Age and fluid source constraints of the Haoyaoerhudong orogenic gold deposit, North China: Evidence from geochronology and noble gas isotopes

Chenglong Fan , Jingwen Mao , Huishou Ye , Yitian Wang , Junchen Liu , Wei Jian , Xuyang Meng , Wenhao Tang , Weiwei Chao , Peng Wang

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (4) : 101812

PDF
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (4) : 101812 DOI: 10.1016/j.gsf.2024.101812

Age and fluid source constraints of the Haoyaoerhudong orogenic gold deposit, North China: Evidence from geochronology and noble gas isotopes

Author information +
History +
PDF

Abstract

The Haoyaoerhudong gold deposit, located in the northwestern part of the North China craton (NCC), has produced over 120 metric tonnes (t) of gold since 2007. It has a total reserve of > 240 t at average gold grade of 0.62 g/t, making it one of the largest open pit gold mines in China. The steeply dipping, large-tonnage, low-grade, vein- or veinlet-type gold orebodies are hosted in strongly-deformed Mesoproterozoic carbonaceous schist of the Bayan Obo Group. The laminated/boudinaged veins/veinlets in the sinistral ductile–brittle shear zones are dominated by quartz, biotite, gold-bearing löllingite, pyrrhotite, (arseno)pyrite, with minor native gold, titanite and xenotime. In this paper, we present new in situ U–Pb geochronological data on magmatic zircon from the pre-ore dikes, on metamorphic and hydrothermal xenotime, and on hydrothermal titanite from the hydrothermally altered carbonaceous schist and auriferous quartz–sulfides veins/veinlets, as well as He-Ar isotopic analysis on gold-bearing (arseno)pyrite in the syn-ore stage. The metamorphic xenotime U–Pb age of 426 ± 6.0 Ma (2σ) records a regional metamorphic event, possibly related to the accretion of the Bainaimiao arc onto the NCC. Two pre-ore andesitic dikes yielded similar emplacement ages at ∼ 278 Ma constrained by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U–Pb zircon data. Hydrothermal xenotime grains from the altered carbonaceous schist and auriferous quartz–sulfides veins yielded U–Pb ages of 256.0 ± 4.1 Ma (2σ) and 254.4 ± 2.1 Ma (2σ), respectively, overlapping with that of the hydrothermal titanite at 255.4 ± 0.8 Ma (2σ) from the laminated quartz–sulfides veinlets. This indicates that the gold mineralization occurred at ca. 255 Ma. The ∼ 255 Ma gold mineralization age is much younger than the previously reported Early–Middle Permian regional magmatic activity (ca. 291 Ma to 268 Ma), and may be associated with the regional sinistral strike-slip event in the late orogenic cycle related to the collision between the Siberian craton and the NCC. The 3He/4He (R/Ra) and 40Ar/36Ar values of the gold-bearing (arseno)pyrite are 0.04 to 0.09 (average = 0.07) and 375.8 to 2023 (average = 1045), which reveal the ore-forming fluids dominantly originated from the crustal rocks, with limited involvement from the mantle. Collectively, our new geochronological data, noble gas isotopic analyses, and geological evidence support a typical orogenic gold deposit model at Haoyaoerhudong.

Keywords

Xenotime / Titanite / In situ U-Pb dating / Noble gas / Orogenic gold deposit / North China Craton

Cite this article

Download citation ▾
Chenglong Fan, Jingwen Mao, Huishou Ye, Yitian Wang, Junchen Liu, Wei Jian, Xuyang Meng, Wenhao Tang, Weiwei Chao, Peng Wang. Age and fluid source constraints of the Haoyaoerhudong orogenic gold deposit, North China: Evidence from geochronology and noble gas isotopes. Geoscience Frontiers, 2024, 15(4): 101812 DOI:10.1016/j.gsf.2024.101812

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Chenglong Fan: Writing - original draft. Jingwen Mao: Writing - review & editing. Huishou Ye: Funding acquisition, Writing - review & editing. Yitian Wang: Writing - review & editing. Junchen Liu: Writing - review & editing. Wei Jian: Writing - review & editing. Xuyang Meng: Writing - review & editing. Wenhao Tang: Writing - review & editing. Weiwei Chao: Writing - review & editing. Peng Wang: Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We acknowledge financial support from the Academic-Industry Cooperation Project (grant HE1913) and National Natural Science Foundation of China (41972094). Bin Shi is thanked for helping with the SEM analysis. We thank Huan Wang and Shitou Wu for their help in the age dating. We gratefully acknowledge two local geologists Xiping Lv and Zhihui Dou from Inner Mongolia Pacific Mining Co., Ltd. for their kindly assistance in fieldwork. We also thank Thomas Ulrich and an anonymous reviewer for their constructive comments and valuable revisions to this manuscript.

References

[1]

J.N. Aleinikoff, R.P. Wintsch, C.M. Fanning, M.J. Dorais. U-Pb geochronology of zircon and polygenetic titanite from the Glastonbury Complex, Connecticut, USA: an integrated SEM, EMPA, TIMS, and SHRIMP study. Chem. Geol., 188 (1) (2002), pp. 125-147

[2]

J.N. Aleinikoff, K. Lund, C.M. Fanning. SHRIMP U-Pb and REE data pertaining to the origins of xenotime in Belt Supergroup rocks: evidence for ages of deposition, hydrothermal alteration, and metamorphism. Can. J. Earth Sci., 52 (9) (2015), pp. 722-745

[3]

B. Baatartsogt, T. Wagner, H. Taubald, K. Mierdel, G. Markl. Hydrogen isotope determination of fluid inclusion water from hydrothermal fluorite—constraining the effect of the extraction technique. Chem. Geol., 244 (2007), pp. 474-482

[4]

C.J. Ballentine, P.G. Burnard. Production, release and transport of noble gases in the continental crust. D. Porcelli, C.J. Ballentine, R. Wieler (Eds.), Noble Gases in Geochemistry and Cosmochemistry, 47, Mineralogical Society of America & Geochemical Society, Chantilly (2002), pp. 481-538

[5]

P.J. Baptiste, Y. Fouquet. Abundance and isotopic composition of helium in hydrothermal sulfides from the East Pacific Rise at 13°N. Geochim. Cosmochim. Acta, 60 (1996), pp. 87-93

[6]

Bierlein, F.P., Crowe, D.E., 2000. Phanerozoic Orogenic Lode Gold Deposits. In: Hagemann, S.G., Brown, P.E. (Eds.), Gold in 2000. Society of Economic Geologists, Volume 13, p. 103-139.

[7]

Y. Cao, F. Nie, W. Xiao, Y. Liu, W. Zhang, F. Wang. Metallogenic age of the Changshanhao gold deposit in Inner Mongolia. China. Acta Petrol. Sin., 30 (7) (2014), pp. 2092-2100

[8]

D.J. Cherniak. Pb and rare earth element diffusion in xenotime. Lithos, 88 (1) (2006), pp. 1-14

[9]

G. Chi, B. Dubé, K. Williamson, A.E. Williams-Jones. Formation of the Campbell-Red Lake gold deposit by H2O-poor, CO2-dominated fluids. Mineral. Deposita, 40 (6) (2006), pp. 726-741

[10]

Beijing Jinyou Geological Exploration Co., Ltd., 2011. Detailed Geological Report of Eastern and Western Ore Blocks of the Haoyaoerhudong Gold Deposit. Beijing, unpublished report, p. 194 (in Chinese).

[11]

M. Cosca, H. Stunitz, A.-L. Bourgeix, J.P. Lee. 40Ar∗ loss in experimentally deformed muscovite and biotite with implications for 40Ar/39Ar geochronology of naturally deformed rocks. Geochim. Cosmochim. Acta, 75 (24) (2011), pp. 7759-7778

[12]

P.S. Dahl, M.P. Terry, M.J. Jercinovic, M.L. Williams, M.A. Hamilton, K.A. Foland, S.M. Clement, L.M. Friberg. Electron probe (Ultrachron) microchronometry of metamorphic monazite: Unraveling the timing of polyphase thermotectonism in the easternmost Wyoming Craton (Black Hills, South Dakota). Am. Mineral., 90 (11–12) (2005), pp. 1712-1728

[13]

C. Ding, F. Nie, S. Jiang, Y. Liu, Y. Cao. Characteristics and origin of the Zhulazhaga gold deposit in Inner Mongolia, China. Ore Geol. Rev., 73 (2016), pp. 211-221

[14]

M. Engi. Petrochronology based on REE-minerals: Monazite, allanite, xenotime, apatite. Rev. Mineral. Geochem., 83 (1) (2017), pp. 365-418

[15]

H. Feng, P. Shen, R. Zhu, J.-W. Zi, D.I. Groves, C. Li, Y. Wu, G. Ma, T. Li. Precise ages of gold mineralization and pre-gold hydrothermal activity in the Baiyun gold deposit, northeastern China: in situ U-Pb dating of hydrothermal xenotime and rutile. Mineral. Deposita, 57 (6) (2022), pp. 1001-1022

[16]

I.O.H. Fielding, S.P. Johnson, J.W. Zi, B. Rasmussen, J.R. Muhling, D.J. Dunkley, S. Sheppard, M.T.D. Wingate, J.R. Rogers. Using in situ SHRIMP U-Pb monazite and xenotime geochronology to determine the age of orogenic gold mineralization: An example from the Paulsens Mine, Southern Pilbara Craton. Econ. Geol., 112 (5) (2017), pp. 1205-1230

[17]

G. Foster, H.D. Gibson, R. Parrish, M. Horstwood, J. Fraser, A. Tindle. Textural, chemical and isotopic insights into the nature and behaviour of metamorphic monazite. Chem. Geol., 191 (1) (2002), pp. 183-207

[18]

B.R. Frost, K.R. Chamberlain, J.C. Schumacher. Sphene (titanite): phase relations and role as a geochronometer. Chem. Geol., 172 (1) (2001), pp. 131-148

[19]

B. Fu, M.A. Kendrick, A.M. Fairmaid, D. Phillips, C.J.L. Wilson, T.P. Mernagh. New constraints on fluid sources in orogenic gold deposits, Victoria, Australia. Contrib. Mineral. Petrol., 163 (3) (2011), pp. 427-447

[20]

Y. Fu, X. Sun, H. Zhou, H. Lin, T. Yang. In-situ LA–ICP–MS U-Pb geochronology and trace elements analysis of polygenetic titanite from the giant Beiya gold–polymetallic deposit in Yunnan Province, Southwest China. Ore Geol. Rev., 77 (2016), pp. 43-56

[21]

Goldfarb, R.J., Baker, T., Dubé, B., Groves, D.I., Hart, C.J.R., Gosselin, P., Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., 2005. Distribution, character, and genesis of gold deposits in Metamorphic Terran. One Hundredth Anniversary Volume, Society of Economic Geologists, p. 407–450.

[22]

Goldfarb, R.J., Qiu, K., Deng, J., Chen, Y., Yang, L., 2019. Chapter 8: Orogenic Gold Deposits of China, Mineral Deposits of China. Society of Economic Geologists Special Publication, p. 263-324.

[23]

R.J. Goldfarb, D.I. Groves. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos, 233 (2015), pp. 2-26

[24]

R.J. Goldfarb, I. Pitcairn. Orogenic gold: is a genetic association with magmatism realistic?. Mineral. Deposita, 58 (1) (2023), pp. 5-35

[25]

R.J. Goldfarb, R.D. Taylor, G.S. Collins, N.A. Goryachev, O.F. Orlandini. Phanerozoic continental growth and gold metallogeny of Asia. Gondwana Res., 25 (1) (2014), pp. 48-102

[26]

N.R.J. Goodwin, R. Burgess, D. Craw, D.A.H. Teagle, C.J. Ballentine. Noble gases fingerprint a metasedimentary fluid source in the Macraes orogenic gold deposit, New Zealand. Mineral. Deposita, 52 (2) (2016), pp. 197-209

[27]

T. Graupner, S. Niedermann, U. Kempe, R. Klemd, A. Bechtel. Origin of ore fluids in the Muruntau gold system: Constraints from noble gas, carbon isotope and halogen data. Geochim. Cosmochim. Acta, 70 (21) (2006), pp. 5356-5370

[28]

D.I. Groves, R.J. Goldfarb, M. Gebre-Mariam, S.G. Hagemann, F. Robert. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev., 13 (1–5) (1998), pp. 7-27

[29]

T.M. Harrison, I. Duncan, I. McDougall. Diffusion of 40Ar in biotite: Temperature, pressure and compositional effects. Geochim. Cosmochim. Acta, 49 (11) (1985), pp. 2461-2468

[30]

T.M. Harrison, E.J. Catlos, J.-M. Montel. U-Th-Pb dating of phosphate minerals. Rev. Mineral. Geochem., 48 (1) (2002), pp. 524-558

[31]

T.M. Harrison, J. Célérier, A.B. Aikman, J. Hermann, M.T. Heizler. Diffusion of 40Ar in muscovite. Geochim. Cosmochim. Acta, 73 (4) (2009), pp. 1039-1051

[32]

C.J. Hart, R.J. Goldfarb, Y. Qiu, L. Snee, L.D. Miller, M.L. Miller. Gold deposits of the northern margin of the North China Craton: multiple late Paleozoic-Mesozoic mineralizing events. Mineral. Deposita, 37 (3) (2002), pp. 326-351

[33]

C. He, J. Li, D.J. Kontak, X. Jin, Y. Wu, H. Hu, B. Zu, X. Yu, S. Zhao, S. Du, Y. Zhu, H. Tao. An Early Cretaceous gold mineralization event in the Triassic West Qinling orogen revealed from U-Pb titanite dating of the Ma’anqiao gold deposit. Sci. China Earth Sci., 66 (2) (2023), pp. 316-333

[34]

R.Z. Hu, P.G. Burnard, G. Turner, X.W. Bi. Helium and Argon isotope systematics in fluid inclusions of Machangqing copper deposit in west Yunnan province, China. Chem. Geol., 146 (1998), pp. 55-63

[35]

Inner Mongolia Bureau of Geology and Mineral Resources (Inner Mongolia BGMR), 1991. Regional Geology of Nei Mongol (Inner Mongolia) Autonomous Region. p. 229 (in Chinese).

[36]

B.M. Jahn, F.Y. Wu, B. Chen. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Trans. Roy. Soc. Edinburgh: Earth Sci., 91 (2000), pp. 181-193

[37]

P. Jian, D. Liu, A. Kröner, B.F. Windley, Y. Shi, W. Zhang, F. Zhang, L. Miao, L. Zhang, D. Tomurhuu. Evolution of a Permian intraoceanic arc–trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 118 (1–2) (2010), pp. 169-190

[38]

W. Jian, J. Mao, B. Lehmann, S. Wu, L. Chen, S. Song, J. Xu, P. Wang, J. Liu. Two discrete gold mineralization events recorded by hydrothermal xenotime and monazite, Xiaoqinling gold district, central China. Am. Mineral., 109 (1) (2024), pp. 73-86

[39]

M.A. Kendrick, R. Burgess, R.A.D. Pattrick, G. Turner. Fluid inclusion noble gas and halogen evidence on the origin of Cuporphyry mineralizing fluids. Geochim. Cosmochim. Acta, 65 (2001), pp. 2651-2668

[40]

M.A. Kendrick, P. Burnard. Noble Gases and Halogens in Fluid Inclusions: A Journey Through the Earth’s Crust. Advances in Isotope Geochemistry. Springer, Berlin Heidelberg (2013), pp. 319-369

[41]

R. Kerrich, R. Goldfarb, D. Groves, S. Garwin, Y. Jia. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces. Sci. China, Ser. D Earth Sci., 43 (1) (2000), pp. 1-68

[42]

M.J. Kohn. Titanite Petrochronology. Rev. Mineral. Geochem., 83 (1) (2017), pp. 419-441

[43]

N. Kositcin, N.J. McNaughton, B.J. Griffin, I.R. Fletcher, D.I. Groves, B. Rasmussen. Textural and geochemical discrimination between xenotime of different origin in the Archaean Witwatersrand Basin, South Africa. Geochim. Cosmochim. Acta, 67 (4) (2003), pp. 709-731

[44]

C.J.M. Lawley, R.A. Creaser, S.E. Jackson, Z. Yang, B.J. Davis, S.J. Pehrsson, B. Dubé, P. Mercier-Langevin, D. Vaillancourt. Unraveling the Western Churchill Province Paleoproterozoic Gold Metallotect: Constraints from Re-Os arsenopyrite and U-Pb xenotime geochronology and LA-ICP-MS arsenopyrite trace element chemistry at the BIF-hosted Meliadine Gold District, Nunavut, Canada. Econ. Geol., 110 (6) (2015), pp. 1425-1454

[45]

S. Li, S.-L. Chung, S.A. Wilde, T. Wang, W.-J. Xiao, Q.-Q. Guo. Linking magmatism with collision in an accretionary orogen. Sci. Rep., 6 (1) (2016), p. 25751

[46]

S. Li, S.L. Chung, S.A. Wilde, B.M. Jahn, W.J. Xiao, T. Wang, Q.Q. Guo. Early-Middle Triassic high Sr/Y granitoids in the southern Central Asian Orogenic Belt: Implications for ocean closure in accretionary orogens. J. Geophys. Res.: Solid. Earth, 122 (3) (2017), pp. 2291-2309

[47]

Li, W., Zhang, F., Qiao, X., Fu, T., 2023. Hydrothermal graphite as a trigger for high-temperature orogenic gold mineralization at Haoyaoerhudong, Northern China. Econ. Geol. 118(8), 1857–1880.

[48]

L. Lin, W. Xiao, B. Wan, B.F. Windley, S. Ao, C. Han, J. Feng, J. Zhang, Z. Zhang. Geochronologic and geochemical evidence for persistence of south-dipping subduction to late Permian time, Langshan area, Inner Mongolia (China): Significance for termination of accretionary orogenesis in the southern Altaids. Am. J. Sci., 314 (2) (2014), p. 679

[49]

Y. Liu, F. Nie, S. Jiang, L. Bagas, W. Xiao, Y. Cao. Geology, geochronology and sulphur isotope geochemistry of the black schist-hosted Haoyaoerhudong gold deposit of Inner Mongolia, China: Implications for ore genesis. Ore Geol. Rev., 73 (2016), pp. 253-269

[50]

C.H. Liu, G.C. Zhao, F.L. Liu, J.R. Shi. Detrital zircon U-Pb and Hf isotopic and whole-rock geochemical study of the Bayan Obo Group, northern margin of the North China Craton: Implications for Rodinia reconstruction. Precambrian Res., 303 (2017), pp. 372-391

[51]

J.W. Mao, D. Konopelko, R. Seltmann, B. Lehmann, W. Chen, Y.T. Wang, O. Eklund, T. Usubaliev. Postcollisional age of the Kumtor gold deposit and timing of Hercynian events in the Tien Shan, Kyrgyzstan. Econ. Geol., 99 (8) (2004), pp. 1771-1780

[52]

J. Mao, Y. Li, R. Goldfarb, Y. He, K. Zaw. Fluid inclusion and noble gas studies of the Dongping Gold Deposit, Hebei Province, China: A mantle connection for mineralization?. Econ. Geol., 98 (3) (2003), pp. 517-534

[53]

Mason, R.A., 2013. Geological Structure and Mineralisation: CSH (Changshanhao) Mine, Inner Mongolia, Peoples Republic of China. Report to China Gold International Resources Ltd.

[54]

J.A. McDivitt, D.J. Kontak, B. Lafrance, J.A. Petrus, M. Fayek. A trace metal, stable isotope (H, O, S), and geochronological (U–Pb titanite) characterization of hybridized gold orebodies in the Missanabie-Renabie district, Wawa subprovince (Canada). Mineral. Deposita, 56 (3) (2021), pp. 561-582

[55]

N.J. McNaughton, B. Rasmussen. Geochemical characterisation of xenotime formation environments using U-Th. Chem. Geol., 484 (2018), pp. 109-119

[56]

A. Mulch, M. Cosca, M. Handy. In-situ UV-laser 40Ar/39Ar geochronology of a micaceous mylonite: an example of defect-enhanced argon loss. Contrib. Mineral. Petrol., 142 (6) (2002), pp. 738-752

[57]

F.J. Nie, S.H. Jiang, X.X. Su, X.L. Wang. Geological features and origin of gold deposits occurring in the Baotou-Bayan Obo district, south-central Inner Mongolia, People's Republic of China. Ore Geol. Rev., 20 (3–4) (2002), pp. 139-169

[58]

Nilsson, J., Rossi, M., Major, K., 2012. Technical Report Expansion Feasibility Study for the Chang Shan Hao (CSH) Gold Project, Inner Mongolia, Peoples Republic of China. Report prepared for China Gold International Resources Corp. Ltd.

[59]

M. Ozima, F.A. Podosek. Noble Gas Geochemistry. Cambridge University Press (2002)

[60]

A. Putnis. Mineral replacement reactions. Rev. Mineral. Geochem., 70 (1) (2009), pp. 87-124

[61]

B. Rasmussen. Radiometric dating of sedimentary rocks: the application of diagenetic xenotime geochronology. Earth-Sci. Rev., 68 (3) (2005), pp. 197-243

[62]

B. Rasmussen, I.R. Fletcher, J.R. Muhling, A.G. Mueller, G.C. Hall. Bushveld-aged fluid flow, peak metamorphism, and gold mobilization in the Witwatersrand basin, South Africa: Constraints from in situ SHRIMP U-Pb dating of monazite and xenotime. Geology, 35 (10) (2007), pp. 931-934

[63]

B. Rasmussen, I.R. Fletcher, J.R. Muhling. Response of xenotime to prograde metamorphism. Contrib. Mineral. Petrol., 162 (6) (2011), pp. 1259-1277

[64]

A.J. Schaen, B.R. Jicha, K.V. Hodges, P. Vermeesch, M.E. Stelten, C.M. Mercer, D. Phillips, T.A. Rivera, F. Jourdan, E.L. Matchan, S.R. Hemming, L.E. Morgan, S.P. Kelley, W.S. Cassata, M.T. Heizler, P.M. Vasconcelos, J.A. Benowitz, A.A.P. Koppers, D.F. Mark, E.M. Niespolo, C.J. Sprain, W.E. Hames, K.F. Kuiper, B.D. Turrin, P.R. Renne, J. Ross, S. Nomade, H. Guillou, L.E. Webb, B.A. Cohen, A.T. Calvert, N. Joyce, M. Ganerød, J. Wijbrans, O. Ishizuka, H. He, A. Ramirez, J.A. Pfänder, M. Lopez-Martínez, H. Qiu, B.S. Singer. Interpreting and reporting 40Ar/39Ar geochronologic data. GSA Bulletin, 133 (3–4) (2020), pp. 461-487

[65]

R. Seltmann, R.J. Goldfarb, B. Zu, R.A. Creaser, A. Dolgopolova, V.V. Shatov. Chapter 24: Muruntau, Uzbekistan: The World’s Largest Epigenetic Gold Deposit. R.H. Sillitoe, R.J. Goldfarb, F. Robert, S.F. Simmons (Eds.), Geology of the World’s Major Gold Deposits and Provinces, Society of Economic Geologists Inc, USA (2020), pp. 497-521

[66]

A.M.C. Şengör, B.A. Natal'in, V.S. Burtman. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364 (6435) (1993), pp. 299-307

[67]

S.F. Sheppard. Characterization and isotopic variations in natural waters. Rev. Mineral. Geochem., 16 (1986), pp. 165-183

[68]

S.F. Simmons, F.J. Sawkins, B.T. Schlutter. Mantle-derived helium in two Peruvian hydrothermal ore deposits. Nature, 329 (1987), pp. 429-432

[69]

F.S. Spear, J.M. Pyle. Apatite, monazite, and xenotime in metamorphic rocks. Rev. Mineral. Geochem., 48 (1) (2002), pp. 293-335

[70]

F.M. Stuart, P.G. Burnard, R.P. Taylor, G. Turner. Resolving mantle and crustal contributions to ancient hydrothermal fluids: He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralization, South Korea. Geochim. Cosmochim. Acta, 59 (1995), pp. 4663-4673

[71]

S.S. Sun, W.F. McDonough. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. London Spec. Pub., 42 (1) (1989), pp. 313-345

[72]

R.D. Taylor, R.J. Goldfarb, T. Monecke, I.R. Fletcher, M.A. Cosca, N.M. Kelly. Application of U-Th-Pb phosphate geochronology to Young Orogenic Gold Deposits: New age constraints on the formation of the Grass Valley Gold District, Sierra Nevada Foothills Province, California. Econ. Geol., 110 (5) (2015), pp. 1313-1337

[73]

I.N. Tolstikhin. A review—Some recent advances in isotope geochemistry of light rare gases. E.C. Alexander Jr., M. Ozima (Eds.), Terrestrial Rare Gases, Japan Scientific Societies Press (1978), pp. 33-62

[74]

A. Tremblay, G. Ruffet, J. Lemarchand. Timing and duration of Archean orogenic gold deposits in the Bourlamaque pluton, Val d’Or mining camp, Abitibi, Canada. Ore Geol. Rev., 127 (2020), Article 103812

[75]

N.M. Vielreicher, D.I. Groves, L.W. Snee, I.R. Fletcher, N.J. McNaughton. Broad synchroneity of three gold mineralization styles in the Kalgoorlie Gold Field: SHRIMP, U-Pb, and 40Ar/39Ar geochronological evidence. Econ. Geol., 105 (1) (2010), pp. 187-227

[76]

B. Wan, W. Xiao, B.F. Windley, J. Gao, L. Zhang, K. Cai. Contrasting ore styles and their role in understanding the evolution of the Altaids. Ore Geol. Rev., 80 (2017), pp. 910-922

[77]

X. Wang. . Geological, Geochemical Characteristics and Geochronology of the Gabbro rocks in the Haoyaoerhudong Gold Deposit, Inner Mongolia, China. Master thesis, China University of Geosciences, Beijing (2016)

[78]

J. Wang, J. Liu, R. Peng, Z. Liu, B. Zhao, Z. Li, Y. Wang, C. Liu. Gold mineralization in Proterozoic black shales: Example from the Haoyaoerhudong gold deposit, northern margin of the North China Craton. Ore Geol. Rev., 63 (2014), pp. 150-159

[79]

Y.F. Wang, J.P. Wang, Y.M. Li, X.D. Jiang, B. Wang, S.M. Jiang. Organic geochemical characteristics and metallogenetic significance of the ore-hosting strata of the Haoyaoerhudong gold deposit, Inner Mongolia. Acta Mineral. Sin., 31 (Suppl.) (2011), pp. 405-407

[80]

J. Wang, X. Wang, J. Liu, Z. Liu, D. Zhai, Y. Wang. Geology, geochemistry, and geochronology of gabbro from the Haoyaoerhudong Gold Deposit, Northern Margin of the North China Craton. Minerals, 9 (1) (2019), p. 63

[81]

H. Wang, J. Zhang, Y. Fan, L. Guo. Tectonic conversion on the northern margin of the North China Craton in the Early Triassic: Constraints from geochronology and petrogenesis of the Datan plutonic complex, middle of Inner Mongolia, China. Lithos, 388–389 (2021), Article 106038

[82]

W. Xiao, F. Nie, Y. Liu, Y. Liu. Isotope geochronology study of the granitoid intrusions in the Changshanhao gold deposit and its geological implications. Acta Petrol. Sin., 28 (2) (2012), pp. 534-543

[83]

W.J. Xiao, B.F. Windley, S. Sun, J.L. Li, B.C. Huang, C.M. Han, C. Yuan, M. Sun, H.L. Chen. A tale of amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, sutures, and terminal accretion. Ann. Rev. Earth Planet. Sci., 43 (2015), pp. 477-507

[84]

A.S. Yakubchuk, V.V. Shatov, D. Kirwin, A. Edwards, O. Tomurtogoo, G. Badarch, V.A. Buryak. Gold and Base Metal Metallogeny of the Central Asian Orogenic Supercollage. J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb, J.P. Richards (Eds.), One Hundredth Anniversary Volume, Society of Economic Geologists, Littleton (2005), pp. 1035-1068

[85]

J.-H. Yang, J.-F. Sun, M. Zhang, F.-Y. Wu, S.A. Wilde. Petrogenesis of silica-saturated and silica-undersaturated syenites in the northern North China Craton related to post-collisional and intraplate extension. Chem. Geol., 328 (2012), pp. 149-167

[86]

Yun, Y., 2022. Study on sulfides mineralogy and ore-forming processes of Haoyaoerhudong gold deposit, Inner Mongolia. Master thesis. Chinese Academy of Geological Sciences, 79 p.

[87]

H. Zeng, D. Song, W. Xiao, P. Li. Accretion of an early Paleozoic Alaska-type arc onto northern North China: Implications for continental growth of the Central Asian orogenic belt. GSA Bulletin, 135 (9–10) (2023), pp. 2621-2647

[88]

Q. Zeng, Y. Wang, J. Yang, Y. Guo, B. Yu, L. Zhou, H. Qiu. Spatial–temporal distribution and tectonic setting of gold deposits in the Northern margin gold belt of the North China Craton. Int. Geol. Rev., 63 (8) (2020), pp. 941-972

[89]

L. Zhang, S.-Y. Jiang. Early Permian continental arc magmatism in the Zhaojinggou area of the northern North China Craton: Implications for crust-mantle interactions during southward Paleo-Asian plate subduction. Lithos, 390–391 (2021), Article 106110

[90]

H. Zhang, J.-C. Liu, Q. Xu, J.-Y. Wang. Geochronology, isotopic chemistry, and gold mineralization of the black slate-hosted Haoyaoerhudong gold deposit, northern North China Craton. Ore Geol. Rev., 117 (2020), Article 103315

[91]

H. Zhang, J.-C. Liu, M. Fayek. Multistage mineralization in the Haoyaoerhudong gold deposit, Central Asian Orogenic Belt: Constraints from the sedimentary-diagenetic and hydrothermal sulfides and gold. Geosci. Front., 12 (2) (2021), pp. 587-604

[92]

S.H. Zhang, Y. Zhao, B. Song, J.M. Hu, S.W. Liu, Y.H. Yang, F.K. Chen, X.M. Liu, J. Liu. Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China craton: Geochronology, petrogenesis, and tectonic implications. Geol. Soc. Am. Bull., 121 (1–2) (2009), pp. 181-200

[93]

S.H. Zhang, Y. Zhao, H. Ye, J.M. Liu, Z.C. Hu. Origin and evolution of the Bainaimiao arc belt: Implications for crustal growth in the southern Central Asian orogenic belt. Geol. Soc. Am. Bull., 126 (9–10) (2014), pp. 1275-1300

[94]

S.-H. Zhang, Y. Zhao, J.-M. Liu, Z.-C. Hu. Different sources involved in generation of continental arc volcanism: The Carboniferous-Permian volcanic rocks in the northern margin of the North China block. Lithos, 240–243 (2016), pp. 382-401

[95]

Zhang, Q., 2021. Geological Records of the Late Silurian–Devonian Arc-Continental Collision in the Northern Margin of the North China Block and Craton-Orogen Boundary. Ph.D. thesis. Chinese Academy of Geological Sciences, p. 213.

[96]

G. Zhao, M. Zhai. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Res., 23 (4) (2013), pp. 1207-1240

[97]

H. Zhou, G.C. Zhao, Y.G. Han, B. Wang. Geochemistry and zircon U-Pb-Hf isotopes of Paleozoic intrusive rocks in the Damao area in Inner Mongolia, northern China: Implications for the tectonic evolution of the Bainaimiao arc. Lithos, 314 (2018), pp. 119-139

[98]

X.K. Zhu, R.K. O'Nions. Monazite chemical composition: some implications for monazite geochronology. Contrib. Mineral. Petrol., 137 (4) (1999), pp. 351-363

[99]

R.-X. Zhu, J.-H. Yang, F.-Y. Wu. Timing of destruction of the North China Craton. Lithos, 149 (2012), pp. 51-60

AI Summary AI Mindmap
PDF

225

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/