric. Spatial planning, environmental activism, and politics—Case study of the Jadar Project for lithium exploitation in Serbia. Sustainability, 15 (2023), p. 1736,

[284]

B.M. Steiner. Tools and workflows for grassroots Li–Cs–Ta (LCT) pegmatite exploration. Minerals, 9 (2019), p. 499,

[285]

Z. Steiner, W.M. Landing, M.S. Bohlin, M. Greaves, S. Prakash, P.N. Vinayachandran, E.P. Achterberg. Variability in the concentration of lithium in the Indo-Pacific Ocean. Global Biogeochem. Cycles, 36 (2022),

[286]

R.L.L. Steinmetz, S. Salvi. Brine grades in Andean salars: When basin size matters A review of the Lithium Triangle. Earth-Sci. Rev., 217 (2021), Article 103615,

[287]

L. Stephenson. Tectonic related lithium deposits another major region found North East Tanzania. Natural Resourc., 14 (2023), pp. 161-191,

[288]

P.A.E.P. Strandmann, S.A. Kasemann, J.B. Wimpennym. Lithium and lithium isotopes in Earth’s surface cycles. Elements, 16 (4) (2020), pp. 253-258,

[289]

W.T. Stringfellow, P.F. Dobson. Technology for the recovery of lithium from geothermal brines. Energies, 14 (20) (2021), p. 6805,

[290]

S. Stuart, K. Stefan, V. Philip, K. Karen. Strategic and Critical Elements in Produced Geothermal Fluids from Nevada and Utah. Proc. 43rd Stanford Geothermal Workshop, Stanford Geothermal Workshop, Stanford University, Palo Alto, CA, US (2018), pp. 1-12

[291]

T. Su, M. Guo, Z. Liu, Q. Li. Comprehensive review of global lithium resources. J. Salt Lake Res., 27 (3) (2019), pp. 104-111

[292]

Y.Z. Sun, Y.H. Li, C.L. Zhao, M.Y. Lin, J.X. Wang, S.J. Qin. Concentrations of lithium in Chinese coals. Energy Exploration & Exploitation, 28 (2) (2010), pp. 97-104

[293]

B. Sun, Y. Liu, L. Tajcmanova, C. Liu, J. Wu. In-situ analysis of the lithium occurrence in the No.11 coal from the Antaibao mining district, Ningwu Coalfield, northern China. Ore Geol. Rev., 144 (2022), Article 104825,

[294]

W.L. Sun, Y.Q. Ma, Q.W. Song. Characteristics and research progress of granitic pegmatite type lithium deposits in China. Geol. Explor., 57 (3) (2021), pp. 478-496, 10.12134/j.dzykt.2021.03.002

[295]

Y. Sun, J. Yang, C. Zhao. Minimum mining grade of associated Li deposits in coal seams. Energy Exploration & Exploitation, 30 (2) (2012), pp. 167-170

[296]

E.M. Suud, Suryantini, M.Z. Mubarok. Lithium extraction method from geothermal brine to find suitable method for geothermal fields in Indonesia: A review. IOP Conf. Ser. Earth Environ. Sci., 1159 (2023),

[297]

J.P. Sykes, R. Schodde. A global overview of the geology and economics of lithium production. Presentation, 1–65 (2019), 10.13140/RG.2.2.18537.42088

[298]

J. Szlugaj, B.R. Bak. Lithium sources and their current use. Mineral Resourc. Manage., 38 (1) (2022), pp. 61-88, 10.24425/gsm.2022.140613

[299]

X. Tan, J. Koch, D. Günther, B. Hattendorf. Lithium isotope determination in spodumene by fs-LA-MC-ICP-MS with non-matrix-matched calibration: Insights into ICP operating conditions and data evaluation. Geostand. Geoanal. Res., 48 (1) (2023), pp. 43-55,

[300]

B. Tang, Y. Fu, S. Yan, P.W. Chen, C. Cao, C. Guo, P. Wu, Z. Long, K.S. Long, T.S. Wang, Y. Liu, Y. Yang. The source, host minerals, and enrichment mechanism of lithium in the Xinmin bauxite deposit, northern Guizhou, China: Constraints from lithium isotopes. Ore Geol. Rev., 141 (2022), Article 104653,

[301]

Y.C. Tang, J.Z. Wang, Y.H. Shen. Separation of valuable metals in the recycling of lithium batteries via solvent extraction. Minerals, 13 (2023), p. 285,

[302]

H. Tao, X.P. Yu, Y.F. Guo, M.L. Li, J. Duo, T.L. Deng. Determination of lithium in high salinity samples by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Spectrosc. Anal., 40 (4) (2020), pp. 1214-1220,

[303]

Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Sci. Publ., Oxford, p. 330.

[304]

H.L. Taylor, A. Dosseto, J. Farkas, A. Kingston, A. Lorrey, B. Shen. Lithium isotope composition of Ediacaran dolostones from the Nuccaleena and Doushantuo formations. Australian J. Earth Sci., 70 (8) (2023), pp. 1159-1171,

[305]

T.I. Taylor, H.C. Urey. Fractionation of the lithium and potassium isotopes by chemical exchange with zeolites. J. Chem. Phys., 6 (8) (1938), pp. 429-438

[306]

F.Z. Teng, W.F. Mcdonough, R.L. Rudnick, C. Dalpé, P.B. Tomascak, B.W. Chappell, S. Gao. Lithium isotopic composition and concentration of the upper continental crust. Geochim. Cosmochim. Acta, 68 (20) (2004), pp. 4167-4178,

[307]

F.Z. Teng, R.L. Rudnick, W.F. McDonough, S. Gao, P.B. Tomascak, Y.S. Liu. Lithium isotopic composition and concentration of the deep continental crust. Chem. Geol., 255 (1–2) (2008), pp. 47-59,

[308]

F. Thibon, L. Weppe, N. Vigier, C. Churlaud, T. Lacoue-Labarthe, M. Metian, Y. Cherel, P. Bustamante. Large-scale survey of lithium concentrations in marine organisms. Sci. Total Environ., 751 (2021), Article 141453,

[309]

S.K. Tiwari, S.K. Rai, S.K. Bartarya, A.K. Gupta, M. Negi. Stable isotopes (δ13CDIC, δD, δ18O) and geochemical characteristics of geothermal springs of Ladakh and Himachal (India): Evidence for CO2 discharge in northwest Himalaya. Geothermics, 64 (2016), pp. 314-330

[310]

A.V. Tkachev, D.V. Rundqvist, N.A. Vishnevskay. Metallogeny of lithium through geological time. Russ. J. Earth. Sci., 18 (2018), p. ES6002,

[311]

A.V. Tkachev, D.V. Rundqvist, N.A. Vishnevskaya. The main features of lithium metallogeny in geological time. Dokl. Earth Sc., 484 (2019), pp. 32-36,

[312]

Tkachev, A.V., 2012. Evolution of metallogeny of granitic pegmatites associated with orogens throughout geological time. In: Sial, A.N., Bettencourt, J.S., De Campos, C.P., Ferreira, V.P. (Eds.), Granite-Related Ore Deposits. Geological Society, London, Special Publications, volume 350, 7–23. doi:

[313]

A.L. Toba, R.T. Nguyen, C. Cole, G. Neupane, M.P. Paranthaman. U.S. lithium resources from geothermal and extraction feasibility. Resources, Conservation and Recycling, 169 (2021), Article 105514,

[314]

P.B. Tomascak. Developments in the understanding and application of lithium isotopes in the Earth and Planetary Sciences. Rev. Mineral. Geochem., 55 (2004), pp. 153-195

[315]

P.B. Tomascak, T. Magna, R. Dohmen. Advances in Lithium Isotope Geochemistry. J. Hoefs (Ed.), Advances in Isotope Geochemistry, Springer International Publishing, Cham (2016),

[316]

J. Toupal, D.R. Vann, C. Zhu, R. Gieré. Geochemistry of surface waters around four hard-rock lithium deposits in Central Europe. J. Geochem. Explor., 234 (2022), Article 106937,

[317]

Trueman, D.L., Černý, P., 1982, Exploration for Rare-Element Granitic Pegmatites. In: Cerny, P. (Ed.), Granitic Pegmatites in Science and Industry: Mineralogical Association of Canada Short Course Handbook, 8, 463–493.

[318]

H.C. Urey. The Thermodynamic Properties of Isotopic Substances. Liversidge Lecture, Delivered before the Chemical Society in the Royal Institution on December Ist, 1946 (1947), pp. 562-581

[319]

M. van de Ven, M. Gazley, R. Sterk, S. Aldrich, E. Werner. Exploration for Lithium-Caesium-Tantalum (LCT) pegmatites in New Zealand. Conference Paper New Zealand Minerals Forum (2020), pp. 87-91

[320]

A. Vanderbruggen, A. Salces, A. Ferreira, M. Rudolph, R. Serna-Guerrero. Improving separation efficiency in end-of-life lithium-ion batteries flotation using attrition pre-treatment. Minerals, 12 (2022), p. 72,

[321]

C. Venkateswaran, H. Sreemoolanadhan, R. Vaish. Lithium aluminosilicate (LAS) glass-ceramics: a review of recent progress. International Materials Reviews, 67 (6) (2022), pp. 620-657,

[322]

M.L. Vera, W.R. Torres, C.I. Galli, A. Chagnes, V. Flexer. Environmental impact of direct lithium extraction from brines. Nature Rev. Earth Environ., 4 (2023), pp. 149-165,

[323]

D.H. Wang, H.Z. Dai, S.B. Liu, C.H. Wang, Y. Yang, J.J. Dai, L.J. Liu, Y.Q. Yang, S.C. Ma. Research and exploration progress on lithium deposits in China. China Geol., 3 (1) (2020), pp. 137-152, 10.31035/cg2020018

[324]

Y. Wang, S.F. Kuchena. Recent progress in aqueous ammonium-ion batteries. ACS Omega, 7 (2022), pp. 33732-33748,

[325]

Q. Wang, Q. Yan, Y. Zhang, Z. Zhou. Enrichment mechanism of lithium in Late Permian coals in the Bijie Area, Guizhou, China. ACS Omega, 7 (19) (2022), pp. 16361-16370,

[326]

T.C. Wanger. The lithium future—resources, recycling, and the environment. Conservation Letters, 4 (2011), pp. 202-206,

[327]

Wanhill, R.J.H., 2014. Chapter 15 - Aerospace Applications of Aluminum–Lithium Alloys. In: Prasad, N.E., Gokhale, A.A., Wanhill, R.J.H. (Eds.), Aluminum-lithium Alloys. Elsevier, pp. 503-535. DOI:10.1016/B978-0-12-401698-9.00015-X.

[328]

J.K. Warren. Evaporites. A Geological Compendium. (2nd ed.), Springer, Basel, Switzerland (2016), p. 1813

[329]

Warren, I., 2021. Techno-Economic Analysis of Lithium Extraction from Geothermal Brines. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5700-79178. https://www.nrel.gov/docs/fy21osti/799178.pdf.

[330]

Y. Wei, W. He, G. Qin, M. Fan, D. Cao. Lithium enrichment in the No. 21 coal of the Hebi No. 6 Mine Anhe Coalfield, Henan Province, China. Minerals, 10 (2020), p. 521,

[331]

B. Welz. Atomic Absorption Spectroscopy. (2nd ed.), VCH Weinheim and Deerfield Beach, FL, USA (1985), p. 506

[332]

B. Welz, S. Morés, E. Carasek, M.G.R. Vale, M. Okruss, H. Becker-Ross. High-resolution continuum source atomic and molecular absorption spectrometry—A review. Appl. Spectrosc. Rev., 45 (2010), pp. 327-354,

[333]

X. Wen, P. Ma, G. Zhi, Z. Wu. Minimizing chemical interference errors for the determination of lithium in brines by flame atomic absorption spectroscopy analysis. Rare Metals, 25 (4) (2006), pp. 309-315,

[334]

X. Wen, X. Cui, Y. Liu, Y. Zhang, H. Tian, S. Wan, L. Jiang, G. Jin. A novel strategy for promoting corrosion and wear resistance of Mg-Li alloys: Gradient eutectic high-entropy alloy coating induced by in-situ bidirectional diffusion. J. Magnesium and Alloys (2024),

[335]

R.H. Wendt, V. Fassel. Inductively-coupled plasma spectrometric excitation source. Anal. Chem., 37 (1965), pp. 920-922,

[336]

B. Wiggershaus, M. Jeskanen, A. Roos, C. Vogt, T. Laurila. Trace element analysis in lithium matrices using micro-discharge optical emission spectroscopy. J. Anal. at. Spectrom., 39 (2024), pp. 1248-1259,

[337]

S. Windisch-Kern, A. Holzer, C. Ponak, H. Raupenstrauch. Pyrometallurgical lithium-ion-battery recycling: Approach to limiting lithium slagging with the InduRed reactor concept. Processes, 9 (1) (2021), p. 84,

[338]

M.A. Wise, R.S. Harmon, A. Curry, M. Jennings, Z. Grimac, D. Khashchevskaya. Handheld LIBS for Li exploration: An example from the Carolina Tin-Spodumene Belt, USA. Minerals, 12 (2022), p. 77,

[339]

M.A. Wise, A.C. Curry, R.S. Harmon. Re-evaluation of the K/Rb-Li systematics in muscovite as a potential exploration tool for identifying Li mineralization in granitic pegmatites. Minerals, 14 (2024), p. 117,

[340]

B. Wunder, A. Meixner, R.L. Romer, W. Heinrich. Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids. Contrib. Mineral. Petrol., 151 (2006), pp. 112-120,

[341]

P. Xie, J.C. Hower, V.P. Nechaev, D. Ju, X. Liu. Lithium and redox-sensitive (Ge, U, Mo, V) element mineralization in the Pennsylvanian coals from the Huangtupo coalfield, Shanxi, northern China: With emphasis on the interaction of infiltrating seawater and exfiltrating groundwater. Fuel, 300 (2021), Article 120948,

[342]

Y. Xie, C. Ni, Z. Han, Zhong, Z. He, W. Sun. High recovery of lithium from coal residue by roasting and sulfuric acid leaching. Min. Eng., 202 (2023), Article 108284,

[343]

F. Xue, H. Tan, X. Zhang, M. Santosh, P. Cong, L. Ge, C. Li, G. Chen, Y. Zhang. Contrasting sources and enrichment mechanisms in lithium-rich salt lakes: A Li-H-O isotopic and geochemical study from northern Tibetan Plateau. Geosci. Front., 15 (2) (2024), Article 101768,

[344]

Q.H. Yan, Z.W. Qiu, H. Wang, M. Wang, X.P. Wei, P. Li, R.Q. Zhang, C.Y. Li, J.P. Liu. Age of the Dahongliutan rare metal pegmatite deposit, West Kunlun, Xinjiang (NW China): Constraints from LA-ICP-MS U-Pb dating of columbite-(Fe) and cassiterite. Ore Geol. Rev., 100 (2016), pp. 561-573,

[345]

D. Yang, Z. Hou, Y. Zhao, K. Hou, Z. Yang, S. Tian, Q. Fu. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system. Sci. Rep., 5 (2015), p. 13812,

[346]

J. Yang, A. Lin, Y. Liu, Z. Liu, R. Lin, K. Deng, Z. Hu. Development of synthetic clinopyroxene reference materials for in situ lithium isotope measurement by LA-MC-ICP-MS. Geostandards and Geoanalytical Research., 47 (3) (2023), pp. 535-546,

[347]

S. Yang, G. Liu, J. Wang, L. Cui, Y. Chen. Recovery of lithium from alkaline brine by solvent extraction with functionalized ionic liquid. Fluid Phase Equilibria, 493 (2019), pp. 129-136,

[348]

H. Yang, X. Yuan, Y. Chen, J. Liu, C. Zhan, G. Lv, J. Hu, M. Sun, Y. Zhang. Geochemical evidence constraining genesis and mineral scaling of the Yangbajing geothermal field, Southwestern China. Water, 16 (2024), p. 24,

[349]

S.X. Yang, F. Zhang, H.P. Ding, P. He, H.S. Zhou. Lithium Metal Extraction from Seawater. Joule, 2 (2018), pp. 1648-1651

[350]

R. Yin, X.L. Huang, R.C. Wang, G.J. Wei, Y.G. Xu, Y. Wang, X.M. Sun, L. Zhang, X.P. Xia. Magmatic–hydrothermal evolution of the Koktokay No. 3 pegmatite, Altai, northwestern China: Constraints from in situ boron isotope and chemical compositions of tourmaline. Lithos, 462–463 (2023), Article 107398,

[351]

N. Zahraie. Study of Solvent Extraction for Metal Recovery during Lithium-Ion Batteries (LIBs) Recycling Process. Department of Materials Science and Engineering. Norwegian University of Science and Technology (2021), pp. 1-25

[352]

S. Zandevakili, M. Ranjbar, M. Ehteshamzadeh. Recovery of lithium from Urmia Lake by a nanostructure MnO2 ion sieve. Hydrometallurgy, 149 (2014), Article 148152,

[353]

D. Zawadzki, G.L. Macia, I. Blasco, F.J. González, B. Wernette, E. Marino, G.A. Kozub-Budzyn, A. Piestrzynski, R.J. Wróbel, K. McCartney. Geochemistry and mineralogy of ferromanganese crusts from the Western Cocos-Nazca Spreading Centre. Pacific. Minerals, 12 (2022), p. 538,

[354]

B. Zawisza, R. Sitko. Determination of lithium in mineral water samples by X-ray fluorescence spectrometry. Appl. Spectrosc., 65 (10) (2011), pp. 1218-2121

[355]

X. Zeng, J.A. Mathews, J. Li. Urban mining of e-waste is becoming more cost-effective Than Virgin Mining. Environ. Sci. Technol., 52 (8) (2018), pp. 4835-4841,

[356]

W. Zhang, H. Kitagawa, E. Nakamura. Lithium isotope constraints on slab and mantle contribution to arc magmas. JGR Solid Earth, 128 (5) (2023), Article e2022JB025670,

[357]

W. Zhang, A. Noble, X. Yang, R. Honaker. Lithium leaching recovery and mechanisms from density fractions of an Illinois Basin bituminous coal. Fuel, 268 (2020), Article 117319,

[358]

C. Zhang, J. Yao, W. Zhai, H. Chen, H. He, Y.B. Zhang, T. He. Lithium extraction from geothermal brine by granulated HTO titanium-based adsorbent with block-co-polymer poly (ethylene-co-vinyl alcohol) (EVAL) as binder. Chem. Eng. J., 467 (2023), Article 143526,

[359]

Y. Zhang, J. Zhang. Study on the occurrence state of lithium in low-grade diasporic bauxite from Central Guizhou Province, China. JOM, 71 (2019), pp. 4594-4599,

[360]

M. Zheng, W. Liu. A new Li mineral-Zabuyelite. Acta Mineralogica Sinica, 7 (1987), pp. 221-227

[361]

L.F. Zhou, D. Yang, T. Du, H. Gong, W.B. Luo. The current process for the recycling of spent lithium-ion batteries. Front. Chem., 8 (2020), Article 578044,

[362]

G. Zhu, J. Ma, G. Wei, L. Zhang, Z. Wang, Z. Zhang, T. Zeng. Lithium isotope fractionation during the weathering of granite: Responses to pH. Geochim. Cosmochim. Acta, 345 (2023), pp. 117-129,

[363]

N.A. Zimanovskaya, T.A. Oitseva, S.V. Khromykh, A.V. Travin, A.Y. Bissatova, I.Y. Annikova, S.S. Aitbayeva. Geology, mineralogy, and age of Li-bearing pegmatites: Case study of Tochka Deposit (East Kazakhstan). Minerals, 12 (2022), p. 1478,

[364]

D. Zinoveev, L. Pasechnik, M. Fedotov, V. Dyubanov, P. Grudinsky, A.N. Alpatov. Extraction of valuable elements from Red Mud with a focus on using liquid media—A review. Recycling, 6 (2021), p. 38,

[365]

M. Zorn, C. Ionescu, D. Klohs, K. Zähl, N. Kisseler, A. Daldrup, S. Hams, Y. Zheng, C. Offermanns, S. Flamme, C. Henke, A. Kampker, B. Friedrich. An approach for automated disassembly of lithium-ion battery packs and high-quality recycling using computer vision, labeling, and material characterization. Recycling, 7 (2022), p. 48

[366]

J. Zou, L. Cheng, Y. Guo, Z. Wang, H. Tian, T. Li. Mineralogical and geochemical characteristics of lithium and Rare Earth Elements in high-sulfur coal from the Donggou Mine, Chongqing, Southwestern China. Minerals, 10 (2020), p. 627,

[367]

H. Zou, B. Xiao, D.X. Gong, C. Huang, M. Li, L.M. Yu, E.Y. Tian, C.M. Liu, H.F. Chen, C.H. Hu. Origin and tectonic setting of Pingqiao fluorite-lithium deposit in the Guizhou, southwest Yangtze Block, China. Ore Geol. Rev., 143 (2022), Article 104755,

[368]

G. Zubi, R.D. López, M. Carvalho, G. Pasaoglu. The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 89 (2018), pp. 292-308,

[369]

Y.H. Zuo. Flame emission spectrometric determination of lithium in spodumene. Rock and Mineral Analysis, 28 (2) (2009), pp. 199-200

AI Summary AI Mindmap
PDF

2754

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/