Artificial Intelligence: A new era for spatial modelling and interpreting climate-induced hazard assessment
Abhirup Dikshit, Biswajeet Pradhan, Sahar S. Matin, Ghassan Beydoun, M. Santosh, Hyuck-Jin Park, Khairul Nizam Abdul Maulud
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (4) : 101815.
Artificial Intelligence: A new era for spatial modelling and interpreting climate-induced hazard assessment
The application of Artificial Intelligence in various fields has witnessed tremendous progress in the recent years. The field of geosciences and natural hazard modelling has also benefitted immensely from the introduction of novel algorithms, the availability of large quantities of data, and the increase in computational capacity. The enhancement in algorithms can be largely attributed to the elevated complexity of the network architecture and the heightened level of abstraction found in the network's later layers. As a result, AI models lack transparency and accountability, often being dubbed as “black box” models. Explainable AI (XAI) is emerging as a solution to make AI models more transparent, especially in domains where transparency is essential. Much discussion surrounds the use of XAI for diverse purposes, as researchers explore its applications across various domains. With the growing body of research papers on XAI case studies, it has become increasingly important to address existing gaps in the literature. The current literature lacks a comprehensive understanding of the capabilities, limitations, and practical implications of XAI. This study provides a comprehensive overview of what constitutes XAI, how it is being used and potential applications in hydrometeorological natural hazards. It aims to serve as a useful reference for researchers, practitioners, and stakeholders who are currently using or intending to adopt XAI, thereby contributing to the advancements for wider acceptance of XAI in the future.
Artificial Intelligence / Explainable AI (XAI) / Climate change / Spatial modelling / Natural hazards
A. AghaKouchak, A. Farahmand, F.S. Melton, J. Teixeria, M.C. Anderson, B.D. Wardlow, C.R. Hain. Remote sensing of drought: progress, challenges and opportunities. Rev. Geophys., 53 (2) (2015), pp. 452-480
|
M.R. Alizadeh, J. Adamowski, M.R. Nikoo, A. AghaKouchak, P. Dennison, M. Sadegh. A century of observations reveals increasing likelihood of continental-scale compound dry-hot extremes. Sci. Adv., 6 (39) (2020), p. eaaz4571,
CrossRef
Google scholar
|
H.A.H. Al-Najjar, B. Pradhan, G. Beydoun, R. Sarkar, H.-J. Park, A. Alamri. A novel method using explainable artificial intelligence (XAI)-based shapley additive explanations for spatial landslide prediction using time-series SAR dataset. Gondwana Res., 123 (2022), pp. 107-124
|
S. Angel, A.M. Blei, D.L. Civco, A.M. Blei. Atlas of Urban Expansion. Lincoln Institute of Land Policy Cambridge, MA (2012)
|
N.W. Arnell, S.N. Gosling. The impacts of climate change on river flood risk at the global scale. Clim. Change, 134 (2016), pp. 387-401
|
A.B. Arrieta, N. Díaz-Rodríguez, J.D. Ser, A. Bennetot, S. Tabik, A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamin, R. Chatila, F. Herrera. Explainable artificial intelligence XAI.: concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion, 58 (2020), pp. 82-115
|
Bahdanau, D., Cho, K., Bengio, Y., 2014. Neural machine translation by jointly learning to align and translate. arXiv:1409.0473.
|
A. Balagopalan, H. Zhang, K. Hamidieh, T. Hartvigsen, F. Rudzicz, M. Ghassemi. The road to explainability is paved with bias: measuring the fairness of explanations. 2022 ACM Conference on Fairness, Accountability, and Transparency (2022), pp. 1194-1206
|
E.A. Barnes, B. Toms, J.W. Hurrell, I. Ebert-Uphoff, C. Anderson, D. Anderson. Indicator patterns of forced change learned by an artificial neural network. J. Adv. Model. Earth Syst., 129 (2020)
|
M. Beniston. Climatic change in mountain regions. A review of possible impacts. Clim. Chang., 59 (2003), pp. 5-31
|
S. Bernardie, R. Vandromme, Y. Thiery, T. Houet, M. Grémont, F. Masson, G. Grandjean, I. Bouroullec. Modelling landslide hazards under global changes: the case of a Pyrenean valley. Nat. Hazards Earth Syst. Sci., 21 (2021), pp. 147-169
|
K. Bessho, K. Date, M. Hayashi, A. Ikeda, T. Imai, H. Inoue, Y. Kumagai, T. Miyakawa, H. Murata, T. Ohno, A. Okuyama, R. Oyama, Y. Sasaki, Y. Shimazu, K. Shimoji, Y. Sumida, M. Suzuki, H. Taniguchi, H. Tsuchiyama, D. Uesawa, H. Yokota, R. Yoshida. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn., 94 (2016), pp. 151-183
|
R. Caruana, Y. Lou, J. Gehre, P. Koch, M. Sturm, N. Elhadad. Intelligible models for healthcare: predicting pneumonia risk and hospital 30-day readmission. Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2015), pp. 1721-1730
|
J. Cattiaux, A. Ribes. Defining single extreme weather events in a climate perspective. Bull. Amer. Meteorol. Soc., 99 (8) (2018), pp. 1557-1568
|
D. Chakraborty, H. Başağaoğlu, L. Gutierrez, A. Mirchi. Explainable AI reveals new hydroclimatic insights for ecosystem-centric groundwater management. Environ. Res. Lett., 16 (2021), Article 114024
|
F. Chiang, O. Mazdiyasni, A. AghaKouchak. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nat. Commun., 12 (2021), p. 2754
|
J.S. Chowdhary, K. Hu, G. Srinivas, Y. Kosaka, L. Wang, K.K. Rao. The Eurasian jet streams as conduits for East Asian monsoon variability. Curr. Clim. Change Rep., 5 (2019), pp. 233-244
|
J.I. Christian, J.B. Basara, E.D. Hunt, J.A. Otkin, J.C. Furtado, V. Mishra, X. Xiao, R.M. Randall. Global distribution, trends, and drivers of flash drought occurrence. Nat. Commun., 12 (2021), p. 6330
|
Christoph, M., 2019. Interpretable machine learning. A guide for making black box models explainable. https://christophm.github.io/interpretable-ml-book/.
|
E. Collini, L.A.I. Palesi, P. Nesi, G. Pantaleo, N. Nocentini, A. Rosi. Predicting and understanding landslide events with explainable AI. IEEE Access, 10 (2022), pp. 31175-31189
|
B.I. Cook, T.R. Ault, J.E. Smerdon. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv., 1 (1) (2015), p. e1400082
|
B.I. Cook, J.S. Mankin, K. Marvel, A.P. Williams, J.E. Smerdon, K.J. Anchukatis. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earth Future, 8 (6) (2020)
|
D. Coumou, S. Rahmstorf. A decade of weather extremes. Nat. Clim. Chang., 2 (2012), pp. 491-496
|
M.J. Crozier. Deciphering the effect of climate change on landslide activity: a review. Geomorphology, 124 (2010), pp. 260-267
|
A. Dai. Increasing drought under global warming in observations and models. Nat. Clim. Change, 3 (2013), pp. 52-58
|
A. Dai, T. Zhao, J. Chen. Climate change and drought: a precipitation and evaporation perspective. Curr. Clim. Change Rep., 4 (2018), pp. 301-312
|
J.A. de Bruijn, H. de Moel, B. Jongman, M.C. de Ruiter, J. Wagemaker, J.C.J.H. Aerts. A global database of historic and real-time flood events based on social media. Sci. Data, 6 (2019), p. 311
|
C. Deser, F. Lehner, K.B. Rodgers, T. Ault, T.L. Delworth, P.N. DiNezio, A. Fiore, C. Frankignoul, J.C. Fyfe, D.E. Horton, J.E. Kay, R. Knutti, N.S. Lovenduski, J. Marotzke, K.A. McKinnon, S. Minobe, J. Randerson, J.A. Screen, I.R. Simpson, M. Ting. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Chang., 104 (2020), pp. 277-286
|
N.S. Diffenbaugh, D. Singh, J.S. Mankin, D.E. Horton, D.L. Swain, D. Touma, A. Charland, Y. Liu, M. Haugen, M. Tsiang, B. Rajaratnam. Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl Acad. Sci. U.S.A., 114 (9) (2017), pp. 4881-4886
|
A. Dikshit, B. Pradhan, A.M. Alamri. Pathways and challenges of the application of artificial intelligence to geohazards modelling. Gondwana Res., 100 (2021), pp. 290-301
|
A. Dikshit, B. Pradhan. Interpretable and explainable AI XAI. model for spatial drought prediction. Sci. Total Environ., 801 (2021), Article 149797
|
Doshi-Velez, F., Kim, B., 2017. Towards A Rigorous Science of Interpretable Machine Learning. arXiv preprint arXiv:1702.08608.
|
Ö. Ekmekcioğlu, K. Koc. Explainable step-wise binary classification for the susceptibility assessment of geo-hydrological hazards. Catena, 216A (2022), Article 106379
|
F. Farinosi, A. Dosio, E. Calliari, R. Seliger, L. Alfieri, G. Naumann. Will the Paris agreement protect us from hydro-meteorological extremes?. Environ. Res. Lett., 15 (2020), Article 104037
|
M.J. Froude, D.N. Petley. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. (2018), pp. 2161-2181
|
S.L. Gariano, F. Guzzetti. Landslides in a changing climate. Earth-Sci. Rev., 162 (2016), pp. 227-252
|
Y. Ge, T. Apurv, X. Cai. Spatial and temporal patterns of drought in the continental U.S. during the past century. Geophys. Res. Lett., 43 (12) (2016), pp. 6294-6303
|
L. Goddard, S.J. Mason, S.E. Zebiak, C.F. Ropelewski, R. Basher, M.A. Cane. Current approaches to seasonal to interannual climate predictions. Int. J. Climatol. J. R. Meteorol. Soc., 21 (9) (2001), pp. 1111-1152
|
L. Guanter, I. Aben, P. Tol, J.M. Krijger, A. Hollstein, P. Köhler, A. Damm, J. Joiner, C. Frankenberg, J. Landgraf. Potential of the TROPOspheric monitoring instrument TROPOMI. Onboard the sentinel-5 precursor for the monitoring of terrestrial chlorophyll fluorescence. Atmos. Meas. Tech., 8 (2015), pp. 1337-1352
|
R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, D. Pedreschi. A survey of methods for explaining black box models. ACM Comput. Surv., 51 (2019), pp. 1-42
|
B. Güneralp, İ. Güneralp, Y. Liu. Changing global patterns of urban exposure to flood and drought hazards. Glob. Environ. Change-Human Policy Dimens., 31 (2015), pp. 217-225
|
F. Guzzetti, P. Reichenbach, M. Cardinali, M. Galli. Estimating the quality of landslide susceptibility models. Geomorphology, 81 (1–2) (2006), pp. 166-184
|
S. Hallegatte. Strategies to adapt to an uncertain climate change. Glob. Environ. Change-Human Policy Dimens., 19 (2) (2009), pp. 240-247
|
Y.G. Ham, J.H. Kim, J.J. Luo. Deep learning for multi-year ENSO forecasts. Nature, 573 (2019), pp. 568-572
|
Z. Hao, V.P. Singh, Y. Xia. Seasonal drought prediction: advances, challenges, and future prospects. Rev. Geophys., 56 (1) (2018), pp. 108-141
|
T. Hasti, R. Tibshirani. Generalized additive models. Stat. Methods Med. Res., 4 (3) (1995), pp. 187-196
|
Y. Hirabayashi, R. Mahendran, S. Koirala, L. Konoshima, D. Yamazaki, S. Watanabe, H. Kim, S. Karane. Global flood risk under climate change. Nat. Clim. Change, 3 (2013), pp. 816-821
|
O. Hungr, S. Leroueil, L. Picarelli. The Varnes classification of landslide types, an update. Landslides, 11 (2) (2013), pp. 167-194
|
Z.W. Kundzewicz, S. Kanae, S.I. Seneviratne, J. Handmer, N. Nichools, P. Peduzzi, L.M. Bouwer, N. Arnell, K. Mach, R. Muir-Wood, R.G. Brakenridge, W. Kron, G. Benito, Y. Honda, K. Takahashi, B. Sherstyukov. Flood risk and climate change: global and regional perspectives. Hydrol. Sci. J., 59 (1) (2014), pp. 1-28
|
Z.M. Labe, E.A. Barnes. Detecting climate signals using explainable AI with single-forcing large ensembles. J. Adv. Model. Earth Syst., 13 (6) (2021)
|
Leavitt, M.L., Morcos, A., 2020. Towards falsifiable interpretability research. arXiv preprint arXiv:2010.12016.
|
Lundberg, S., Lee, S.-I., 2017. A Unified Approach to Interpreting Model Predictions. arXiv preprint arXiv:1705.07874.
|
B.D. Malamud, D.L. Turcotte, F. Guzzetti, P. Reichenbach. Landslide inventories and their statistical properties. Earth Surf. Process. Landf., 29 (6) (2004), pp. 687-711
|
Mamalakis, A., Ebert-Uphoff, I., Barnes, E.A., 2021. Neural network attribution methods for problems in geoscience: a novel synthetic benchmark dataset. arXiv preprint arXiv:2103.10005.
|
D. Maraun, R. Knevels, A.N. Mishra, H. Truhetz, E. Bevacqua, H. Proske, G. Zappa, A. Brenning, H. Petschko, A. Schaffer, P. Leopold, B.L. Puxley. A severe landslide event in the Alpine foreland under possible future climate and land-use changes. Commun. Earth Environ., 3 (2022), p. 87
|
A.E. Maxwell, M. Sharma, K.A. Donaldson. Explainable boosting machines for slope failure spatial predictive modeling. Remote Sens., 13 (2021), p. 4991
|
A. McGovern, R. Lagerquist, D.J. Gagne, G.E. Jergensen, K.L. Elmore, C.R. Homeyer, T. Smith. Making the black box more transparent: understanding the physical implications of machine learning. Bull. Am. Meteorol. Soc., 100 (2019), pp. 2175-2199
|
National Academies of Sciences, Engineering, and Medicine, 2016. Attribution of Extreme Weather Events in the Context of Climate Change. Washington, DC: The National Academies Press, 198 p. https://doi.org/10.17226/21852.
|
P. Naveau, A. Hannart, A. Ribes. Statistical methods for extreme event attribution in climate science. Annu Rev Stat Appl, 7 (2020), pp. 89-110
|
J.A. Otkin, M. Svoboda, E.D. Hunt, T.W. Ford, M.C. Anderson, C. Hain, J.B. Basara. Flash droughts: a review and assessment of the challenges imposed by rapid-onset droughts in the United States. Bull. Am. Meteorol. Soc., 99 (2018), pp. 911-919
|
B. Pradhan, S. Lee, A. Dikshit, H. Kim. Spatial flood susceptibility mapping using an explainable artificial intelligence XAI. model. Geosci. Front., 14 (6) (2023), Article 101625
|
S. Rahmstorf, D. Coumou. Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. U.S.A., 108 (2011), pp. 17905-17909
|
N. Rampal, P.B. Gibson, A. Sood, S. Stuart, N.C. Fauchereau, C. Brandolino, B. Noll, T. Meyers. High-resolution downscaling with interpretable deep learning: rainfall extremes over New Zealand. Weather Clim. Extremes, 38 (2022), Article 100525
|
L. Ravanel, F. Magnin, P. Deline. Impacts of the 2003 and 2015 summer heatwaves on permafrost-affected rock-walls in the Mont Blanc massif. Sci. Total Environ., 609 (2017), pp. 132-143
|
M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, Prabhat. Deep learning and process understanding for data-driven Earth system science. Nature, 566 (2019), pp. 195-204
|
F.-M. Ren, B. Trewin, M. Brunet, P. Dushmanta, A. Walter, O. Baddour, M. Korber. A research progress review on regional extreme events. Adv. Clim. Chang. Res., 9 (3) (2018), pp. 161-169
|
M.T. Ribeiro, S. Singh, C. Guestrin. “Why should I trust you?” explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016), pp. 1135-1144
|
C. Rudin. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell., 1 (2019), pp. 206-215
|
B.D. Santer, C. Mears, C. Doutriaux, P. Caldwell, P.J. Gleckler, T.M.L. Wingley, S. Solomon, N.P. Gillett, D. Ivanova, T.R. Karl, J.R. Lanzante, G.A. Meehl, P.A. Stott, K.E. Taylor, P.W. Thorne, M.F. Wehner, F.J. Wentz. Separating signal and noise in atmospheric temperature changes: the importance of timescale. J. Geophys. Res. Atmos., 116 (D22) (2011), p. D22105
|
S. Schneiderbauer, P.F. Pisa, J.L. Delves, L. Pedoth, S. Rufat, M. Erschbamer, T. Thaler, F. Carnelli, S. Granados-Chahin. Risk perception of climate change and natural hazards in global mountain regions: a critical review. Sci. Total Environ., 784 (2021), Article 146957
|
L.S. Shapley. A value for n-person games. Contrib. Theory Games, 2 (1953), pp. 307-317
|
A. Sharma, C. Wasko, D.P. Lettenmaier. If precipitation extremes are increasing, why aren't floods?. Water Resour. Res., 54 (11) (2018), pp. 8545-8551
|
J. Spinoni, P. Barbosa, A.D. Jager, N. McCormick, G. Naumann, J.V. Vogt, D. Magni, D. Masante, M. Mazzeschi. A new global database of meteorological drought events from 1951 to 2016. J. Hydrol. -Reg. Stud., 22 (2019), Article 100593
|
Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., 2014. Climate Change 2013–The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, https://doi.org/10.1017/CBO9781107415324.
|
K.E. Taylor, R.J. Stouffer, G.A. Meehl. An overview of Cmip5 and the experiment design. Bull. Am. Meteorol. Soc., 93 (2012), pp. 485-498
|
B.A. Toms, E.A. Barnes, I. Ebert-Uphoff. Physically interpretable neural networks for the geosciences: applications to earth system variability. J. Adv. Model. Earth Syst., 12 (9) (2020)
|
K. Trenberth, J. Fasullo, T. Shepherd. Attribution of climate extreme events. Nat. Clim. Change, 5 (2015), pp. 725-730
|
R. Vautard, P. Yiou, F. Otto, P. Stott, N. Christidis, G.J. van Oldenborgh, N. Schaller. Attribution of human-induced dynamical and thermodynamical contributions in extreme weather events. Environ. Res. Lett., 11 (2016), Article 114009
|
S.M. Vicente-Serrano, F. Domínguez-Castro, T.R. McVicar, M. Tomas-Burguera, M. Peña-Gallardo, I. Noguera, J.I. López-Moreno, D. Peña, A. El Kenawy. Global characterization of hydrological and meteorological droughts under future climate change: the importance of timescales, vegetation-CO2 feedbacks and changes to distribution functions. Int. J. Climatol., 40 (2020), pp. 2557-2567
|
Wan, A., Dunlap, L., Ho, D., Yin, J., Lee, S., Jin, H., Petryk, S., Bargal, S.A., Gonzalez, J.E., 2020. NBDT: neural-backed decision trees. arXiv preprint arXiv:2004.00221.
|
A.P. Williams, E.R. Cook, J.E. Smerdon, B.I. Cook, J.T. Abatzoglou, K. Bolles, S.H. Baek, A.M. Badger, B. Livneh. Large contribution from anthropogenic warming to an emerging North American megadrought. Science, 368 (6488) (2020), pp. 314-318
|
Q. Yang, X. Shen, E.N. Anagnostou, C. Mp, J.R. Eggleston, A.J. Kettner. A high-resolution flood inundation archive 2016–the present. From Sentinel-1 SAR imagery over CONUS. Bull. Am. Meteorol. Soc., 102 (5) (2021), pp. E1064-E1079,
CrossRef
Google scholar
|
/
〈 |
|
〉 |