Equation of state and thermodynamic properties of liquid Fe-O in the Earth’s outer core

Miaoxu Xie, Jie Fu, Anatoly B. Belonoshko

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101847.

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101847. DOI: 10.1016/j.gsf.2024.101847

Equation of state and thermodynamic properties of liquid Fe-O in the Earth’s outer core

Author information +
History +

Abstract

Equation of state (EoS) plays a crucial role in the prediction of the composition of the outer core. Here, we calculated pressure (P)-volume (V)-temperature (T) data of liquid iron-oxygen alloys (Fe-X wt.% O, X = 0, 2.8, 6.1, and 9.9) under the outer core conditions (∼136–330 GPa, 4000–6000 K) by first-principles molecular dynamics simulations. We established an EoS for liquid Fe-O alloys with parameters including P, T, V, and O concentrations. Consequently, thermodynamic properties of liquid Fe-O alloys such as density (ρ), thermal expansion coefficient, isothermal and adiabatic bulk modulus, and sound velocity (VP) are calculated. To constrain the O content, we predicted the ρ-P and VP-P profiles along the geotherm and compared them with data from the Preliminary Reference Earth Model (PREM). We conclude that the adiabatic T profile as a function of depth affects the prediction of O content dramatically. With several anchored TICB, the composition of Fe-6.1 wt.% O matches the PREM data with an acceptable range of error. But strictly speaking, the distribution in the outer core is probably uneven. In such case, we state that the O content in the outer core cannot be higher than approximately 6.1 wt.%.

Keywords

Equation of state / First-principles molecular dynamics / Liquid iron-oxygen alloys / Thermodynamic properties

Cite this article

Download citation ▾
Miaoxu Xie, Jie Fu, Anatoly B. Belonoshko. Equation of state and thermodynamic properties of liquid Fe-O in the Earth’s outer core. Geoscience Frontiers, 2025, 16(1): 101847 https://doi.org/10.1016/j.gsf.2024.101847

References

D. Alfè. Temperature of the inner-core boundary of the Earth: Melting of iron at high pressure from first-principles coexistence simulations. Phys. Rev. B, 79 (6) (2009), Article 060101,
CrossRef Google scholar
D. Alfè, G.D. Price, M.J. Gillan. Oxygen in the Earth’s core: a first-principles study. Phys. Earth Planet. In., 110 (3) (1999), pp. 191-210,
CrossRef Google scholar
D. Alfè, G. Kresse, M.J. Gillan. Structure and dynamics of liquid iron under Earth’s core conditions. Phys. Rev. B, 61 (1) (2000), pp. 132-142,
CrossRef Google scholar
D. Alfè, G.D. Price, M.J. Gillan. Thermodynamics of hexagonal-close-packed iron under Earth’s core conditions. Phys. Rev. B, 64 (4) (2001), Article 045123,
CrossRef Google scholar
W.W. Anderson, T.J. Ahrens. An equation of state for liquid iron and implications for the Earth’s core. J. Geophys. Res.-Solid Earth, 99 (B3) (1994), pp. 4273-4284,
CrossRef Google scholar
O.L. Anderson, D.G. Isaak. Another look at the core density deficit of Earth’s outer core. Phys. Earth Planet. In., 131 (1) (2002), pp. 19-27,
CrossRef Google scholar
S. Anzellini, A. Dewaele, M. Mezouar, P. Loubeyre, G. Morard. Melting of iron at Earth’s inner core boundary based on fast X-ray diffraction. Science, 340 (6131) (2013), pp. 464-466,
CrossRef Google scholar
Y. Asahara, D.J. Frost, D.C. Rubie. Partitioning of FeO between magnesiowüstite and liquid iron at high pressures and temperatures: Implications for the composition of the Earth’s outer core. Earth Planet. Sci. Lett., 257 (3) (2007), pp. 435-449,
CrossRef Google scholar
J. Badro, A.S. Côté, J.P. Brodholt. A seismologically consistent compositional model of Earth’s core. Proc. Natl. Acad. Sci., 111 (21) (2014), pp. 7542-7545,
CrossRef Google scholar
A.B. Belonoshko, R. Ahuja, B. Johansson. Quasi–Ab Initio molecular dynamic study of Fe melting. Phys. Rev. Lett., 84 (16) (2000), pp. 3638-3641,
CrossRef Google scholar
F. Birch. Elasticity and constitution of the Earth’s interior. J. Geophys. Res., 57 (2) (1952), pp. 227-286,
CrossRef Google scholar
P.E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 50 (24) (1994), pp. 17953-17979,
CrossRef Google scholar
R. Boehler. Temperatures in the Earth’s core from melting-point measurements of iron at high static pressures. Nature, 363 (6429) (1993), pp. 534-536,
CrossRef Google scholar
J.M. Brown, R.G. McQueen. Phase transitions, Grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa. J. Geophys. Res.-Solid Earth, 91 (B7) (1986), pp. 7485-7494,
CrossRef Google scholar
A. Dewaele, P. Loubeyre, F. Occelli, M. Mezouar, P.I. Dorogokupets, M. Torrent. Quasihydrostatic equation of state of Iron above 2 Mbar. Physical Rev. Lett., 97 (21) (2006), Article 215504,
CrossRef Google scholar
P.I. Dorogokupets, A.M. Dymshits, K.D. Litasov, T.S. Sokolova. Thermodynamics and equations of state of iron to 350 GPa and 6000 K. Sci. Rep., 7 (1) (2017), p. 41863,
CrossRef Google scholar
L.S. Dubrovinsky, S.K. Saxena, F. Tutti, S. Rekhi, T. LeBehan. In situ X-Ray study of thermal expansion and phase transition of iron at multimegabar pressure. Phys. Rev. Lett., 84 (8) (2000), pp. 1720-1723,
CrossRef Google scholar
A.M. Dziewonski, D.L. Anderson. Preliminary reference Earth model. Phys. Earth Planet. In., 25 (4) (1981), pp. 297-356,
CrossRef Google scholar
D.J. Frost, Y. Asahara, D.C. Rubie, N. Miyajima, L.S. Dubrovinsky, C. Holzapfel, et al.. Partitioning of oxygen between the Earth’s mantle and core. J. Geophys. Res.-Solid Earth, 115 (B2) (2010),
CrossRef Google scholar
J. Fu, L. Cao, X. Duan, A.B. Belonoshko. Density and sound velocity of liquid Fe-S alloys at Earth’s outer core P-T conditions. Am. Mineral., 105 (9) (2020), pp. 1349-1354,
CrossRef Google scholar
F. González-Cataldo, B. Militzer. Ab initio determination of iron melting at terapascal pressures and Super-Earths core crystallization. Phys. Rev. Res., 5 (3) (2023), Article 033194,
CrossRef Google scholar
V.J. Hillgren, C.K. Gessmann, J. Li. An experimental perspective on the light element in Earth’s core. Origin of the Earth and Moon, 30 (2000), pp. 245-263
K. Hirose, S. Labrosse, J. Hernlund. Composition and state of the core. Annu. Rev. Earth Planet. Sci., 41 (1) (2013), pp. 657-691,
CrossRef Google scholar
K. Hirose, B. Wood, L. Vočadlo. Light elements in the Earth’s core. Nat. Rev. Earth Environ., 2 (9) (2021), pp. 645-658,
CrossRef Google scholar
W.G. Hoover. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 31 (3) (1985), pp. 1695-1697,
CrossRef Google scholar
H. Huang, X. Hu, F. Jing, L. Cai, Q. Shen, Z. Gong, H. Liu. Melting behavior of Fe-O-S at high pressure: A discussion on the melting depression induced by O and S. J. Geophys. Res.-Solid Earth, 115 (B5) (2010),
CrossRef Google scholar
H. Huang, Y. Fei, L. Cai, F. Jing, X. Hu, H. Xie, et al.. Evidence for an oxygen-depleted liquid outer core of the Earth. Nature, 479 (7374) (2011), pp. 513-516,
CrossRef Google scholar
H. Ichikawa, T. Tsuchiya. Atomic transport property of Fe–O liquid alloys in the Earth’s outer core P, T condition. Transp. Propert. Earth’s Core, 247 (2015), pp. 27-35,
CrossRef Google scholar
H. Ichikawa, T. Tsuchiya, Y. Tange. The P-V-T equation of state and thermodynamic properties of liquid iron. J. Geophys. Res.-Solid Earth, 119 (1) (2014), pp. 240-252,
CrossRef Google scholar
T. Komabayashi. Thermodynamics of melting relations in the system Fe-FeO at high pressure: Implications for oxygen in the Earth’s core. J. Geophys. Res.-Solid Earth, 119 (5) (2014), pp. 4164-4177,
CrossRef Google scholar
G. Kresse. Ab initio molecular dynamics for liquid metals. J. Non Cryst. Solids, 192–193 (1995), pp. 222-229,
CrossRef Google scholar
G. Kresse, J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54 (16) (1996), pp. 11169-11186,
CrossRef Google scholar
Y. Kuwayama, G. Morard, Y. Nakajima, K. Hirose, A.Q.R. Baron, S.I. Kawaguchi, et al.. Equation of state of liquid iron under extreme conditions. Phys. Rev. Lett., 124 (16) (2020), Article 165701,
CrossRef Google scholar
A. Laio, S. Bernard, G.L. Chiarotti, S. Scandolo, E. Tosatti. Physics of iron at Earth’s core conditions. Science, 287 (5455) (2000), pp. 1027-1030,
CrossRef Google scholar
N.D. Mermin. Thermal properties of the inhomogeneous electron gas. Phys. Rev., 137 (5A) (1965), pp. A1441-A1443,
CrossRef Google scholar
G. Morard, Y. Nakajima, D. Andrault, D. Antonangeli, A.L. Auzende, E. Boulard, et al.. Structure and density of Fe-C Liquid alloys under high pressure. J. Geophys. Res.-Solid Earth, 122 (10) (2017), pp. 7813-7823,
CrossRef Google scholar
F.D. Murnaghan. The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci., 30 (9) (1944), pp. 244-247,
CrossRef Google scholar
S. Nosé. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81 (1) (1984), pp. 511-519,
CrossRef Google scholar
J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77 (18) (1996), pp. 3865-3868,
CrossRef Google scholar
J.-P. Poirier. Light elements in the Earth’s outer core: A critical review. Phys. Earth Planet. In., 85 (3–4) (1994), pp. 319-337,
CrossRef Google scholar
C.T. Seagle, A.J. Campbell, D.L. Heinz, G. Shen, V.B. Prakapenka. Thermal equation of state of Fe3S and implications for sulfur in Earth’s core. J. Geophys. Res.-Solid Earth, 111 (B6) (2006),
CrossRef Google scholar
X. Sha, R.E. Cohen. First-principles thermal equation of state and thermoelasticity of hcp Fe at high pressures. Phys. Rev. B, 81 (9) (2010), Article 094105,
CrossRef Google scholar
T. Uchida, Y. Wang, M.L. Rivers, S.R. Sutton. Stability field and thermal equation of state of ε-iron determined by synchrotron X-ray diffraction in a multianvil apparatus. J. Geophys. Res.- Solid Earth, 106 (B10) (2001), pp. 21799-21810,
CrossRef Google scholar
K. Umemoto, K. Hirose. Liquid iron-hydrogen alloys at outer core conditions by first-principles calculations. Geophys. Res. Lett., 42 (18) (2015), pp. 7513-7520,
CrossRef Google scholar
K. Umemoto, K. Hirose. Chemical compositions of the outer core examined by first principles calculations. Earth Planet. Sci. Lett., 531 (2020), Article 116009,
CrossRef Google scholar
K. Umemoto, K. Hirose, S. Imada, Y. Nakajima, T. Komabayashi, S. Tsutsui, A.Q.R. Baron. Liquid iron-sulfur alloys at outer core conditions by first-principles calculations. Geophys. Res. Lett., 41 (19) (2014), pp. 6712-6717,
CrossRef Google scholar
L. Vočadlo, D. Alfè, M.J. Gillan, G.D. Price. The properties of iron under core conditions from first principles calculations. Phys. Earth Planet. In., 140 (1–3) (2003), pp. 101-125,
CrossRef Google scholar
L. Vočadlo, D.P. Dobson, I.G. Wood. Ab initio calculations of the elasticity of hcp-Fe as a function of temperature at inner-core pressure. Earth Planet. Sci. Lett., 288 (3–4) (2009), pp. 534-538,
CrossRef Google scholar
D. Yamazaki, E. Ito, T. Yoshino, A. Yoneda, X. Guo, B. Zhang, et al.. P-V-T equation of state for ε-iron up to 80 GPa and 1900 K using the Kawai-type high pressure apparatus equipped with sintered diamond anvils. Geophys. Res. Lett., 39 (20) (2012),
CrossRef Google scholar
G. Young, L. Fan, B. Zhao, X. Chen, X. Liu, H. Huang. Equation of state for Fe-9.0 wt% O up to 246 GPa: Implications for oxygen in the earth’s outer core. J. Geophys. Res.-Solid Earth, 126 (2) (2021),
CrossRef Google scholar
Y. Zhang, T. Sekine, H. He, Y. Yu, F. Liu, M. Zhang. Experimental constraints on light elements in the Earth’s outer core. Sci. Rep., 6 (1) (2016), p. 22473,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/