A new tectonic model for the Itmurundy Zone, central Kazakhstan: linking ocean plate stratigraphy, timing of accretion and subduction polarity

Inna Safonova, Ilya Savinskiy, Alina Perfilova, Olga Obut, Alexandra Gurova, Sergei Krivonogov

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (4) : 101814.

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (4) : 101814. DOI: 10.1016/j.gsf.2024.101814

A new tectonic model for the Itmurundy Zone, central Kazakhstan: linking ocean plate stratigraphy, timing of accretion and subduction polarity

Author information +
History +

Abstract

The Itmurundy Zone of Central Kazakhstan is a key structure in the core of the Kazakh Orocline representing a typical Pacific-type orogenic belt hosting accretionary complex, ophiolite massifs and serpentinite mélange. The main controversies in the existing tectonic models of the Itmurundy Zone are about the timing of subduction and accretion, the direction and kinematics of subduction and the number of oceanic plates. A new model for the early Paleozoic tectonic story of the Itmurundy Zone is postulated in this paper, based on new detailed geological and U–Pb detrital zircon age data, combined with previously documented geological, U–Pb age, microfossil, geochemical and isotope data from igneous rocks, deep-sea sediments and greywacke sandstones. The present study employs the Ocean Plate Stratigraphy (OPS) model to explain the tectonic processes involved in the evolution of the Itmurundy Zone and to present a holistic story of Ordovician oceanic plate(s), which accretion formed an accretionary complex. The detailed mapping allows distinguishing three types of OPS assemblages: (1) Chert-dominated, (2) OIB-hosting, and (3) MORB-hosting. The U–Pb ages of detrital zircons from sandstones of OIB and Chert types show unimodal distributions with similar main peaks of magmatism at 460–455 Ma in the provenance, and their maximum depositional ages (MDA) span 455–433 Ma. Two samples from OPS Type 3 show the peaks of magmatism both at ca. 460 Ma and the MDA of 452 Ma and 459 Ma, respectively. The MDA of sandstones and microfossils data from chert show the younging of strata to the south and SE in Types 1 and 2 and to NEE for Type 3 (in present coordinates) suggesting double-sided subduction to the NNW and SEE and, accordingly, the co-existence of pieces of two oceanic plates in Ordovician time. The U–Pb zircon data from both igneous and clastic rocks indicate a period of subduction erosion in early Ordovician time. As a whole, the accreted OPS units of the Itmurundy Zone record the timing of subduction and accretion from the early Ordovician to the early Silurian, i.e., 60 Ma at shortest.

Keywords

Central Asian Orogenic Belt / Accretionary complex / Magmatic rocks / Sedimentary rocks / Subduction polarity / Lithospheric plates

Cite this article

Download citation ▾
Inna Safonova, Ilya Savinskiy, Alina Perfilova, Olga Obut, Alexandra Gurova, Sergei Krivonogov. A new tectonic model for the Itmurundy Zone, central Kazakhstan: linking ocean plate stratigraphy, timing of accretion and subduction polarity. Geoscience Frontiers, 2024, 15(4): 101814 https://doi.org/10.1016/j.gsf.2024.101814

References

A.V. Abrajevitch, R. Van der Voo, M.L. Bazhenov, N.M. Levashova, P.J.A. McCausland. The role of the Kazakhstan orocline in the late Paleozoic amalgamation of Eurasia. Tectonophysics, 455 (2008), pp. 61-76
L. Ackerman, J. Hajna, J. Žák, V. Erban, J. Sláma, L. Polák, V. Kachlík, L. Strnad, J. Trubač. Architecture and composition of ocean floor subducted beneath northern Gondwana during Neoproterozoic to Cambrian: a palinspastic reconstruction based on Ocean Plate Stratigraphy (OPS). Gondwana Res., 76 (2019), pp. 77-97
D.V. Alexeiev, A.V. Ryazantsev, A. Kröner, A.A. Tretyakov, X. Xia, D.Y. Liu. Geochemical data and zircon ages for rocks in a high-pressure belt of Chu-Yili Mountains, southern Kazakhstan: implications for the earliest stages of accretion in Kazakhstan and the Tianshan. J. Asian Earth Sci., 42 (5) (2011), pp. 805-820
H. Ando, T. Tomosugi, T. Kanakubo. Upper Cretaceous to Paleocene Hakobuchi Group, Nakatonbetsu area, northern Hokkaido – lithostratigraphy and megafossil biostratigraphy. J. Geol. Soc. Japan, 107 (2001), pp. 142-162
R.M. Antonyuk. Oceanic crust of the eugeosynclinal region of east Central Kazakhstan. Tectonics of the Ural-Mongolian Fold Belt, Moscow (in Russian) (1974)
A.V. Avdeev. Geology of ophiolitic zones of Kazakhstan. Abs. Diss., Novosibirsk, 32p. (1986)
N.L.B. Bangs, S.P.S. Gulick, T.H. Shipley. Seamount subduction erosion in the Nankai trough and its potential impact on the seismogenic zone. Geology, 34 (2006), pp. 701-704
M.L. Bazhenov, N.M. Levashova, K.E. Degtyarev, R. Van der Voo, A.V. Abrajevitch, P.J.A. McCausland. Unraveling the early–middle Paleozoic paleogeography of Kazakhstan on the basis of Ordovician and Devonian paleomagnetic results. Gondwana Res., 22 (2012), pp. 974-991
N.A. Berzin, N.L. Dobretsov. Geodynamic evolution of southern Siberia in Late Precambrian-Early Paleozoic time. R.G. Coleman (Ed.), Reconstruction of the Paleo-Asian Ocean, VSP International Sciences Publishers, Utrecht, The Netherlands (1994), pp. 53-70
V.F. Bespalov. Middle Paleozoic Dzhungar-Balkhash intrageosyncline. Soviet Geology, 52p. (1956)
M.R. Bhatia. Plate tectonics and geochemical composition of sandstone. J. Geol., 91 (1983), pp. 611-627
L. Briqueu, H. Bougault, J.L. Joron. Quantification of Nb, Ta, Ti and V anomalies in magmas associated with subduction zones: petrogenetic implications. Earth Planet. Sci. Lett., 68 (2) (1984), pp. 297-308
M.M. Buslov. Tectonics and geodynamics of the Central Asian fold belt: the role of Late Paleozoic large-amplitude strike-slip faults. Rus. Geol. Geoph., 52 (1) (2011), pp. 52-71
M.M. Buslov, I.Y. Saphonova, T. Watanabe, O.T. Obut, Y. Fujiwara, K. Iwata, N.N. Semakov, Y. Sugai, L.V. Smirnova, A.Y. Kazansky. Evolution of the Paleo-Asian Ocean (Altai−Sayan region, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent. Geosci. J., 5 (2001), pp. 203-224
C.-Y. Chen, F.A. Frey, M.O. Garcia, G.B. Dalrymple, S.R. Hart. The tholeiitic to alkaline basalt transition at Heleakala volcano Maui, Hawaii. Contrib. Mineral. Petrol., 106 (1991), pp. 183-200
F. Choulet, Y. Chen, B. Wang, M. Faure, D. Cluzel, J. Charvet, B. Xu. Late Paleozoic paleogeographic reconstruction of Western Central Asia based upon paleomagnetic data and its geodynamic implications. J. Asian Earth Sci., 42 (5) (2011), pp. 867-884
F. Choulet, M. Faure, D. Cluzel, Y. Chen, W. Lin, B. Wang. From oblique accretion to transpression in the evolution of the Altaid collage: new insights from West Junggar, northwestern China. Gondwana Res., 21 (2012), pp. 530-547
P. Clift, P. Vanucchi. Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev. Geophys., 42 (2) (2004), p. RG2001
E. Contreras-Reyes, I. Grevemeyer, A.B. Watts, E.R. Flueh, C. Peirce, S. Moeller, C. Papenberg. Deep seismic structure of the Tonga subduction zone: implications for mantle hydration, tectonic erosion, and arc magmatism. J. Geophys. Res., 116 (2011), p. B10103
R. Cox, D.R. Lowe. A conceptual review of regional-scale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sedimentary cover. J. Sed. Res., 1 (1995), pp. 1-12
L. Dagva-Ochir, T.-U. Oyunchimeg, B. Enkhdalai, I. Safonova, H. Li, D. Otgonbaatar, L.S. Tamehe, D. Sharav. Middle Paleozoic intermediate-mafic rocks of the Tsoroidog Uul’ accretionary complex, Central Mongolia: petrogenesis and tectonic implications. Lithos, 376–377 (2020), Article 105795
K.E. Degtyarev. Tectonic evolution of the early Paleozoic active margin in Kazakhstan. Moscow, Nauka, (1999)
K.E. Degtyarev. Tectonic evolution of Early Paleozoic island-arc systems and continental crust formation in the Caledonides of Kazakhstan and the North Tien Shan. Geotectonics, 45 (1) (2011), pp. 23-50
K.E. Degtyarev, A.V. Ryazantsev. Model of the Cambrian arc–continent collision for the paleozoids of Kazakhstan. Geotectonics, 1 (2007), pp. 71-96
K.E. Degtyarev, T.Y. Tolmacheva, A.A. Tretyakov, A.B. Kotov, A.S. Yakubchuk, E.B. Salnikova, K.-L. Wang. Polychronous formation of the ophiolite association in the Tekturmas zone of Central Kazakhstan inferred from geochronological and biostratigraphic data. Doklady Earth Sci., 472 (2017), pp. 26-30
K.E. Degtyarev, T.Y. Tolmacheva, A.A. Tretyakov. Siliceous–volcanic associations of the Northern Balkhash ophiolite zone (Central Kazakhstan): biostratigraphy, sedimentation and tectonic evolution in the Middle-Late Ordovician. Palaeogeogr. Palaeocl. Palaeoecol., 551 (2020), Article 109748
Degtyarev, K.E., 2012. Tectonic Evolution of the Early Paleozoic Island Arc Systems and Formation of the Continental Crust in the Caledonides of Kazakhstan. GEOS, Moscow, p. 2012 (in Russian).
J.F. Dewey, J.M. Bird. Mountain belts and the new global tectonics. J. Geophys. Res., 75 (1970), pp. 2625-2647
W.R. Dickinson, L.S. Beard, G.R. Brakenridge, J.L. Erjavec, R.C. Ferguson, K.F. Inman, R.A. Knepp, F.A. Lindberg, P.T. Ryberg. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol. Soc. Am. Bull., 94 (2) (1983), pp. 222-235
A. Didenko, A. Mossakovsky, D. Pechersky, S. Ruzhentsev, S. Samygin, T. Kheraskova. Geodynamics of Paleozoic oceans of Central Asia. Geol. Geofiz., 35 (7–8) (1994), pp. 59-75
N.L. Dobretsov, N.A. Berzin, M.M. Buslov. Opening and tectonic evolution of the paleo-Asian Ocean. Int. Geol. Rev., 37 (1995), pp. 335-360
N.L. Dobretsov, M.M. Buslov, I.Y. Safoпova, D.A. Kokh. Fragments of oceanic island in the Kurai and Katun’ accretionary wedges of Gorny Altai. Russ. Geol. Geophys., 45 (12) (2004), pp. 1381-1403
P.R. Eizenhöfer, G. Zhao, J. Zhang, M. Sun. Final closure of the Paleo-Asian Ocean along the Solonker Suture Zone: constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks. Tectonics, 33 (4) (2014), pp. 441-463
P.V. Ermolov. A new look at the origin of the ophiolite belts of Kazakhstan. Izvestia NAN RK, Seria Geologic’eskaya, 1 (2008), pp. 76-85
P.V. Ermolov, V.G. Stepanets, N. Sentov. Ophiolites of Kazakhstan. Guide of the excursion of the international workshop on the project No. 2 “Ophiolites. UT “Offset”, Karaganda, 67p. (1990)
S.E. Esenov, G.F. Lyapichev, E.D. Shlygin, A.V. Avdeev. Geology of the USSR. volume XX. Central Kazakhstan. Geological Description. Book 2. Moscow, “Nedra” (1972), p. 380 p.
R. Feng, R. Kerrich. Geochemistry of fine grained clastic sediments in the Archaean Abitibi Greenstone Belt, Canada: implications for provenance and tectonic setting. Geochim. Cosmochim. Acta, 54 (1990), pp. 1061-1081
I.B. Filippova, V.A. Bush, A.N. Didenko. Middle Paleozoic subduction belts: the leading factor in the formation of the Central Asian fold-and-thrust belt. Russ. J. Earth. Sci., 3 (6) (2001), pp. 405-426
P. Fryer. Serpentinite mud volcanism: observations, processes, and implications. Annu. Rev. Mar. Sci., 4 (2012), pp. 345-373
K. Fujioka, T. Tanaka, K. Aoike. Serpentine seamount in Izu-Bonin and Mariana forearcs: observation by a submersible and its relation to onland serpentinite belt. J. Geog., 104 (3) (1995), pp. 473-494
R.J. Goldfarb, R.D. Taylor, G.S. Collins, N.A. Goryachev, O.F. Orlandini. Phanerozoic continental growth and gold metallogeny of Asia. Gondwana Res., 25 (2014), pp. 48-102
D.V. Grishin, D.M. Pechersky, K.E. Degtyarev. Paleomagnetic reconstruction of the Middle Paleozoic structure of Central Kazakhstan. Geotectonics, 31 (1) (1997), pp. 65-75
A.V. Gurova, I.Y. Safonova, I.A. Savinsky, R.M. Antonyuk, T.Z. Orynbek. Magmatic rocks of the Tekturmass accretionary complex, Central Kazakhstan: geological position and geodynamic settings of formation. Geodyn. Tectonophys., 13 (5) (2022), p. 0673
J. Heinhorst, B. Lehmann, P. Ermolov, V. Serykh, S. Zhurutin. Paleozoic crustal growth and metallogeny of Central Asia: evidence from magmatic-hydrothermal ore systems of Central Kazakhstan. Tectonophysics, 328 (2000), pp. 69-87
R. Hori. Radiolarian biostratigraphy at the Triassic/Jurassic period boundary in bedded cherts from the Inuyama Area, Central Japan. J. Geosci., 35 (1992), pp. 53-65
N. Hori, K. Wakita. Reconstructed oceanic plate stratigraphy of the Ino Formation in the Ino district, Kochi prefecture, Central Shikoku, Japan. J. Asian Earth Sci., 24 (2) (2004), pp. 185-197
H. Huneke, R. Henrich. Pelagic sedimentation in modern and ancient oceans. Dev. Sedimentol., 63 (2011), pp. 215-351
Y. Isozaki, S. Maruyama, F. Fukuoka. Accreted oceanic materials in Japan. Tectonophysics, 181 (1990), pp. 179-205
Y.D. Jiang, K. Schulmann, A. Kröner, M. Sun, O. Lexa, V. Janoušek, P. Hanžl. Neoproterozoic-early Paleozoic peri-Pacific accretionary evolution of the Mongolian collage system: insights from geochemical and U-pb zircon data from the Ordovician sedimentary wedge in the Mongolian Altai. Tectonics, 36 (11) (2017), pp. 2305-2331
B. Jicha, S.M. Key. Quantifying arc migration and the role of forearc subduction erosion in the central Aleutians. J. Volcanol. Geotherm. Res., 360 (2018), pp. 84-99
L.E. Johnson, P. Fryer. The first evidence of MORB-like lavas on the Mariana forearc: geochemistry, petrology and implications for tectonic evolution. Earth Planet. Sci. Lett., 100 (1) (1990), pp. 304-316
N. Kanygina, A. Tretyakov, K.E. Degtyarev, H.-Y. Lee. Quartzite-schist sequences of the Aktau-Mointy Massif (Central Kazakhstan): structural position, provenance, and formation stages of the Earth crust in the Precambrian. Geotectonics, 54 (2) (2020), pp. 212-228
I.V. Kemkin, A.I. Khanchuk. Jurassic accretionary prism in the southern Sikhote-Alin. Geol. Pac. Ocean, 10 (1994), pp. 831-839
I.V. Kemkin, A.I. Khanchuk, R.A. Kemkina. Accretionary prisms of the Sikhote-Alin orogenic belt: composition, structure and significance for reconstruction of the geodynamic evolution of the eastern Asian margin. J. Geodyn., 102 (2016), pp. 202-230
A.C. Kerr, R.V. White, A.D. Saunders. LIP reading: recognizing oceanic plateaus in the geological record. J. Petrol., 41 (2000), pp. 1041-1056
A.I. Khanchuk. Geological structure and development of the continental frame of the Pacific northwest. Abs. diss. Dr. geol.-min. sci., Moscow, 31 (1993)
B.P. Khassen, I.Y. Safonova, P.V. Yermolov, R.M. Antonyuk, A.V. Gurova, O.T. Obut, A.A. Perfilova, I.A. Savinskiy, T. Tsujimori. The Tekturmas ophiolite belt of Central Kazakhstan: geology, magmatism, and tectonics. Geol. J., 55 (3) (2020), pp. 2363-2382
G. Kimura, A. Mukai. Underplated units in an accretionary complex: melange of the Shimanto belt of eastern Shikoku, Southwest Japan. Tectonics, 10 (1) (1991), pp. 31-50
U. Knittel, M. Walia, S. Suzuki, Y.-H. Lee, N. Takesue, H.-Y. Lee. U-pb ages and hf isotope composition of zircon from the Shimanto accretionary complex: evidence for heterogeneous sources. Geochem. J., 54 (5) (2020), pp. 277-288
S. Kojima, K. Tsukada, S. Otoh, S. Yamakita, M. Ehiro, C. Dia, G.L. Kirillova, V.A. Dymovich, L.P. Eichwald. Geological relationship between Anyui metamorphic complex and Samarka terrane, Far East Russia. Isl. Arc, 17 (2008), pp. 502-516
V.V. Korobkin. Tectonic zonation and structural styles of Paleozoids of Kazakhstan. Izvestiya Tomskogo Politekhnicheskogo Universiteta, 319 (1) (2011), pp. 71-77
V.Y. Koshkin, B.M. Abdrahmanov, V.V. Volkov, V.M. Mertenov. Stratigraphy of the Ordovician and Silurian terrigenous-siliceous-basalt formation of the northern Balkhash region. Regional Geology and Geophysics of Kazakhstan, Alma-Ata, KazIMS (1987), p. 159 p.
Koshkin, V.Y., Galitsky, V.V., 1960. Geological map of the USSR. 1: 200 000. Series Balkhash. Sheet L-43-XI. South Kazakhstan Geological Department of the Ministry of Geology and Mineral Protection of the USSR (in Russian).
V.I. Kovalenko, V.V. Yarmolyuk, V.P. Kovach, A.B. Kotov, I.K. Kozakov, E.B. Salnikova, A.M. Larin. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: geological and isotopic evidence. J. Asian Earth Sci., 23 (2004), pp. 605-627
A. Kröner, V. Kovach, E. Belousova, E. Hegner, R. Armstrong, A. Dolgopolova, R. Seltmann, D.V. Alexeiev, J.E. Hofmann, J. Wong, M. Sun, K. Cai, T. Wang, Y. Tong, S.A. Wilde, K.E. Degtyarev, E. Rytsk. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Res., 25 (2014), pp. 103-125
S. Kuramoto, A. Taira, N.L. Bangs, T.H. Shipley, G.F. Moore. Seismogenic zone in the Nankai accretionary wedge general summary of Japan-U.S. collaborative 3-D seismic investigation. J. Geogr., 109 (2000), pp. 531-539
A.M. Kurchavov, M.S. Grankin, E.G. Mal’chenko, B.S. Khamzin, V.I. Zhukovskii. Metallogenic zonality of the Devonian volcanoplutonic belt in Central Kazakhstan. Geol. Ore Depos., 2002 (2002), pp. 18-25
Kurenkov, S.A., Didenko, A.N., Simonov, V.A., 2002. Geodynamics of Paleospreading. GEOS, Moscow, 294 p. (in Russian).
T. Kusky, B. Windley, I. Safonova, K. Wakita, J. Wakabayashi, A. Polat, M. Santosh. Recognition of ocean plate stratigraphy in accretionary orogens through Earth history: a record of 3.8 billion years of sea floor spreading, subduction, and accretion. Gondwana Res., 24 (2013), pp. 501-547
N.M. Levashova, K.E. Degtyarev, M.L. Bazhenov, A.Q. Collins, R. Van der Voo. Permian palaeomagnetism of East Kazakhstan and the amalgamation of Eurasia. Geophys. J. Int., 152 (2003), pp. 677-687
N.M. Levashova, J.G. Meert, A.S. Gibsher, W.C. Grice, M.L. Bazhenov. The origin of microcontinents in the Central Asian Orogenic Belt: constraints from paleomagnetism and geochronology. Precambr. Res., 185 (1–2) (2010), pp. 37-54
N.M. Levashova, K.E. Degtyarev, M.L. Bazhenov. Oroclinal bending of the Middle and Late Paleozoic volcanic belts in Kazakhstan: paleomagnetic evidence and geological implications. Geotectonics, 46 (4) (2012), pp. 285-302
J.-Y. Li. Permian geodynamic setting of Northeast China and adjacent regions: closure of the paleo-Asian Ocean and subduction of the paleo-Pacific plate. J. Asian Earth Sci., 26 (3–4) (2006), pp. 207-224
S. Li, Y. Suo, J. Zhou, S. Zhong, G. Sun, J. Liu, G. Wang, J. Zhu, S. Jiang, X. Li, X. Guo, Y. Liu, X. Cao, L. Guo, S. Zhao, P. Wang, Q. Guan, L. Chen, B. Liu, J. Zhou, Z. Jiang, L. Liu, H. Cao, L. Dai, S. Yu, B. Liu, X. Wang, C. Wang, X. Wang, Z. Liu, H. Guan, X. Li, J. Hu, W. Duan, L. Yu, X. Liu, Y. Wang, Y. Zhong, P. Liu, W. Zhang, L. Li, Y. Zhao, S. Xu. Microplate and megaplate: fundamental principles and paradigm transition. Acta Geol. Sinica, 96 (10) (2022), pp. 3541-3558
S. Li, Y. Suo, J. Zhou. Microplate tectonics: a new tectonic paradigm. Leibniz Online, 51 (2023), pp. 1-10
W. Liao, B.-F. Han, Y. Xu, A. Li. Ediacaran initial subduction and Cambrian slab rollback of the Junggar Ocean: new evidence from igneous tectonic blocks and gabbro enclave in Early Palaeozoic accretionary complexes, southern West Junggar, NW China. Geol. Mag., 158 (10) (2021), pp. 1811-1829
X. Long, C. Yuan, M. Sun, I. Safonova, W. Xiao, Y. Wang. Geochemistry and U-Pb detrital zircon dating of Paleozoic graywackes in East Junggar, NW China: insights into subduction–accretion processes in the southern Central Asian Orogenic Belt. Gondwana Res., 21 (2012), pp. 637-653
L. Lu, Y. Qin, K.-J. Zhang, C.-Y. Han, T. Wei, Z.-F. Li, Z.-H. Qu. Provenance and tectonic settings of the Late Paleozoic sandstones in Central Inner Mongolia, NE China: constraints on the evolution of the southeastern Central Asian Orogenic Belt. Gondwana Res., 77 (2020), pp. 111-135
J.K. Madsen, D.J. Thorkelson, R.M. Friedman, D.D. Marshall. Cenozoic to Recent plate configurations in the Pacific Basin: ridge subduction and slab window magmatism in western North America. Geosphere, 2 (1) (2006), pp. 11-34
S. Martínez-Loriente, V. Sallarès, C.R. Ranero, J.B. Ruh, U. Barckhausen, I. Grevemeyer, N. Bangs. Influence of incoming plate relief on overriding plate deformation and earthquake nucleation: Cocos ridge subduction (Costa Rica). Tectonics, 38 (2019), pp. 4360-4377
S. Maruyama, I. Safonova. Orogeny and mantle dynamics: role of tectonic erosion and second continent in the mantle transition zone. Novosibirsk State Univ, Novosibirsk (2019)
S. Maruyama, T. Kawai, B.F. Windley. Ocean plate stratigraphy and its imbrication in an accretionary orogen: the Mona complex, Anglesey-Lleyn, Wales, UK. Geol. Soc. London. Spec. Pub., 338 (2010), pp. 55-75
S. Maruyama, S. Omori, H. Sensu, K. Kawai, B.F. Windley. Pacific-type orogens: new concepts and variations in space and time from present to past. J. Geogr., 120 (2011), pp. 115-223
T. Matsuda, Y. Isozaki. Well-documented travel history of Mesozoic pelagic chert in Japan: remote ocean to subduction zone. Tectonics, 10 (1991), pp. 475-499
M. Meschede. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem. Geol., 56 (3–4) (1986), pp. 207-218
A. Miyashiro. Volcanic rock series in island arcs and active continental margins. Am. J. Sci., 274 (1974), pp. 321-355
E.D. Mullen. MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth Planet. Sci. Lett., 62 (1983), pp. 53-62
S. Nakae. Regional correlation of the Jurassic accretionary complex in the Inner Zone of Southwest Japan. Memories of Geological Society of Japan, 55 (2000), pp. 73-98
H.W. Nesbitt, G.M. Young. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299 (1982), pp. 715-717
I.F. Nikitin. Ordovician siliceous and siliceous-basalt complexes of Kazakhstan. Russ. Geol. Geophys., 43 (2002), pp. 512-527
M.Z. Novikova, N.A. Gerasimova, S.V. Dubinina. Conodonts from the volcanic-siliceous complex of the Northern Balkhash. Doklady AN SSSR, 271 (1983), pp. 1449-1451
F.A. Patalakha, V.A. Belyi. Ophiolites of the Itmurundy-Kazyk zone. A.A. Abdulin, F.A. Patalakha (Eds.), Ophiolites of Kazakhstan, Nauka, Alma-Ata (1981), pp. 7-102
J.A. Pearce. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100 (2008), pp. 14-48
Pearce, J.A., 1982. Trace element characteristics of lavas from destructive plate boundaries, in Thorpe, R.S., ed., Andesites 525–548.
A.A. Perfilova, I.Y. Safonova, A.V. Gurova, P.D. Kotler, I.A. Savinskiy. Tectonic settings of formation of volcanic and sedimentary rocks of the Itmurundy zone, Central Kazakhstan. Geodyn. Tectonophys., 13 (1) (2022), p. 0572
Perfilova, A.A., 2023. Age, composition and sources of Paleozoic greywacke sandstones of Central and Eastern Kazakhstan. Dissertation for Candidate of Geological and Mineralogical Sciences, Novosibirsk, IGM SB RAS, 242 p.
F.J. Pettijohn, P.E. Potter, R. Siever. Sand and Sandstone. Springer, Berlin Heidelberg (1972)
Puchkov, V., 2000. Paleogeodynamics of the South and Central Urals. Dauriya, Ufa, 144 p. (in Russian).
M. Regelous, A.W. Hofmann, W. Abouchami, S.J.G. Galer. Geochemistry of lavas from the Emperor seamounts, and the geochemical evolution of Hawaiian magmatism from 85 to 42 Ma. J. Petrol., 44 (2003), pp. 113-140
M.P. Rusakov. Geological treatise about near Balkhash region and Balkhash Lake, mineral resources district. Leningrad, Tsvetmetizdat, Moscow (in Russian) (1933)
I.Y. Safonova. Intraplate magmatism and oceanic plate stratigraphy of the Paleo-Asian and Paleo-Pacific oceans from 600 to 140 Ma. Ore Geol. Rev., 35 (2009), pp. 137-154
I. Safonova. Juvenile versus recycled crust in the Central Asian Orogenic Belt: implications from ocean plate stratigraphy, blueschist belts and intra-oceanic arcs. Gondwana Res., 47 (2017), pp. 6-27
I.Y. Safonova, A.I. Khanchuk. Subduction erosion at pacific-type convergent margins. Russ. J. Pacific Geol., 40 (6) (2021), pp. 3-19
I. Safonova, S. Maruyama. Asia: a frontier for a future supercontinent Amasia. Int. Geol. Rev., 59 (2014), pp. 1051-1071
I.Y. Safonova, A.A. Perfilova, O.T. Obut, I.A. Savinsky, R.I. Cherny, N.A. Petrenko, A.V. Gurova, P.D. Kotler, S.V. Khromykh, S.K. Krivonogov, S. Maruyama. Itmurundy accretionary complex (Northern Balkhash): geological structure, stratigraphy and tectonic origin. Russ. J. Pacific Geol., 38 (2019), pp. 102-117
I. Safonova, A. Perfilova, I. Savinskiy, P. Kotler, M. Sun, B. Wang. Sandstones of the Itmurundy accretionary complex, Central Kazakhstan, as archives of arc magmatism and subduction erosion: evidence from U-Pb zircon ages, geochemistry and Hf-Nd isotopes. Gondwana Res., 111 (2022), pp. 35-52
I. Safonova, A. Perfilova. Survived and disappeared intra-oceanic arcs of the paleo-Asian Ocean: evidence from Kazakhstan. Natl Sci. Rev., 10 (2) (2023), p. nwac215
I. Safonova, M. Santosh. Accretionary complexes in the Asia-Pacific region: tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Res., 25 (2014), pp. 126-158
I. Safonova, S. Maruyama, K. Litasov. Generation of hydrous-carbonated plumes in the mantle transition zone linked to tectonic erosion and subduction. Tectonophysics, 662 (2015), pp. 454-471
I. Safonova, S. Maruyama, S. Kojima, T. Komiya, S. Krivonogov, K. Koshida. Recognizing OIB and MORB in accretionary complexes: a new approach based on ocean plate stratigraphy, petrology, and geochemistry. Gondwana Res., 33 (2016), pp. 92-114
I. Safonova, A. Kotlyarov, S. Krivonogov, W. Xiao. Intra-oceanic arcs of the Paleo-Asian Ocean. Gondwana Res., 50 (2017), pp. 167-194
I.Y. Safonova, I.A. Savinsky, A.A. Perfilova, A.V. Gurova, S. Maruyama, T. Tsujimori. Itmurundy accretionary complex (Northern Balkhash): geological structure, stratigraphy and tectonic origin. Gondwana Res., 79 (2020), pp. 49-69
H. Sano. Permian oceanic rocks of Mino terrane, Central Japan. J. Geol. Soc., 94 (1988), pp. 697-709
H. Sano, K. Kanmera. Paleogeographic reconstruction of accreted oceanic rocks, Akiyoshi, Southwest Japan. Geology, 16 (1988), pp. 600-602
I. Savinskiy, I. Safonova, A. Perfilova, P. Kotler, T. Sato, S. Maruyama. A story of Devonian Ocean plate stratigraphy hosted by the Ulaanbaatar accretionary complex, northern Mongolia: implications from geological, structural and U-Pb detrital zircon data. Int. J. Earth Sci., 111 (2021), pp. 2469-2492
Scholl, D., von Huene, R., 2007. Crustal recycling at modern subduction zones applied to the past. Issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction. In: Hatcher, R.D., Jr., Carlson, M.P., McBride, J.H., Martínez Catalán, J.R. (Eds.), 4-D framework of continental crust. Geol. Soc. Am. Memoir 200, 9–32.
Seltmann R., Shatov V., Yakubchuk A., 2009. Mineral deposits database and thematic maps of Central Asia: London, Natural History Museum, Centre for Russian and Central Eurasian Mineral Studies (CERCAMS), 143 p. and ArcGIS 9.2, ArcView 3.2 and MapInfo 6.0 (7.0) GIS packages, scale 1:1 500 000, CD-ROM.
A.M.C. Sengör, B.A. Natal’in, V.S. Burtman. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature, 364 (1993), pp. 299-307
P. Shen, H. Pan, E. Seitmuratova, F. Yuan, S. Jakupova. A Cambrian intraoceanic subduction system in the Bozshakol area, Kazakhstan. Lithos, 224–225 (2015), pp. 61-77
P. Shen, H.D. Pan, K. Hattori, R.C. David, E. Seitmuratova. Large paleozoic and mesozoic porphyry deposits in the Central Asian orogenic belt: geodynamic settings, magmatic sources, and genetic models. Gondwana Res., 58 (2018), pp. 161-194
V.D. Shutov. Classification of sandstones. Lithol. Mineral Resour., 5 (1967), pp. 86-102
W.G. Stepanets. Ophiolites of Kazakhstan. Geology and Geodynamics. Acad. Pub. House Lambert. (2016)
C.R. Stern. Subduction erosion: rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Res., 20 (2011), pp. 284-308
R.J. Stern, D.W. Scholl. Yin and yang of continental crust creation and destruction by plate tectonic processes. Int. Geol. Rev., 52 (1) (2010), pp. 1-31
Sun, S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geol. Soc. London, Spec. Pub. 42, 313-345.
Sweet, W., Bergstrom, S.M., 1984. Conodont provinces and biofacies of the Late Ordovician. Conodont Biofacies and Provincialism, Geological Society of America, GSA special papers 196, 69 p.
S.T. Taylor, S.M. McLennan. The Continental Crust: Composition and Evolution. Blackwell, Oxford (1985), p. 312
T.Y. Tolmacheva, L.S. Holmer, L.E. Popov, I.Y. Gogin. Conodont biostratigraphy and faunal assemblages in radiolarian ribbon-banded cherts of the Burubaital Formation, West Balkhash Region, Kazakhstan. Geol. Mag., 141 (6) (2004), pp. 699-715
T.Y. Tolmacheva, K.E. Degtyarev, A. Ryazantsev, O.I. Nikitina. Conodonts from the upper Ordovician siliceous rocks of Central Kazakhstan. Paleontol. J., 43 (11) (2009), pp. 1498-1512
T.Y. Tolmacheva, K.E. Degtyarev, A. Ryazantsev. Ordovician conodont biostratigraphy, diversity and biogeography in deep-water radiolarian cherts from Kazakhstan. Palaeogeogr. Palaeoclimatol. Palaeoecol., 578 (12) (2021), Article 110572
V.G. Trifonov. Late Paleozoic structure of the North Balkhash region and its origin. Moscow, Nauka, (1967)
P. Vanucchi, J.P. Morgan, M.L. Balestrieri. Subduction erosion, and the de-construction of continental crust: the Central America case and its global implications. Gondwana Res., 40 (2016), pp. 184-198
R. von Huene, C.R. Ranero. Subduction erosion and basal friction along the sediment-starved convergent margin off Antofagasta, Chile. J. Geophys. Res., 108 (B2) (2003), p. 2079
J. Wakabayashi. Anatomy of a subduction complex: architecture of the Franciscan Complex, California, at multiple length and timescale. Int. Geol. Rev., 57 (2015), pp. 669-746
K. Wakita. Mappable features of mélanges derived from ocean plate stratigraphy in the Jurassic accretionary complexes of Mino and Chichibu terranes, Southwest Japan. Tectonophysics, 568–569 (2012), pp. 74-85
K. Wakita. Geology and tectonics of Japanese islands: a review – the key to understanding the geology of Asia. J. Asian Earth Sci., 72 (2013), pp. 75-87
K. Wakita. OPS mélange: a new term for mélanges of convergent margins of the world. Int. Geol. Rev., 57 (5–8) (2015), pp. 1-11
K. Wakita, I. Metcalfe. Ocean plate stratigraphy in east and southeast Asia. J. Asian Earth Sci., 24 (2005), pp. 679-702
B. Wang, M. Faure, L.S. Shu, D. Cluzel, J. Charvet, K. de Jong, Y. Chen. Paleozoic geodynamic evolution of the Yili Block, Western Chinese Tianshan. Bull. Soc. Géol Fr., 179 (5) (2008), pp. 483-490
B. Wang, B.M. Jahn, L.S. Shu, K.S. Li, S.L. Chung, D.Y. Liu. Middle-Late Ordovician arc-type plutonism in the NW Chinese Tianshan: implication for the accretion of the Kazakhstan continent in Central Asia. J. Asian Earth Sci., 49 (2012), pp. 40-53
Q. Wang, G. Tang, L. Hao, D. Wyman, L. Ma, W. Dan, X. Zhang, J. Liu, T. Huang, C. Xu. Ridge subduction, magmatism, and metallogenesis. Sci. China Earth Sci., 63 (2020), pp. 1499-1518
G.K. Westbrook, M.J. Smith. Long decollements and mud volcanoes: evidence from the Barbados ridge complex for the role of high pore-water pressures in the development of an accretionary complex. Geology, 11 (1983), pp. 279-283
C. Wilhem, B.F. Windley, G.M. Stampfli. The Altaids of Central Asia: a tectonic and evolutionary innovative review. Earth-Sci. Rev., 113 (2012), pp. 303-341
J.A. Winchester, P.A. Floyd. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol., 20 (1977), pp. 325-343
B.F. Windley, D. Alexeiev, W. Xiao, A. Kröner, G. Badarch. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. London, 164 (2007), pp. 31-47
W. Xiao, M. Santosh. The western Central Asian Orogenic Belt: a window to accretionary orogenesis and continental growth. Gondwana Res., 25 (2014), pp. 1429-1444
W.J. Xiao, B.F. Windley, C. Yuan, M. Sun, C.M. Han, S.F. Lin, H.L. Chen, Q.R. Yan, D.Y. Liu, K.Z. Qin, J.L. Li, S. Sun. Paleozoic multiple subduction–accretion processes of the southern Altaids. Am. J. Sci., 309 (2009), pp. 221-270
W.J. Xiao, B. Huang, C. Han, S. Sun, J. Li. A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens. Gondwana Res., 18 (2010), pp. 253-273
W. Xiao, B.F. Windley, S. Sun, J. Li, B. Huang, C. Han, C. Yuan, M. Sun, H. Chen. A tale of amalgamation of three Permo-Triassic Collage Systems in Central Asia: oroclines, sutures, and terminal accretion. Annu. Rev. Earth Planet. Sci., 43 (2015), pp. 477-507
W. Xiao, B.F. Windley, C. Han, W. Liu, B. Wan, J. Zhang, S. Ao, Z. Zhang, D. Song. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia. Earth Sci. Rev., 186 (2017), pp. 94-128
Z. Xu, B.F. Han, R. Ren, Y.Z. Zhou, L. Su. Palaeozoic multiphase magmatism at Barleik Mountain, southern West Junggar, Northwest China: implications for tectonic evolution of the West Junggar. Int. Geol. Rev., 55 (2013), pp. 633-656
A.S. Yakubchuk. Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model. J. Asian Earth Sci., 23 (5) (2004), pp. 761-779
K. Yamamoto. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto terranes. Sediment. Geol., 52 (1987), pp. 65-108
V.V. Yarmolyuk, V.P. Kovach, I.K. Kozakov, A.M. Kozlovsky, A.B. Kotov, E.Y. Rytsk. Mechanisms of continental crust formation in the Central Asian Fold Belt. Geotectonics, 46 (2012), pp. 251-272
V.V. Yarmolyuk, M.I. Kuz’min, A.A. Vorontsov. West pacific-type convergent boundaries and their role in the formation of the Central Asian Fold Belt. Russ. Geol. Geophys., 54 (2013), pp. 1427-1441
J. Zhang, W. Xiao, J. Luo, Y. Chen, B.F. Windley, D. Song, C. Han, I. Safonova. Collision of the Tacheng block with the Mayile-Barleik-Tangbale accretionary complex in Western Junggar, NW China: implication for Early-Middle Paleozoic architecture of the western Altaids. J. Asian Earth Sci., 159 (2018), pp. 259-278
Y.Z. Zhen, I.G. Percival. Ordovician conodont biogeography – reconsidered. Lethaia, 36 (4) (2003), pp. 357-369
R.G. Zheng, L. Zhao, Y.Q. Yang. Geochronology, geochemistry and tectonic implications of a new ophiolitic mélange in the northern West Junggar, NW China. Gondwana Res., 74 (2019), pp. 237-250
Zholtaev, G.Zh., Nikitina, O.I., Zhaimina, V.Ya., Seitmuratova, E.Yu., Pirogova, T.E., Ivanova, N.I., Fazylov, E.M., Musina, E.S., Nigmatova, S.A., Bayshashov, B.U., 2021. Decisions of the meeting on the unification of Phanerozoic Stratigraphic Schemes of Kazakhstan, Almaty, November 25-29, 2021. Explanatory note to the stratigraphic schemes developed and approved by the Meeting within the framework of the project “Modernization of stratigraphic schemes of the Phanerozoic of Kazakhstan based on the International chronostratigraphic chart - 2016-2021”. Almaty, LLP «378», 236 p. (in Russian).
Y. Zhu, B. Chen, T. Qiu. Geology and geochemistry of the Baijiantan-Baikouquan ophiolitic mélanges: implications for geological evolution of West Junggar, Xinjiang, NW China. Geol. Mag., 152 (2015), pp. 41-69
A.M. Zhylkaidarov. Conodonts form Ordovician of Central Kazakhstan. Acta Palaeontol. Pol., 43 (1998), pp. 53-68
L.P. Zonenshain, M.I. Kuzmin, L.M. Natapov. Geology of the USSR: a plate tectonic synthesis. Geodynamic Monograph Series. Am. Geoph., Union (1990), p. 328
S. Zyabrev, A. Matsuoka. Late Jurassic (Tithonian) radiolarians from a clastic unit of the Khabarovsk complex (Russian Far East): significance for subduction accretion timing and terrane correlation. Isl. Arc, 8 (1999), pp. 30-37

Accesses

Citations

Detail

Sections
Recommended

/