Copper isotope constraints on the origins of basaltic and andesitic magmas in the Tengchong volcanic field, SE Tibet

Yuan-Ru Qu , Sheng-Ao Liu

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (4) : 101818

PDF
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (4) : 101818 DOI: 10.1016/j.gsf.2024.101818

Copper isotope constraints on the origins of basaltic and andesitic magmas in the Tengchong volcanic field, SE Tibet

Author information +
History +
PDF

Abstract

The Tengchong volcano field (TVF), situated at the southeastern margin of the Tibetan Plateau, holds crucial information regarding Cenozoic volcanic activities and geotectonic evolution of the SE Tibet. To provide new constraints on petrogenesis and evolution of the Tengchong volcanism, here we conducted copper (Cu) elemental and isotopic analyses on a suite of samples that document the evolution from basalts to andesites in the TVF. The basalts are Cu-depleted (29.7–36.9 ppm) and have higher δ65Cu values (0.19‰–0.40‰, mean = 0.31‰ ± 0.05‰; n = 11) than those of mid-ocean ridge basalts (MORBs, ∼0.09‰) and the mantle (∼0.06‰) as well as the majority of island arc lavas. Along with the low Cu/Zr ratios, these characteristics are interpreted to reflect the fractionation of isotopically light sulfides in the S-saturated systems during magma ascent, rather than source heterogeneity induced by recycled materials and redox reactions. Compared with the basalts, the andesites have slightly lower Cu contents (14.4–29.4 ppm) and lighter Cu isotopic compositions (mean = –0.14‰ ± 0.06‰; n = 13). These differences cannot be attributed to progressive sulfide fractionation of basaltic magmas but require the assimilation of lower crustal materials with low δ65Cu values during evolution of the andesitic magmas. Our results collectively suggest that Cu isotopes can provide valuable insights into magma origin and evolution.

Keywords

Copper isotopes / Sulfide segregation / Magmatic differentiation / Tengchong volcanic field

Cite this article

Download citation ▾
Yuan-Ru Qu, Sheng-Ao Liu. Copper isotope constraints on the origins of basaltic and andesitic magmas in the Tengchong volcanic field, SE Tibet. Geoscience Frontiers, 2024, 15(4): 101818 DOI:10.1016/j.gsf.2024.101818

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Yuan-Ru Qu: Methodology, Formal analysis, Writing – original draft, Writing – review & editing. Sheng-Ao Liu: Conceptualization, Methodology, Formal analysis, Writing – original draft, Writing – review & editing, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We gratefully thank M. Santosh (Editorial Advisor) and Yirang Jang (AE) for their handling of this manuscript, and two anonymous reviewers for their thoughtful comments and suggestions that helped to improve the quality of this paper. We are grateful to Heng-Ci Tian for providing some of the samples, and to Tian-Hao Wu and Chun Yang for discussions. This work is supported by the National Natural Science Foundation of China (grant 42121002) and the National Key R&D Program of China (2019YFA0708400).

References

[1]

D. Asael, A. Matthews, M. Bar-Matthews, L. Halicz. Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel). Chem. Geol., 243 (2007), pp. 238-254,

[2]

D. Bai, M.A. Meju, Z. Liao. Magnetotelluric images of deep crustal structure of the rehai geothermal field near tengchong, southern China. Geophys. J. Int., 147 (2001), pp. 677-687,

[3]

M. Bigalke, S. Weyer, W. Wilcke. Copper isotope fractionation during complexation with insolubilized humic acid. Environ. Sci. Technol., 44 (2010), pp. 5496-5502,

[4]

L.E. Borg, A.D. Brandon, M.A. Clynne, R.J. Walker. Re-os isotopic systematics of primitive lavas from the lassen region of the Cascade arc. California. Earth Planet. Sci. Lett., 177 (2000), pp. 301-317,

[5]

Z. Chen, J. Chen, L.S. Tamehe, Y. Zhang, Z. Zeng, X. Xia, Z. Cui, T. Zhang, K. Guo. Heavy copper isotopes in arc-related lavas from cold subduction zones uncover a sub-arc mantle metasomatized by serpentinite-derived sulfate-rich fluids. J. Geophys. Res. Solid Earth, 127 (2022),

[6]

C. Chen, J. Ciazela, W. Li, W. Dai, Z. Wang, S.F. Foley, M. Li, Z. Hu, Y. Liu. Calcium isotopic compositions of oceanic crust at various spreading rates. Geochim. Cosmochim. Acta, 278 (2020), pp. 272-288,

[7]

F.K. Chen, M. Satir, J. Ji, D. Zhong. Nd–Sr–Pb isotopes of tengchong cenozoic volcanic rocks from western Yunnan, China: evidence for an enriched-mantle source. J. Asian Earth Sci., 21 (2002), pp. 39-45,

[8]

M. Chiaradia. Copper enrichment in arc magmas controlled by overriding plate thickness. Nat. Geosci., 7 (2014), pp. 43-46,

[9]

Chung, S.-L., Lee, T.-Y., Lo, C.-H., Wang, P.-L., Chen, C.-Y., Yem, N.T., Hoa, T.T., Wu, G.,1997. Intraplate extension prior to continental extrusion along the Ailao Shan-Red River shear zone. Geology 25, 311–314. https://doi.org/10.1130/0091-7613(1997)025<0311:IEPTCE>2.3.CO;2.

[10]

B.-L. Cong, Q.-Y. Chen, R.-Y. Zhang, G.-Y. Wu, P. Xu. Petrogenesis of cenozoic volcanic rocks in tengchong region of western Yunnan Province. China. Sci. China Ser. B, 37 (1994), pp. 1264-1271

[11]

D.J. DePaolo. A neodymium and strontium isotopic study of the mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and peninsular ranges. California. J. Geophys. Res. Solid Earth, 86 (1981), pp. 10470-10488,

[12]

X.-Z. Duan, H.-R. Fan, H.-F. Zhang, G. Yaxley, M. Santosh, H.-C. Tian, K.-X. Tan, Z.-P. Tang, Y.-S. Xie, Y.-L. Xiao, Z.-H. Hou, H.-F. Guo. Melt inclusions in phenocrysts track enriched upper mantle source for cenozoic tengchong volcanic field, Yunnan Province, SW China. Lithos, 324–325 (2019), pp. 180-201,

[13]

M.A. Elburg, J.D. Foden, M.J. van Bergen, I. Zulkarnain. Australia and Indonesia in collision: geochemical sources of magmatism. J. Volcanol. Geoth. Res., 140 (2005), pp. 25-47,

[14]

Q. Fan, J. Sui, R. Liu. Sr-nd isotopic geochemistry andmagmatic evolutions of Wudalianchi volcano, tianchi volcano and tengchong volcano. Acta Petrol. Et Mineral., 20 (2001), pp. 233-238

[15]

S.A. Fellows, D. Canil. Experimental study of the partitioning of cu during partial melting of earth’s mantle. Earth Planet. Sci. Lett., 337–338 (2012), pp. 133-143,

[16]

K. Fio, J.E. Spangenberg, I. Vlahović, J. Sremac, I. Velić, E. Mrinjek. Stable isotope and trace element stratigraphy across the permian-triassic transition: a redefinition of the boundary in the Velebit Mountain. Croatia. Chem. Geol., 278 (2010), pp. 38-57,

[17]

T. Fujii, F. Moynier, M. Abe, K. Nemoto, F. Albarède. Copper isotope fractionation between aqueous compounds relevant to low temperature geochemistry and biology. Geochim. Cosmochim. Acta, 110 (2013), pp. 29-44,

[18]

G.A. Gaetani, T.L. Grove. Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: constraints on core formation in the Earth and Mars. Geochim. Cosmochim. Acta, 61 (1997), pp. 1829-1846,

[19]

J. Huang, S.-A. Liu, G. Wörner, H. Yu, Y. Xiao. Copper isotope behavior during extreme magma differentiation and degassing: a case study on laacher see phonolite tephra (east eifel, Germany). Contrib. Mineral. Petrol., 171 (2016),

[20]

J. Huang, F. Huang, Z. Wang, X. Zhang, H. Yu. Copper isotope fractionation during partial melting and melt percolation in the upper mantle: evidence from massif peridotites in Ivrea-verbano zone. Italian Alps. Geochim. Cosmochim. Acta, 211 (2017), pp. 48-63,

[21]

J.-L. Huang, D.-P. Zhao. High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res. Solid Earth, 111 (9) (2006),

[22]

X.-W. Huang, M.-F. Zhou, C.Y. Wang, P.T. Robinson, J.-H. Zhao, L. Qi. Chalcophile element constraints on magma differentiation of quaternary volcanoes in tengchong. SW China. J. Asian Earth Sci., 76 (2013), pp. 1-11,

[23]

G. Huangfu. Review of studies on tengchong volcanoes. J. Seismol. Res., 20 (4) (1997), pp. 431-437

[24]

G. Huangfu, C.S. Jiang. Study on tengchong volcanic activity. Yunnan Science and Technology Press, Kunming (in Chinese) (2000)

[25]

F.E. Jenner, H.C. O’Neill, R.J. Arculus, J.A. Mavrogenes. The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu. J. Petrol., 51 (2010), pp. 2445-2464,

[26]

C.-S. Jiang. Distribution characteristics of tengchong volcano in the cenozoic era. J. Seismol. Res., 21 (1998), pp. 309-319

[27]

C.-S. Jiang. Period division of volcano activities in the cenozoic era of tengchong. J. Seismol. Res., 21 (1998), pp. 320-329

[28]

C.-S. Jiang, Z.-H. Zhou, C.-P. Zhao. The structure characteristics of the crust and upper mantle in the area of tengchong volcano. J. Seismol. Res., 27 (2004), pp. 1-6

[29]

R.R. Keays, P.C. Lightfoot. Siderophile and chalcophile metal variations in tertiary picrites and basalts from West Greenland with implications for the sulphide saturation history of continental flood basalt magmas. Miner. Deposita, 42 (2007), pp. 319-336,

[30]

P.D. Kempton, R. Mathur, R.S. Harmon, A. Bell, J. Hoefs, B. Shaulis. Cu-isotope evidence for subduction modification of lithospheric mantle. Geochem. Geophys. Geosyst., 23 (8) (2022), Article e2022GC010436,

[31]

C.-T.A. Lee, W.P. Leeman, D. Canil, Z.-X. Li. Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions. J. Petrol., 46 (11) (2005), pp. 2313-2336,

[32]

J.-S. Lei, D.-P. Zhao, Y.-J. Su. Insight into the origin of the tengchong intraplate volcano and seismotectonics in Southwest China from local and teleseismic data. J. Geophys. Res. Solid Earth, 114 (2009), p. B05302,

[33]

W. Li, S.E. Jackson, N.J. Pearson, O. Alard, B.W. Chappell. The cu isotopic signature of granites from the Lachlan Fold Belt, SE Australia. Chem. Geol., 258 (2009), pp. 38-49,

[34]

D. Li, Z. Luo, J. Liu, Y. Chen, Y. Jin. Magma origin and evolution of tengchong cenozoic volcanic rocks from West Yunnan, China: evidence from whole rock geochemistry and nd-sr-pb isotopes. Acta Geol. Sin. (English Edition), 86 (2012), pp. 867-878,

[35]

S.-G. Li, W. Yang, S. Ke, X. Meng, H. Tian, L. Xu, Y. He, J. Huang, X.-C. Wang, Q. Xia, W. Sun, X. Yang, Z.-Y. Ren, H. Wei, Y. Liu, F. Meng, J. Yan. Deep carbon cycles constrained by a large-scale mantle mg isotope anomaly in eastern China. Nat. Sci. Rev., 4 (2017), pp. 111-120,

[36]

N. Li, L.Y. Zhang. A study on volcanic minerals and hosted melt inclusions in newly-erupted tengchong volcanic rocks. Acta Petrol. Sin., 27 (10) (2011), pp. 2842-2854

[37]

P.C. Lightfoot, R.R. Keays. Siderophile and chalcophile metal variations in flood basalts from the siberian trap, noril’sk region: implications for the origin of the Ni–Cu-PGE sulfide ores. Econ. Geol., 100 (2005), pp. 439-462,

[38]

S.H. Little, S. Munson, J. Prytulak, B.J. Coles, S.J. Hammond, M. Widdowson. Cu and zn isotope fractionation during extreme chemical weathering. Geochim. Cosmochim. Acta, 263 (2019), pp. 85-107,

[39]

F. Liu, X. Li, G. Wang, Y. Liu, H. Zhu, J. Kang, F. Huang, W. Sun, X. Xia, Z. Zhang. Marine carbonate component in the mantle beneath the southeastern tibetan plateau: evidence from magnesium and calcium isotopes. J. Geophys. Res. Solid Earth, 122 (2017), pp. 9729-9744,

[40]

S.-A. Liu, P.-P. Liu, Y. Lv, Z.-Z. Wang, J.-G. Dai. Cu and zn isotope fractionation during oceanic alteration: implications for oceanic cu and zn cycles. Geochim. Cosmochim. Acta, 257 (2019), pp. 191-205,

[41]

S.-A. Liu, T. Wu, S. Li, Z. Wang, J. Liu. Contrasting fates of subducting carbon related to different oceanic slabs in East Asia. Geochim. Cosmochim. Acta, 324 (2022), pp. 156-173,

[42]

S.-A. Liu, R.L. Rudnick, W.-R. Liu, F.-Z. Teng, T.-H. Wu, Z.-Z. Wang. Copper isotope evidence for sulfide fractionation and lower crustal foundering in making continental crust. Sci. Adv., 9 (2023), p. eadg6995,

[43]

Y. Lv, S.-A. Liu, J.-M. Zhu, S. Li. Copper and zinc isotope fractionation during deposition and weathering of highly metalliferous black shales in Central China. Chem. Geol., 445 (2016), pp. 24-35,

[44]

K.N. Malitch R.M. Latypov I.Yu Badanina S.F. Sluzhenikin Insights into ore genesis of ni-cu-PGE sulfide deposits of the noril’sk province (Russia): evidence from copper and sulfur isotopes Lithos 204 2014 172 187

[45]

T.F.D. Mason, D.J. Weiss, M. Horstwood, R.R. Parrish, S.S. Russell, E. Mullane, B.J. Coles. High-precision cu and zn isotope analysis by plasma source mass spectrometry part 2. correcting for mass discrimination effects. J. Anal. Atom. Spectrom., 19 (2004), pp. 218-226,

[46]

R. Mathur, S. Titley, F. Barra, S. Brantley, M. Wilson, A. Phillips, F. Munizaga, V. Maksaev, J. Vervoort, G. Hart. Exploration potential of cu isotope fractionation in porphyry copper deposits. J. Geochem. Explor., 102 (2009), pp. 1-6,

[47]

R. Mathur, L. Jin, V. Prush, J. Paul, C. Ebersole, A. Fornadel, J.Z. Williams, S. Brantley. Cu isotopes and concentrations during weathering of black shale of the Marcellus formation, Huntingdon County, Pennsylvania (USA). Chem. Geol., 304–305 (2012), pp. 175-184,

[48]

V. Matjuschkin, J.D. Blundy, R.A. Brooker. The effect of pressure on Sulphur speciation in mid- to deep-crustal arc magmas and implications for the formation of porphyry copper deposits. Contrib. Mineral. Petrol., 171 (2016), p. 66,

[49]

J.A. Mavrogenes, H.S.C. O’Neill. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochim. Cosmochim. Acta, 63 (1999), pp. 1173-1180,

[50]

E.E. Meyer, A.N. Quicksall, J.D. Landis, P.K. Link, B.C. Bostick. Trace and rare earth elemental investigation of a sturtian cap carbonate, Pocatello, Idaho: evidence for ocean redox conditions before and during carbonate deposition. Precambrian Res., 192–195 (2012), pp. 89-106,

[51]

P. Molnar, P. England. Late cenozoic uplift of mountain ranges and global climate change: chicken or egg?. Nature, 346 (1990), pp. 29-34,

[52]

P. Molnar, P. England, J. Martinod. Mantle dynamics, uplift of the tibetan plateau, and the indian monsoon. Rev. Geophys., 31 (1993), pp. 357-396,

[53]

F. Moynier, D. Vance, T. Fujii, P. Savage. The isotope geochemistry of zinc and copper. Rev. Mineral. Geochem., 82 (2017), pp. 543-600,

[54]

Z.-G. Mu, G.H. Curtis, Z.-J. Liao, W. Tong. K-ar age and strontium isotopic composition of the tengchong volcanicrocks, West Yunnan Province, China. Geothermics, 16 (1987), pp. 283-297,

[55]

J.E. Mungall, J.M. Brenan. Partitioning of platinum-group elements and au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements. Geochim. Cosmochim. Acta, 125 (2014), pp. 265-289,

[56]

H.W. Nesbitt, G.M. Young. Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299 (1982), pp. 715-717,

[57]

J.-W. Park, I.H. Campbell, M. Chiaradia, H. Hao, C.-T. Lee. Crustal magmatic controls on the formation of porphyry copper deposits. Nat. Rev. Earth Environ., 2 (2021), pp. 542-557,

[58]

T. Plank, C.H. Langmuir. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol., 145 (1998), pp. 325-394,

[59]

J.-Z. Qin, F.-G. Huang, Q. Li, X.-D. Qian, Y.-J. Su, M.-J. Cai. 3-D chromatography of velocity structure in tengchong volcano areas and nearby. J. Seismol. Res., 23 (2000), pp. 157-164

[60]

Y.-R. Qu, S.-A. Liu, H. Wu, M.-L. Li, H.-C. Tian. Tracing carbonate dissolution in subducting sediments by zinc and magnesium isotopes. Geochim. Cosmochim. Acta, 319 (2022), pp. 56-72,

[61]

E.M. Ripley, C. Li. Sulfide saturation in mafic magmas: is external sulfur required for magmatic ni-cu-(PGE) ore genesis?. Econ. Geol., 108 (2013), pp. 45-58,

[62]

E.M. Ripley, J.G. Brophy, C. Li. Copper solubility in a basaltic melt and sulfide liquid/silicate melt partition coefficients of Cu and Fe. Geochim. Cosmochim. Acta, 66 (2002), pp. 2791-2800,

[63]

D.M. Sherman. Equilibrium isotopic fractionation of copper during oxidation/reduction, aqueous complexation and ore-forming processes: predictions from hybrid density functional theory. Geochim. Cosmochim. Acta, 118 (2013), pp. 85-97,

[64]

W.R. Shields, T.J. Murphy, E.L. Garner. Absolute isotopic abundance ratio and the atomic weight of a reference sample of copper. J. Res. Natl. Bur. Stand. A Phys. Chem., 68A (1964), pp. 589-592,

[65]

J. Siebert, A. Corgne, F.J. Ryerson. Systematics of metal–silicate partitioning for many siderophile elements applied to earth’s core formation. Geochim. Cosmochim. Acta, 75 (2011), pp. 1451-1489,

[66]

X.Y. Song, M.F. Zhou, R.R. Keays, Z.M. Cao, M. Sun, L. Qi. Geochemistry of the Emeishan flood basalts at yangliuping, Sichuan, SW China: implications for sulfide segregation. Contrib. Mineral. Petrol., 152 (2006), pp. 53-74,

[67]

X.Y. Song, R.R. Keays, L. Xiao, H.W. Qi, C. Ihlenfeld. Platinum-group element geochemistry of the continental flood basalts in the central emeisihan large Igneous Province, SW China. Chem. Geol., 262 (2009), pp. 246-261,

[68]

P.A. Sossi, G.P. Halverson, O. Nebel, S.M. Eggins. Combined separation of cu, fe and zn from rock matrices and improved analytical protocols for stable isotope determination. Geostand. Geoanal. Res., 39 (2015), pp. 129-149,

[69]

S.-S. Sun, W.F. McDonough. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. (Lond.) Spec. Publ., 42 (1989), pp. 313-345,

[70]

P. Sun, Y. Niu, S. Chen, P. Guo, M. Duan, Y. Chen, H. Gong, Y. Xiao, X. Wang. Copper isotope fractionation during magma differentiation: evidence from lavas on the East Pacific rise at 10°30′N. Geochim. Cosmochim. Acta, 356 (2023), pp. 93-104,

[71]

P. Tapponier, P. Molnar. Active faulting and tectonics in China. J. Geophys. Res., 82 (1977), pp. 29105-29130,

[72]

Tapponnier, P., Peltzer, G., LeDain, A.Y., Armijo, R., Cobbold, P.,1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology 10, 611–616. https://doi.org/10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2.

[73]

P. Tapponnier, X. Zhiqin, F. Roger, B. Meyer, N. Arnaud, G. Wittlinger, Y. Jingsui. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294 (2001), pp. 1671-1677,

[74]

F.-Z. Teng, Y. Hu, C. Chauvel. Magnesium isotope geochemistry in arc volcanism: Proc. Natl. Acad. Sci. U.S. A., 113 (26) (2016), pp. 7082-7087,

[75]

H.-C. Tian, W. Yang, S.-G. Li, S. Ke, X.-Z. Duan. Low δ26Mg volcanic rocks of tengchong in southwestern China: a deep carbon cycle induced by supercritical liquids. Geochim. Cosmochim. Acta, 240 (2018), pp. 191-219,

[76]

S. Turner, J. Foden. U, th and ra disequilibria, sr, nd and pb isotope and trace element variations in Sunda arc lavas: predominance of a subducted sediment component. Contrib. Mineral. Petrol., 142 (2001), pp. 43-57,

[77]

C.-Y. Wang, G. Huangfu. Crustal structure in tengchong volcano-geothermal area, western yunan, China. Tectonophysics, 380 (2004), pp. 69-87,

[78]

F. Wang, Z. Peng, R. Zhu, H. He, L. Yang. Petrogenesis and magma residence time of lavas from tengchong volcanic field (China): evidence from U series disequilibria and 40Ar/39Ar dating. Geochem. Geophys. Geosyst., 7 (2006), p. Q01002,

[79]

Z. Wang, P. Zhang, Y. Li, T. Ishii, W. Li, S. Foley, X. Wang, X. Wang, M. Li. Copper recycling and redox evolution through progressive stages of oceanic subduction: insights from the Izu-bonin-Mariana forearc. Earth Planet. Sci. Lett., 574 (2021),

[80]

Y. Xia, E.S. Kiseeva, J. Wade, F. Huang. The effect of core segregation on the cu and zn isotope composition of the silicate moon. Geochem. Perspect. Let., 12 (2019), pp. 12-17,

[81]

S. Xu, S. Nakai, H. Wakita, X. Wang. Helium isotopic compositions in quaternary volcanic geothermal area near indo-eurasian collisional margin at tengchong, China. J. Matsuda (Ed.), Noble Gas Geochemistry and Cosmochemistry, Terra Scientific Publications Co, Tokyo (1994), pp. 306-313

[82]

YBGMR (Yunnan Bureau of Geology and Mineral Resources), 1979. Tengchong geologic map (1:200000) (in Chinese).

[83]

A. Yin, T.M. Harrison. Geologic evolution of the himalayan-tibetan orogen. Annu. Rev. Earth Planet. Sci., 28 (2000), pp. 211-280,

[84]

H. Yu, C. Lin, L. Shi, J. Xu, X. Chen. Characteristics and origin of mafic and ultramafic xenoliths in trachyandesite lavas from heikongshan volcano, tengchong, Yunnan Province. China. Sci. China Earth Sci., 53 (2010), pp. 1295-1306,

[85]

H. Yu, J. Xu, C. Lin, L. Shi, X. Chen. Magmatic processes inferred from chemical composition, texture and crystal size distribution of the heikongshan lavas in the tengchong volcanic field. SW China. J. Asian Earth Sci., 58 (2012), pp. 1-15,

[86]

Y. Zhang, J. Liu, F. Meng. Geochemistry of cenozoic volcanic rocks in tengchong, SW China: relationship with the uplift of the tibetan plateau. Isl. Arc, 21 (2012), pp. 255-269,

[87]

Y.W. Zhao, Q.C. Fan. Magma origin and evolution of maanshan volcano, dayingshan volcano and heikongshan volcano in tengchong area. Acta Petrol. Sin., 26 (4) (2010), pp. 1133-1140

[88]

D.-P. Zhao, L. Liu. Deep structure and origin of active volcanoes in China. Geosci. Front., 1 (2010), pp. 31-44,

[89]

C.-P. Zhao, H. Ran, K.-H. Chen. Present-day magma chambers in tengchong volcano area inferred from relative geothermal gradient. Acta Petrol. Sin., 22 (2006), pp. 1517-1528

[90]

S.Y. Zhao, A.Y. Yang, C.H. Langmuir, T.P. Zhao. Oxidized primary arc magmas: constraints from Cu/Zr systematics in global arc volcanics. Sci. Adv., 8 (12) (2022),

[91]

M.-Y. Zhao, Y.-F. Zheng. Marine carbonate records of terrigenous input into paleotethyan seawater: geochemical constraints from carboniferous limestones. Geochim. Cosmochim. Acta, 141 (2014), pp. 508-531,

[92]

Y. Zhao C.J. Xue S.-A. Liu D.T.A. Symons X.B. Zhao Y.Q. Yang J.J. Ke Copper isotope fractionation during sulfide-magma differentiation in the tulaergen magmatic Ni–Cu deposit, NW China Lithos 286–287 2017 206 215

[93]

M.-F. Zhou, P.T. Robinson, C.-Y. Wang, J.-H. Zhao, D.-P. Yan, J.-F. Gao, J. Malpas. Heterogeneous mantle source and magma differentiation of quaternary arc-like volcanic rocks from tengchong, SE margin of the tibetan plateau. Contrib. Mineral. Petrol., 163 (2012), pp. 841-860,

[94]

X.K. Zhu, Y. Guo, R.J.P. Williams, R.K. O’Nions, A. Matthews, N.S. Belshaw, G.W. Canters, E.C. De Waal, U. Weser, B.K. Burgess, B. Salvato. Mass fractionation processes of transition metal isotopes. Earth Planet. Sci. Lett., 200 (2002), pp. 47-62,

[95]

B.-Q. Zhu, C.-X. Mao, G.W. Lugmair, J.D. Macdougall. Isotopic and geochemical evidence for the origin of plio-pleistocene volcanic rocks near the indo-eurasian collisional margin at tengchong. China. Earth Planet. Sci. Lett., 65 (1983), pp. 263-275,

[96]

H. Zou, C.-C. Shen, Q. Fan, K. Lin. U-series disequilibrium in young tengchong volcanics: recycling of mature clay sediments or mudstones into the SE tibetan mantle. Lithos, 192–195 (2014), pp. 132-141,

[97]

H. Zou, M. Ma, Q. Fan, B. Xu, S.-Q. Li, Y. Zhao, D.T. King. Genesis and open-system evolution of quaternary magmas beneath southeastern margin of Tibet: constraints from sr-nd-pb-hf isotope systematics. Lithos, 272–273 (2017), pp. 278-290,

[98]

Z. Zou, Z. Wang, Y.-G. Xu, J. Ciazela, X. Wang, S. Foley, W.-Q. Zhang, W. Li, M. Li, Y. Liu. Contrasting cu isotopes in mid-ocean ridge basalts and lower oceanic crust: insights into the oceanic crustal magma plumbing systems. Earth Planet. Sci. Lett., 627 (2024),

AI Summary AI Mindmap
PDF

333

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/