Copper isotope constraints on the origins of basaltic and andesitic magmas in the Tengchong volcanic field, SE Tibet

Yuan-Ru Qu, Sheng-Ao Liu

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (4) : 101818.

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (4) : 101818. DOI: 10.1016/j.gsf.2024.101818

Copper isotope constraints on the origins of basaltic and andesitic magmas in the Tengchong volcanic field, SE Tibet

Author information +
History +

Abstract

The Tengchong volcano field (TVF), situated at the southeastern margin of the Tibetan Plateau, holds crucial information regarding Cenozoic volcanic activities and geotectonic evolution of the SE Tibet. To provide new constraints on petrogenesis and evolution of the Tengchong volcanism, here we conducted copper (Cu) elemental and isotopic analyses on a suite of samples that document the evolution from basalts to andesites in the TVF. The basalts are Cu-depleted (29.7–36.9 ppm) and have higher δ65Cu values (0.19‰–0.40‰, mean = 0.31‰ ± 0.05‰; n = 11) than those of mid-ocean ridge basalts (MORBs, ∼0.09‰) and the mantle (∼0.06‰) as well as the majority of island arc lavas. Along with the low Cu/Zr ratios, these characteristics are interpreted to reflect the fractionation of isotopically light sulfides in the S-saturated systems during magma ascent, rather than source heterogeneity induced by recycled materials and redox reactions. Compared with the basalts, the andesites have slightly lower Cu contents (14.4–29.4 ppm) and lighter Cu isotopic compositions (mean = –0.14‰ ± 0.06‰; n = 13). These differences cannot be attributed to progressive sulfide fractionation of basaltic magmas but require the assimilation of lower crustal materials with low δ65Cu values during evolution of the andesitic magmas. Our results collectively suggest that Cu isotopes can provide valuable insights into magma origin and evolution.

Keywords

Copper isotopes / Sulfide segregation / Magmatic differentiation / Tengchong volcanic field

Cite this article

Download citation ▾
Yuan-Ru Qu, Sheng-Ao Liu. Copper isotope constraints on the origins of basaltic and andesitic magmas in the Tengchong volcanic field, SE Tibet. Geoscience Frontiers, 2024, 15(4): 101818 https://doi.org/10.1016/j.gsf.2024.101818

References

D. Asael, A. Matthews, M. Bar-Matthews, L. Halicz. Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel). Chem. Geol., 243 (2007), pp. 238-254,
CrossRef Google scholar
D. Bai, M.A. Meju, Z. Liao. Magnetotelluric images of deep crustal structure of the rehai geothermal field near tengchong, southern China. Geophys. J. Int., 147 (2001), pp. 677-687,
CrossRef Google scholar
M. Bigalke, S. Weyer, W. Wilcke. Copper isotope fractionation during complexation with insolubilized humic acid. Environ. Sci. Technol., 44 (2010), pp. 5496-5502,
CrossRef Google scholar
L.E. Borg, A.D. Brandon, M.A. Clynne, R.J. Walker. Re-os isotopic systematics of primitive lavas from the lassen region of the Cascade arc. California. Earth Planet. Sci. Lett., 177 (2000), pp. 301-317,
CrossRef Google scholar
Z. Chen, J. Chen, L.S. Tamehe, Y. Zhang, Z. Zeng, X. Xia, Z. Cui, T. Zhang, K. Guo. Heavy copper isotopes in arc-related lavas from cold subduction zones uncover a sub-arc mantle metasomatized by serpentinite-derived sulfate-rich fluids. J. Geophys. Res. Solid Earth, 127 (2022),
CrossRef Google scholar
C. Chen, J. Ciazela, W. Li, W. Dai, Z. Wang, S.F. Foley, M. Li, Z. Hu, Y. Liu. Calcium isotopic compositions of oceanic crust at various spreading rates. Geochim. Cosmochim. Acta, 278 (2020), pp. 272-288,
CrossRef Google scholar
F.K. Chen, M. Satir, J. Ji, D. Zhong. Nd–Sr–Pb isotopes of tengchong cenozoic volcanic rocks from western Yunnan, China: evidence for an enriched-mantle source. J. Asian Earth Sci., 21 (2002), pp. 39-45,
CrossRef Google scholar
M. Chiaradia. Copper enrichment in arc magmas controlled by overriding plate thickness. Nat. Geosci., 7 (2014), pp. 43-46,
CrossRef Google scholar
Chung, S.-L., Lee, T.-Y., Lo, C.-H., Wang, P.-L., Chen, C.-Y., Yem, N.T., Hoa, T.T., Wu, G.,1997. Intraplate extension prior to continental extrusion along the Ailao Shan-Red River shear zone. Geology 25, 311–314. https://doi.org/10.1130/0091-7613(1997)025<0311:IEPTCE>2.3.CO;2.
B.-L. Cong, Q.-Y. Chen, R.-Y. Zhang, G.-Y. Wu, P. Xu. Petrogenesis of cenozoic volcanic rocks in tengchong region of western Yunnan Province. China. Sci. China Ser. B, 37 (1994), pp. 1264-1271
D.J. DePaolo. A neodymium and strontium isotopic study of the mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and peninsular ranges. California. J. Geophys. Res. Solid Earth, 86 (1981), pp. 10470-10488,
CrossRef Google scholar
X.-Z. Duan, H.-R. Fan, H.-F. Zhang, G. Yaxley, M. Santosh, H.-C. Tian, K.-X. Tan, Z.-P. Tang, Y.-S. Xie, Y.-L. Xiao, Z.-H. Hou, H.-F. Guo. Melt inclusions in phenocrysts track enriched upper mantle source for cenozoic tengchong volcanic field, Yunnan Province, SW China. Lithos, 324–325 (2019), pp. 180-201,
CrossRef Google scholar
M.A. Elburg, J.D. Foden, M.J. van Bergen, I. Zulkarnain. Australia and Indonesia in collision: geochemical sources of magmatism. J. Volcanol. Geoth. Res., 140 (2005), pp. 25-47,
CrossRef Google scholar
Q. Fan, J. Sui, R. Liu. Sr-nd isotopic geochemistry andmagmatic evolutions of Wudalianchi volcano, tianchi volcano and tengchong volcano. Acta Petrol. Et Mineral., 20 (2001), pp. 233-238
S.A. Fellows, D. Canil. Experimental study of the partitioning of cu during partial melting of earth’s mantle. Earth Planet. Sci. Lett., 337–338 (2012), pp. 133-143,
CrossRef Google scholar
K. Fio, J.E. Spangenberg, I. Vlahović, J. Sremac, I. Velić, E. Mrinjek. Stable isotope and trace element stratigraphy across the permian-triassic transition: a redefinition of the boundary in the Velebit Mountain. Croatia. Chem. Geol., 278 (2010), pp. 38-57,
CrossRef Google scholar
T. Fujii, F. Moynier, M. Abe, K. Nemoto, F. Albarède. Copper isotope fractionation between aqueous compounds relevant to low temperature geochemistry and biology. Geochim. Cosmochim. Acta, 110 (2013), pp. 29-44,
CrossRef Google scholar
G.A. Gaetani, T.L. Grove. Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: constraints on core formation in the Earth and Mars. Geochim. Cosmochim. Acta, 61 (1997), pp. 1829-1846,
CrossRef Google scholar
J. Huang, S.-A. Liu, G. Wörner, H. Yu, Y. Xiao. Copper isotope behavior during extreme magma differentiation and degassing: a case study on laacher see phonolite tephra (east eifel, Germany). Contrib. Mineral. Petrol., 171 (2016),
CrossRef Google scholar
J. Huang, F. Huang, Z. Wang, X. Zhang, H. Yu. Copper isotope fractionation during partial melting and melt percolation in the upper mantle: evidence from massif peridotites in Ivrea-verbano zone. Italian Alps. Geochim. Cosmochim. Acta, 211 (2017), pp. 48-63,
CrossRef Google scholar
J.-L. Huang, D.-P. Zhao. High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res. Solid Earth, 111 (9) (2006),
CrossRef Google scholar
X.-W. Huang, M.-F. Zhou, C.Y. Wang, P.T. Robinson, J.-H. Zhao, L. Qi. Chalcophile element constraints on magma differentiation of quaternary volcanoes in tengchong. SW China. J. Asian Earth Sci., 76 (2013), pp. 1-11,
CrossRef Google scholar
G. Huangfu. Review of studies on tengchong volcanoes. J. Seismol. Res., 20 (4) (1997), pp. 431-437
G. Huangfu, C.S. Jiang. Study on tengchong volcanic activity. Yunnan Science and Technology Press, Kunming (in Chinese) (2000)
F.E. Jenner, H.C. O’Neill, R.J. Arculus, J.A. Mavrogenes. The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu. J. Petrol., 51 (2010), pp. 2445-2464,
CrossRef Google scholar
C.-S. Jiang. Distribution characteristics of tengchong volcano in the cenozoic era. J. Seismol. Res., 21 (1998), pp. 309-319
C.-S. Jiang. Period division of volcano activities in the cenozoic era of tengchong. J. Seismol. Res., 21 (1998), pp. 320-329
C.-S. Jiang, Z.-H. Zhou, C.-P. Zhao. The structure characteristics of the crust and upper mantle in the area of tengchong volcano. J. Seismol. Res., 27 (2004), pp. 1-6
R.R. Keays, P.C. Lightfoot. Siderophile and chalcophile metal variations in tertiary picrites and basalts from West Greenland with implications for the sulphide saturation history of continental flood basalt magmas. Miner. Deposita, 42 (2007), pp. 319-336,
CrossRef Google scholar
P.D. Kempton, R. Mathur, R.S. Harmon, A. Bell, J. Hoefs, B. Shaulis. Cu-isotope evidence for subduction modification of lithospheric mantle. Geochem. Geophys. Geosyst., 23 (8) (2022), Article e2022GC010436,
CrossRef Google scholar
C.-T.A. Lee, W.P. Leeman, D. Canil, Z.-X. Li. Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions. J. Petrol., 46 (11) (2005), pp. 2313-2336,
CrossRef Google scholar
J.-S. Lei, D.-P. Zhao, Y.-J. Su. Insight into the origin of the tengchong intraplate volcano and seismotectonics in Southwest China from local and teleseismic data. J. Geophys. Res. Solid Earth, 114 (2009), p. B05302,
CrossRef Google scholar
W. Li, S.E. Jackson, N.J. Pearson, O. Alard, B.W. Chappell. The cu isotopic signature of granites from the Lachlan Fold Belt, SE Australia. Chem. Geol., 258 (2009), pp. 38-49,
CrossRef Google scholar
D. Li, Z. Luo, J. Liu, Y. Chen, Y. Jin. Magma origin and evolution of tengchong cenozoic volcanic rocks from West Yunnan, China: evidence from whole rock geochemistry and nd-sr-pb isotopes. Acta Geol. Sin. (English Edition), 86 (2012), pp. 867-878,
CrossRef Google scholar
S.-G. Li, W. Yang, S. Ke, X. Meng, H. Tian, L. Xu, Y. He, J. Huang, X.-C. Wang, Q. Xia, W. Sun, X. Yang, Z.-Y. Ren, H. Wei, Y. Liu, F. Meng, J. Yan. Deep carbon cycles constrained by a large-scale mantle mg isotope anomaly in eastern China. Nat. Sci. Rev., 4 (2017), pp. 111-120,
CrossRef Google scholar
N. Li, L.Y. Zhang. A study on volcanic minerals and hosted melt inclusions in newly-erupted tengchong volcanic rocks. Acta Petrol. Sin., 27 (10) (2011), pp. 2842-2854
P.C. Lightfoot, R.R. Keays. Siderophile and chalcophile metal variations in flood basalts from the siberian trap, noril’sk region: implications for the origin of the Ni–Cu-PGE sulfide ores. Econ. Geol., 100 (2005), pp. 439-462,
CrossRef Google scholar
S.H. Little, S. Munson, J. Prytulak, B.J. Coles, S.J. Hammond, M. Widdowson. Cu and zn isotope fractionation during extreme chemical weathering. Geochim. Cosmochim. Acta, 263 (2019), pp. 85-107,
CrossRef Google scholar
F. Liu, X. Li, G. Wang, Y. Liu, H. Zhu, J. Kang, F. Huang, W. Sun, X. Xia, Z. Zhang. Marine carbonate component in the mantle beneath the southeastern tibetan plateau: evidence from magnesium and calcium isotopes. J. Geophys. Res. Solid Earth, 122 (2017), pp. 9729-9744,
CrossRef Google scholar
S.-A. Liu, P.-P. Liu, Y. Lv, Z.-Z. Wang, J.-G. Dai. Cu and zn isotope fractionation during oceanic alteration: implications for oceanic cu and zn cycles. Geochim. Cosmochim. Acta, 257 (2019), pp. 191-205,
CrossRef Google scholar
S.-A. Liu, T. Wu, S. Li, Z. Wang, J. Liu. Contrasting fates of subducting carbon related to different oceanic slabs in East Asia. Geochim. Cosmochim. Acta, 324 (2022), pp. 156-173,
CrossRef Google scholar
S.-A. Liu, R.L. Rudnick, W.-R. Liu, F.-Z. Teng, T.-H. Wu, Z.-Z. Wang. Copper isotope evidence for sulfide fractionation and lower crustal foundering in making continental crust. Sci. Adv., 9 (2023), p. eadg6995,
CrossRef Google scholar
Y. Lv, S.-A. Liu, J.-M. Zhu, S. Li. Copper and zinc isotope fractionation during deposition and weathering of highly metalliferous black shales in Central China. Chem. Geol., 445 (2016), pp. 24-35,
CrossRef Google scholar
K.N. Malitch R.M. Latypov I.Yu Badanina S.F. Sluzhenikin Insights into ore genesis of ni-cu-PGE sulfide deposits of the noril’sk province (Russia): evidence from copper and sulfur isotopes Lithos 204 2014 172 187
CrossRef Google scholar
T.F.D. Mason, D.J. Weiss, M. Horstwood, R.R. Parrish, S.S. Russell, E. Mullane, B.J. Coles. High-precision cu and zn isotope analysis by plasma source mass spectrometry part 2. correcting for mass discrimination effects. J. Anal. Atom. Spectrom., 19 (2004), pp. 218-226,
CrossRef Google scholar
R. Mathur, S. Titley, F. Barra, S. Brantley, M. Wilson, A. Phillips, F. Munizaga, V. Maksaev, J. Vervoort, G. Hart. Exploration potential of cu isotope fractionation in porphyry copper deposits. J. Geochem. Explor., 102 (2009), pp. 1-6,
CrossRef Google scholar
R. Mathur, L. Jin, V. Prush, J. Paul, C. Ebersole, A. Fornadel, J.Z. Williams, S. Brantley. Cu isotopes and concentrations during weathering of black shale of the Marcellus formation, Huntingdon County, Pennsylvania (USA). Chem. Geol., 304–305 (2012), pp. 175-184,
CrossRef Google scholar
V. Matjuschkin, J.D. Blundy, R.A. Brooker. The effect of pressure on Sulphur speciation in mid- to deep-crustal arc magmas and implications for the formation of porphyry copper deposits. Contrib. Mineral. Petrol., 171 (2016), p. 66,
CrossRef Google scholar
J.A. Mavrogenes, H.S.C. O’Neill. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochim. Cosmochim. Acta, 63 (1999), pp. 1173-1180,
CrossRef Google scholar
E.E. Meyer, A.N. Quicksall, J.D. Landis, P.K. Link, B.C. Bostick. Trace and rare earth elemental investigation of a sturtian cap carbonate, Pocatello, Idaho: evidence for ocean redox conditions before and during carbonate deposition. Precambrian Res., 192–195 (2012), pp. 89-106,
CrossRef Google scholar
P. Molnar, P. England. Late cenozoic uplift of mountain ranges and global climate change: chicken or egg?. Nature, 346 (1990), pp. 29-34,
CrossRef Google scholar
P. Molnar, P. England, J. Martinod. Mantle dynamics, uplift of the tibetan plateau, and the indian monsoon. Rev. Geophys., 31 (1993), pp. 357-396,
CrossRef Google scholar
F. Moynier, D. Vance, T. Fujii, P. Savage. The isotope geochemistry of zinc and copper. Rev. Mineral. Geochem., 82 (2017), pp. 543-600,
CrossRef Google scholar
Z.-G. Mu, G.H. Curtis, Z.-J. Liao, W. Tong. K-ar age and strontium isotopic composition of the tengchong volcanicrocks, West Yunnan Province, China. Geothermics, 16 (1987), pp. 283-297,
CrossRef Google scholar
J.E. Mungall, J.M. Brenan. Partitioning of platinum-group elements and au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements. Geochim. Cosmochim. Acta, 125 (2014), pp. 265-289,
CrossRef Google scholar
H.W. Nesbitt, G.M. Young. Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299 (1982), pp. 715-717,
CrossRef Google scholar
J.-W. Park, I.H. Campbell, M. Chiaradia, H. Hao, C.-T. Lee. Crustal magmatic controls on the formation of porphyry copper deposits. Nat. Rev. Earth Environ., 2 (2021), pp. 542-557,
CrossRef Google scholar
T. Plank, C.H. Langmuir. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol., 145 (1998), pp. 325-394,
CrossRef Google scholar
J.-Z. Qin, F.-G. Huang, Q. Li, X.-D. Qian, Y.-J. Su, M.-J. Cai. 3-D chromatography of velocity structure in tengchong volcano areas and nearby. J. Seismol. Res., 23 (2000), pp. 157-164
Y.-R. Qu, S.-A. Liu, H. Wu, M.-L. Li, H.-C. Tian. Tracing carbonate dissolution in subducting sediments by zinc and magnesium isotopes. Geochim. Cosmochim. Acta, 319 (2022), pp. 56-72,
CrossRef Google scholar
E.M. Ripley, C. Li. Sulfide saturation in mafic magmas: is external sulfur required for magmatic ni-cu-(PGE) ore genesis?. Econ. Geol., 108 (2013), pp. 45-58,
CrossRef Google scholar
E.M. Ripley, J.G. Brophy, C. Li. Copper solubility in a basaltic melt and sulfide liquid/silicate melt partition coefficients of Cu and Fe. Geochim. Cosmochim. Acta, 66 (2002), pp. 2791-2800,
CrossRef Google scholar
D.M. Sherman. Equilibrium isotopic fractionation of copper during oxidation/reduction, aqueous complexation and ore-forming processes: predictions from hybrid density functional theory. Geochim. Cosmochim. Acta, 118 (2013), pp. 85-97,
CrossRef Google scholar
W.R. Shields, T.J. Murphy, E.L. Garner. Absolute isotopic abundance ratio and the atomic weight of a reference sample of copper. J. Res. Natl. Bur. Stand. A Phys. Chem., 68A (1964), pp. 589-592,
CrossRef Google scholar
J. Siebert, A. Corgne, F.J. Ryerson. Systematics of metal–silicate partitioning for many siderophile elements applied to earth’s core formation. Geochim. Cosmochim. Acta, 75 (2011), pp. 1451-1489,
CrossRef Google scholar
X.Y. Song, M.F. Zhou, R.R. Keays, Z.M. Cao, M. Sun, L. Qi. Geochemistry of the Emeishan flood basalts at yangliuping, Sichuan, SW China: implications for sulfide segregation. Contrib. Mineral. Petrol., 152 (2006), pp. 53-74,
CrossRef Google scholar
X.Y. Song, R.R. Keays, L. Xiao, H.W. Qi, C. Ihlenfeld. Platinum-group element geochemistry of the continental flood basalts in the central emeisihan large Igneous Province, SW China. Chem. Geol., 262 (2009), pp. 246-261,
CrossRef Google scholar
P.A. Sossi, G.P. Halverson, O. Nebel, S.M. Eggins. Combined separation of cu, fe and zn from rock matrices and improved analytical protocols for stable isotope determination. Geostand. Geoanal. Res., 39 (2015), pp. 129-149,
CrossRef Google scholar
S.-S. Sun, W.F. McDonough. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. (Lond.) Spec. Publ., 42 (1989), pp. 313-345,
CrossRef Google scholar
P. Sun, Y. Niu, S. Chen, P. Guo, M. Duan, Y. Chen, H. Gong, Y. Xiao, X. Wang. Copper isotope fractionation during magma differentiation: evidence from lavas on the East Pacific rise at 10°30′N. Geochim. Cosmochim. Acta, 356 (2023), pp. 93-104,
CrossRef Google scholar
P. Tapponier, P. Molnar. Active faulting and tectonics in China. J. Geophys. Res., 82 (1977), pp. 29105-29130,
CrossRef Google scholar
Tapponnier, P., Peltzer, G., LeDain, A.Y., Armijo, R., Cobbold, P.,1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology 10, 611–616. https://doi.org/10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2.
P. Tapponnier, X. Zhiqin, F. Roger, B. Meyer, N. Arnaud, G. Wittlinger, Y. Jingsui. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294 (2001), pp. 1671-1677,
CrossRef Google scholar
F.-Z. Teng, Y. Hu, C. Chauvel. Magnesium isotope geochemistry in arc volcanism: Proc. Natl. Acad. Sci. U.S. A., 113 (26) (2016), pp. 7082-7087,
CrossRef Google scholar
H.-C. Tian, W. Yang, S.-G. Li, S. Ke, X.-Z. Duan. Low δ26Mg volcanic rocks of tengchong in southwestern China: a deep carbon cycle induced by supercritical liquids. Geochim. Cosmochim. Acta, 240 (2018), pp. 191-219,
CrossRef Google scholar
S. Turner, J. Foden. U, th and ra disequilibria, sr, nd and pb isotope and trace element variations in Sunda arc lavas: predominance of a subducted sediment component. Contrib. Mineral. Petrol., 142 (2001), pp. 43-57,
CrossRef Google scholar
C.-Y. Wang, G. Huangfu. Crustal structure in tengchong volcano-geothermal area, western yunan, China. Tectonophysics, 380 (2004), pp. 69-87,
CrossRef Google scholar
F. Wang, Z. Peng, R. Zhu, H. He, L. Yang. Petrogenesis and magma residence time of lavas from tengchong volcanic field (China): evidence from U series disequilibria and 40Ar/39Ar dating. Geochem. Geophys. Geosyst., 7 (2006), p. Q01002,
CrossRef Google scholar
Z. Wang, P. Zhang, Y. Li, T. Ishii, W. Li, S. Foley, X. Wang, X. Wang, M. Li. Copper recycling and redox evolution through progressive stages of oceanic subduction: insights from the Izu-bonin-Mariana forearc. Earth Planet. Sci. Lett., 574 (2021),
CrossRef Google scholar
Y. Xia, E.S. Kiseeva, J. Wade, F. Huang. The effect of core segregation on the cu and zn isotope composition of the silicate moon. Geochem. Perspect. Let., 12 (2019), pp. 12-17,
CrossRef Google scholar
S. Xu, S. Nakai, H. Wakita, X. Wang. Helium isotopic compositions in quaternary volcanic geothermal area near indo-eurasian collisional margin at tengchong, China. J. Matsuda (Ed.), Noble Gas Geochemistry and Cosmochemistry, Terra Scientific Publications Co, Tokyo (1994), pp. 306-313
YBGMR (Yunnan Bureau of Geology and Mineral Resources), 1979. Tengchong geologic map (1:200000) (in Chinese).
A. Yin, T.M. Harrison. Geologic evolution of the himalayan-tibetan orogen. Annu. Rev. Earth Planet. Sci., 28 (2000), pp. 211-280,
CrossRef Google scholar
H. Yu, C. Lin, L. Shi, J. Xu, X. Chen. Characteristics and origin of mafic and ultramafic xenoliths in trachyandesite lavas from heikongshan volcano, tengchong, Yunnan Province. China. Sci. China Earth Sci., 53 (2010), pp. 1295-1306,
CrossRef Google scholar
H. Yu, J. Xu, C. Lin, L. Shi, X. Chen. Magmatic processes inferred from chemical composition, texture and crystal size distribution of the heikongshan lavas in the tengchong volcanic field. SW China. J. Asian Earth Sci., 58 (2012), pp. 1-15,
CrossRef Google scholar
Y. Zhang, J. Liu, F. Meng. Geochemistry of cenozoic volcanic rocks in tengchong, SW China: relationship with the uplift of the tibetan plateau. Isl. Arc, 21 (2012), pp. 255-269,
CrossRef Google scholar
Y.W. Zhao, Q.C. Fan. Magma origin and evolution of maanshan volcano, dayingshan volcano and heikongshan volcano in tengchong area. Acta Petrol. Sin., 26 (4) (2010), pp. 1133-1140
D.-P. Zhao, L. Liu. Deep structure and origin of active volcanoes in China. Geosci. Front., 1 (2010), pp. 31-44,
CrossRef Google scholar
C.-P. Zhao, H. Ran, K.-H. Chen. Present-day magma chambers in tengchong volcano area inferred from relative geothermal gradient. Acta Petrol. Sin., 22 (2006), pp. 1517-1528
S.Y. Zhao, A.Y. Yang, C.H. Langmuir, T.P. Zhao. Oxidized primary arc magmas: constraints from Cu/Zr systematics in global arc volcanics. Sci. Adv., 8 (12) (2022),
CrossRef Google scholar
M.-Y. Zhao, Y.-F. Zheng. Marine carbonate records of terrigenous input into paleotethyan seawater: geochemical constraints from carboniferous limestones. Geochim. Cosmochim. Acta, 141 (2014), pp. 508-531,
CrossRef Google scholar
Y. Zhao C.J. Xue S.-A. Liu D.T.A. Symons X.B. Zhao Y.Q. Yang J.J. Ke Copper isotope fractionation during sulfide-magma differentiation in the tulaergen magmatic Ni–Cu deposit, NW China Lithos 286–287 2017 206 215
CrossRef Google scholar
M.-F. Zhou, P.T. Robinson, C.-Y. Wang, J.-H. Zhao, D.-P. Yan, J.-F. Gao, J. Malpas. Heterogeneous mantle source and magma differentiation of quaternary arc-like volcanic rocks from tengchong, SE margin of the tibetan plateau. Contrib. Mineral. Petrol., 163 (2012), pp. 841-860,
CrossRef Google scholar
X.K. Zhu, Y. Guo, R.J.P. Williams, R.K. O’Nions, A. Matthews, N.S. Belshaw, G.W. Canters, E.C. De Waal, U. Weser, B.K. Burgess, B. Salvato. Mass fractionation processes of transition metal isotopes. Earth Planet. Sci. Lett., 200 (2002), pp. 47-62,
CrossRef Google scholar
B.-Q. Zhu, C.-X. Mao, G.W. Lugmair, J.D. Macdougall. Isotopic and geochemical evidence for the origin of plio-pleistocene volcanic rocks near the indo-eurasian collisional margin at tengchong. China. Earth Planet. Sci. Lett., 65 (1983), pp. 263-275,
CrossRef Google scholar
H. Zou, C.-C. Shen, Q. Fan, K. Lin. U-series disequilibrium in young tengchong volcanics: recycling of mature clay sediments or mudstones into the SE tibetan mantle. Lithos, 192–195 (2014), pp. 132-141,
CrossRef Google scholar
H. Zou, M. Ma, Q. Fan, B. Xu, S.-Q. Li, Y. Zhao, D.T. King. Genesis and open-system evolution of quaternary magmas beneath southeastern margin of Tibet: constraints from sr-nd-pb-hf isotope systematics. Lithos, 272–273 (2017), pp. 278-290,
CrossRef Google scholar
Z. Zou, Z. Wang, Y.-G. Xu, J. Ciazela, X. Wang, S. Foley, W.-Q. Zhang, W. Li, M. Li, Y. Liu. Contrasting cu isotopes in mid-ocean ridge basalts and lower oceanic crust: insights into the oceanic crustal magma plumbing systems. Earth Planet. Sci. Lett., 627 (2024),
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/