Equation of state and thermodynamic properties of liquid Fe-O in the Earth’s outer core
Miaoxu Xie, Jie Fu, Anatoly B. Belonoshko
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101847.
Equation of state and thermodynamic properties of liquid Fe-O in the Earth’s outer core
Equation of state (EoS) plays a crucial role in the prediction of the composition of the outer core. Here, we calculated pressure (P)-volume (V)-temperature (T) data of liquid iron-oxygen alloys (Fe-X wt.% O, X = 0, 2.8, 6.1, and 9.9) under the outer core conditions (∼136–330 GPa, 4000–6000 K) by first-principles molecular dynamics simulations. We established an EoS for liquid Fe-O alloys with parameters including P, T, V, and O concentrations. Consequently, thermodynamic properties of liquid Fe-O alloys such as density (ρ), thermal expansion coefficient, isothermal and adiabatic bulk modulus, and sound velocity (VP) are calculated. To constrain the O content, we predicted the ρ-P and VP-P profiles along the geotherm and compared them with data from the Preliminary Reference Earth Model (PREM). We conclude that the adiabatic T profile as a function of depth affects the prediction of O content dramatically. With several anchored TICB, the composition of Fe-6.1 wt.% O matches the PREM data with an acceptable range of error. But strictly speaking, the distribution in the outer core is probably uneven. In such case, we state that the O content in the outer core cannot be higher than approximately 6.1 wt.%.
Equation of state / First-principles molecular dynamics / Liquid iron-oxygen alloys / Thermodynamic properties
D. Alfè. Temperature of the inner-core boundary of the Earth: Melting of iron at high pressure from first-principles coexistence simulations. Phys. Rev. B, 79 (6) (2009), Article 060101,
CrossRef
Google scholar
|
D. Alfè, G.D. Price, M.J. Gillan. Oxygen in the Earth’s core: a first-principles study. Phys. Earth Planet. In., 110 (3) (1999), pp. 191-210,
CrossRef
Google scholar
|
D. Alfè, G. Kresse, M.J. Gillan. Structure and dynamics of liquid iron under Earth’s core conditions. Phys. Rev. B, 61 (1) (2000), pp. 132-142,
CrossRef
Google scholar
|
D. Alfè, G.D. Price, M.J. Gillan. Thermodynamics of hexagonal-close-packed iron under Earth’s core conditions. Phys. Rev. B, 64 (4) (2001), Article 045123,
CrossRef
Google scholar
|
W.W. Anderson, T.J. Ahrens. An equation of state for liquid iron and implications for the Earth’s core. J. Geophys. Res.-Solid Earth, 99 (B3) (1994), pp. 4273-4284,
CrossRef
Google scholar
|
O.L. Anderson, D.G. Isaak. Another look at the core density deficit of Earth’s outer core. Phys. Earth Planet. In., 131 (1) (2002), pp. 19-27,
CrossRef
Google scholar
|
S. Anzellini, A. Dewaele, M. Mezouar, P. Loubeyre, G. Morard. Melting of iron at Earth’s inner core boundary based on fast X-ray diffraction. Science, 340 (6131) (2013), pp. 464-466,
CrossRef
Google scholar
|
Y. Asahara, D.J. Frost, D.C. Rubie. Partitioning of FeO between magnesiowüstite and liquid iron at high pressures and temperatures: Implications for the composition of the Earth’s outer core. Earth Planet. Sci. Lett., 257 (3) (2007), pp. 435-449,
CrossRef
Google scholar
|
J. Badro, A.S. Côté, J.P. Brodholt. A seismologically consistent compositional model of Earth’s core. Proc. Natl. Acad. Sci., 111 (21) (2014), pp. 7542-7545,
CrossRef
Google scholar
|
A.B. Belonoshko, R. Ahuja, B. Johansson. Quasi–Ab Initio molecular dynamic study of Fe melting. Phys. Rev. Lett., 84 (16) (2000), pp. 3638-3641,
CrossRef
Google scholar
|
F. Birch. Elasticity and constitution of the Earth’s interior. J. Geophys. Res., 57 (2) (1952), pp. 227-286,
CrossRef
Google scholar
|
P.E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 50 (24) (1994), pp. 17953-17979,
CrossRef
Google scholar
|
R. Boehler. Temperatures in the Earth’s core from melting-point measurements of iron at high static pressures. Nature, 363 (6429) (1993), pp. 534-536,
CrossRef
Google scholar
|
J.M. Brown, R.G. McQueen. Phase transitions, Grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa. J. Geophys. Res.-Solid Earth, 91 (B7) (1986), pp. 7485-7494,
CrossRef
Google scholar
|
A. Dewaele, P. Loubeyre, F. Occelli, M. Mezouar, P.I. Dorogokupets, M. Torrent. Quasihydrostatic equation of state of Iron above 2 Mbar. Physical Rev. Lett., 97 (21) (2006), Article 215504,
CrossRef
Google scholar
|
P.I. Dorogokupets, A.M. Dymshits, K.D. Litasov, T.S. Sokolova. Thermodynamics and equations of state of iron to 350 GPa and 6000 K. Sci. Rep., 7 (1) (2017), p. 41863,
CrossRef
Google scholar
|
L.S. Dubrovinsky, S.K. Saxena, F. Tutti, S. Rekhi, T. LeBehan. In situ X-Ray study of thermal expansion and phase transition of iron at multimegabar pressure. Phys. Rev. Lett., 84 (8) (2000), pp. 1720-1723,
CrossRef
Google scholar
|
A.M. Dziewonski, D.L. Anderson. Preliminary reference Earth model. Phys. Earth Planet. In., 25 (4) (1981), pp. 297-356,
CrossRef
Google scholar
|
D.J. Frost, Y. Asahara, D.C. Rubie, N. Miyajima, L.S. Dubrovinsky, C. Holzapfel, et al.. Partitioning of oxygen between the Earth’s mantle and core. J. Geophys. Res.-Solid Earth, 115 (B2) (2010),
CrossRef
Google scholar
|
J. Fu, L. Cao, X. Duan, A.B. Belonoshko. Density and sound velocity of liquid Fe-S alloys at Earth’s outer core P-T conditions. Am. Mineral., 105 (9) (2020), pp. 1349-1354,
CrossRef
Google scholar
|
F. González-Cataldo, B. Militzer. Ab initio determination of iron melting at terapascal pressures and Super-Earths core crystallization. Phys. Rev. Res., 5 (3) (2023), Article 033194,
CrossRef
Google scholar
|
V.J. Hillgren, C.K. Gessmann, J. Li. An experimental perspective on the light element in Earth’s core. Origin of the Earth and Moon, 30 (2000), pp. 245-263
|
K. Hirose, S. Labrosse, J. Hernlund. Composition and state of the core. Annu. Rev. Earth Planet. Sci., 41 (1) (2013), pp. 657-691,
CrossRef
Google scholar
|
K. Hirose, B. Wood, L. Vočadlo. Light elements in the Earth’s core. Nat. Rev. Earth Environ., 2 (9) (2021), pp. 645-658,
CrossRef
Google scholar
|
W.G. Hoover. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 31 (3) (1985), pp. 1695-1697,
CrossRef
Google scholar
|
H. Huang, X. Hu, F. Jing, L. Cai, Q. Shen, Z. Gong, H. Liu. Melting behavior of Fe-O-S at high pressure: A discussion on the melting depression induced by O and S. J. Geophys. Res.-Solid Earth, 115 (B5) (2010),
CrossRef
Google scholar
|
H. Huang, Y. Fei, L. Cai, F. Jing, X. Hu, H. Xie, et al.. Evidence for an oxygen-depleted liquid outer core of the Earth. Nature, 479 (7374) (2011), pp. 513-516,
CrossRef
Google scholar
|
H. Ichikawa, T. Tsuchiya. Atomic transport property of Fe–O liquid alloys in the Earth’s outer core P, T condition. Transp. Propert. Earth’s Core, 247 (2015), pp. 27-35,
CrossRef
Google scholar
|
H. Ichikawa, T. Tsuchiya, Y. Tange. The P-V-T equation of state and thermodynamic properties of liquid iron. J. Geophys. Res.-Solid Earth, 119 (1) (2014), pp. 240-252,
CrossRef
Google scholar
|
T. Komabayashi. Thermodynamics of melting relations in the system Fe-FeO at high pressure: Implications for oxygen in the Earth’s core. J. Geophys. Res.-Solid Earth, 119 (5) (2014), pp. 4164-4177,
CrossRef
Google scholar
|
G. Kresse. Ab initio molecular dynamics for liquid metals. J. Non Cryst. Solids, 192–193 (1995), pp. 222-229,
CrossRef
Google scholar
|
G. Kresse, J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54 (16) (1996), pp. 11169-11186,
CrossRef
Google scholar
|
Y. Kuwayama, G. Morard, Y. Nakajima, K. Hirose, A.Q.R. Baron, S.I. Kawaguchi, et al.. Equation of state of liquid iron under extreme conditions. Phys. Rev. Lett., 124 (16) (2020), Article 165701,
CrossRef
Google scholar
|
A. Laio, S. Bernard, G.L. Chiarotti, S. Scandolo, E. Tosatti. Physics of iron at Earth’s core conditions. Science, 287 (5455) (2000), pp. 1027-1030,
CrossRef
Google scholar
|
N.D. Mermin. Thermal properties of the inhomogeneous electron gas. Phys. Rev., 137 (5A) (1965), pp. A1441-A1443,
CrossRef
Google scholar
|
G. Morard, Y. Nakajima, D. Andrault, D. Antonangeli, A.L. Auzende, E. Boulard, et al.. Structure and density of Fe-C Liquid alloys under high pressure. J. Geophys. Res.-Solid Earth, 122 (10) (2017), pp. 7813-7823,
CrossRef
Google scholar
|
F.D. Murnaghan. The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci., 30 (9) (1944), pp. 244-247,
CrossRef
Google scholar
|
S. Nosé. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81 (1) (1984), pp. 511-519,
CrossRef
Google scholar
|
J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77 (18) (1996), pp. 3865-3868,
CrossRef
Google scholar
|
J.-P. Poirier. Light elements in the Earth’s outer core: A critical review. Phys. Earth Planet. In., 85 (3–4) (1994), pp. 319-337,
CrossRef
Google scholar
|
C.T. Seagle, A.J. Campbell, D.L. Heinz, G. Shen, V.B. Prakapenka. Thermal equation of state of Fe3S and implications for sulfur in Earth’s core. J. Geophys. Res.-Solid Earth, 111 (B6) (2006),
CrossRef
Google scholar
|
X. Sha, R.E. Cohen. First-principles thermal equation of state and thermoelasticity of hcp Fe at high pressures. Phys. Rev. B, 81 (9) (2010), Article 094105,
CrossRef
Google scholar
|
T. Uchida, Y. Wang, M.L. Rivers, S.R. Sutton. Stability field and thermal equation of state of ε-iron determined by synchrotron X-ray diffraction in a multianvil apparatus. J. Geophys. Res.- Solid Earth, 106 (B10) (2001), pp. 21799-21810,
CrossRef
Google scholar
|
K. Umemoto, K. Hirose. Liquid iron-hydrogen alloys at outer core conditions by first-principles calculations. Geophys. Res. Lett., 42 (18) (2015), pp. 7513-7520,
CrossRef
Google scholar
|
K. Umemoto, K. Hirose. Chemical compositions of the outer core examined by first principles calculations. Earth Planet. Sci. Lett., 531 (2020), Article 116009,
CrossRef
Google scholar
|
K. Umemoto, K. Hirose, S. Imada, Y. Nakajima, T. Komabayashi, S. Tsutsui, A.Q.R. Baron. Liquid iron-sulfur alloys at outer core conditions by first-principles calculations. Geophys. Res. Lett., 41 (19) (2014), pp. 6712-6717,
CrossRef
Google scholar
|
L. Vočadlo, D. Alfè, M.J. Gillan, G.D. Price. The properties of iron under core conditions from first principles calculations. Phys. Earth Planet. In., 140 (1–3) (2003), pp. 101-125,
CrossRef
Google scholar
|
L. Vočadlo, D.P. Dobson, I.G. Wood. Ab initio calculations of the elasticity of hcp-Fe as a function of temperature at inner-core pressure. Earth Planet. Sci. Lett., 288 (3–4) (2009), pp. 534-538,
CrossRef
Google scholar
|
D. Yamazaki, E. Ito, T. Yoshino, A. Yoneda, X. Guo, B. Zhang, et al.. P-V-T equation of state for ε-iron up to 80 GPa and 1900 K using the Kawai-type high pressure apparatus equipped with sintered diamond anvils. Geophys. Res. Lett., 39 (20) (2012),
CrossRef
Google scholar
|
G. Young, L. Fan, B. Zhao, X. Chen, X. Liu, H. Huang. Equation of state for Fe-9.0 wt% O up to 246 GPa: Implications for oxygen in the earth’s outer core. J. Geophys. Res.-Solid Earth, 126 (2) (2021),
CrossRef
Google scholar
|
Y. Zhang, T. Sekine, H. He, Y. Yu, F. Liu, M. Zhang. Experimental constraints on light elements in the Earth’s outer core. Sci. Rep., 6 (1) (2016), p. 22473,
CrossRef
Google scholar
|
/
〈 |
|
〉 |