Quantifying the age peaks, age ranges and weights of detrital ages based on the EM algorithm
Jintao Kong
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (4) : 101811.
Quantifying the age peaks, age ranges and weights of detrital ages based on the EM algorithm
Detrital geochronology fundamentally involves the quantification of major age ranges and their weights winthin an age distribution. This study presents a streamlined approach, modeling the age distribution of detrital zircons using a normal mixture model, and employs the Expectation-Maximization (EM) algorithm for precise estimations. A method is introduced to automatically select appropriate initial mean values for EM algorithm, enhancing its efficacy in detrital geochronology. This process entails multiple trials with varying numbers of age components leading to diverse k-component models. The model with the lowest Bayesian Information Criterion (BIC) is identified as the most suitable. For accurate component number and weight determination, a substantial sample size (n > 200) is advisable.
Detrital zircon geochronology / Expectation-Maximization algorithm / Kullback–Leibler divergence / Quantifying comparison / Age peaks, age ranges, and weights
W.H. Amidon, D.W. Burbank, G.E. Gehrels. U-Pb zircon ages as a sediment mixing tracer in the Nepal Himalaya. Earth Planet. Sci. Lett., 235 (2005), pp. 244-260
|
T. Andersen. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem. Geol., 192 (2002), pp. 59-79
|
T. Andersen. Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chem. Geol., 216 (3–4) (2005), pp. 249-270
|
T. Andersen, M.A. Elburg, A. Cawthorn-Blazeby. U-Pb and Lu–Hf zircon data in young sediments reflect sedimentary recycling in eastern South Africa. J. Geol. Soc. London, 173 (2016), pp. 337-351
|
T. Andersen, M.A. Elburg, B.N. Magwaza. Sources of bias in detrital zircon geochronology: Discordance, concealed lead loss and common lead correction. Earth-Science Rev., 197 (2019), Article 102899
|
T. Anderson, M. Kristoffersen, M.A. Elburg. Visualizing, interpreting and comparing detrital zircon age and Hf isotope data in basin analysis–a graphical approach. Basin Res., 30 (2018), pp. 132-147
|
E. Belousova, W. Griffin, S.Y. O’Reilly, N.I. Fisher. Igneous zircon: trace element composition as an indicator of source rock type. Contrib. Miner. Petrol., 143 (5) (2002), pp. 602-622
|
J.A. Bilmes. A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian Mixture and hidden Markov models. Department of Electrical Engineering and Computer Science, (1998)
|
W.R. Dickinson. Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis. Earth Planet. Sci. Lett., 275 (1–2) (2008), pp. 80-92
|
M.H. Dodson, W. Compston, I.S. Williams, J.F. Wilson. A search for ancient detrital zircons in Zimbabwean sediments. J. Geol. Soc. London, 145 (6) (1988), pp. 977-983
|
Fedo, C.M., Sircombe, K.N., Rainbird, R.H., 2003. Detrtial zircon analysis of the sedimentary record. In: Hanchar, J.M., Hoskin, P .W.O. (Eds.), Zircon, Reviews in Mineralogy and Geochemistry, 53, 277–303.
|
R. Ge, S.A. Wilde, A.A. Nemchin, M.J. Whitehouse, J.J. Bellucci, T.M. Erickson, A. Frew, E.R. Thern. A 4463 Ma apparent zircon age from the Jack Hills (Western Australia) resulting from ancient Pb mobilization. Geology, 46 (2018), pp. 303-306
|
G.E. Gehrels. Introduction to detrital zircon studies of Paleozoic and Triassic strata in western Nevada and northern California. Special Papers-Geological Society of America, 347 (2000), pp. 1-17
|
G.E. Gehrels. Detrital zircon U-Pb geochronology: current methods and new opportunities. C. Busby, A. Azor (Eds.), Tectonics of Sedimentary Basins: Recent Advances, Wiley-Blackwell, Chichester, UK (2012), pp. 47-62
|
A. Jasra, D.A. Stephens, K. Gallagher, C.C. Holmes. Bayesian mixture modelling in geochronology via markov chain monte carlo. Math. Geol., 38 (3) (2006), pp. 269-300
|
R.A. Johnson, D.W. Wichern. Applied multivariate statistical analysis. (6th Edition.), Pearson Education Inc. (2007)
|
D. Karlis, E. Xekalaki. Choosing initial values for the EM algorithm for finite mixtures. Comput. Stat. Data Anal., 41 (2003), pp. 577-590
|
J.T. Kong, Z.J. Xu, R.H. Cheng, L.L. Wang. Provenance of Lower Jurassic sediments in the South China continental margin: Evidence from U-Pb ages of detrital zircons. Palaeogeogr. Palaeoclimatol. Palaeoecol., 569 (2021), Article 110341
|
S. Kullback, R.A. Leibler. On information and sufficiency. Ann. Math. Stat., 22 (1) (1951), pp. 79-86
|
M.A. Kusiak, M.J. Whitehouse, S.A. Wilde, A.A. Nemchin, C. Clark. Mobilization of radiogenic Pb in zircon revealed by ion imaging: Implications for early Earth geochronology. Geology, 41 (2013), pp. 291-294
|
A. Licht, A. Pullen, P. Kapp, J. Abell, N. Giesler. Eolian cannibalism: Reworked loess and fluvial sediment as the main sources of the Chinese Loess Plateau. Geol. Soc. Am. Bull., 128 (2016), pp. 944-956
|
K. Ludwig. Isoplot 3.00 – A User's Manual. Geochronology Center Special Publication, Berkeley (2003)
|
K.R. Ludwig. User's manual for isoplot/excel 3.75. a geochronological toolkit for microsoft excel. Berkeley Geochronology Center Special. Publication, 5 (2012), Article 75
|
L.F. Ma. Geological Atlas of China. Geological Publishing House, Beijing (in Chinese) (2002)
|
D.P. Moecher, S.D. Samson. Differential zircon fertility of source terranes and natural bias in the detrital zircon record: implications for sedimentary provenance analysis. Earth Planet. Sci. Lett., 247 (2006), pp. 252-266
|
S.J. Puetz, C.J. Spencer, C.E. Ganade. Analyses from a validated global U-Pb detrital zircon database: Enhanced methods for filtering discordant U–Pb zircon analyses and optimizing crystallization age estimates. Earth Sci. Rev., 220 (2021), Article 103745
|
A. Pullen, M. Ibáñez-Mejía, G.E. Gehrels, J.C. Ibáñez-Mejía, M. Pecha. What happens when n = 1000? Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations. J. Anal. At. Spectrom, 29 (6) (2014), pp. 971-980
|
J.R. Reimink, J.H.F.L. Davies, J.W.F. Waldron, X. Rojas. Dealing with discordance: a novel approach for analysing U-Pb detrital zircon datasets. J. Geol. Soc. London, 173 (2016), pp. 577-585
|
M.S. Sambridge, W. Compston. Mixture modeling of multi-component data sets with application to ion-probe zircon ages. Earth and Planetary Letters, 128 (1994), pp. 373-390
|
A.M. Satkoski, B.H. Wilkinson, J. Hietpas, S.D. Samson. Likeness among detrital zircon populations—An approach to the comparison of age frequency data in time and space. The Geological Society of America Bulletin, 125 (2013), pp. 1783-1799
|
J.E. Saylor, J.N. Knowles, B.K. Horton, J. Nie, A. Mora. Mixing of source populations recorded in detrital zircon U-Pb age spectra of modern river sands. J. Geol., 121 (2013), pp. 17-33
|
J.E. Saylor, K.E. Sundell. Quantifying comparison of large detrital geochronology data sets. Geosphere, 12 (2016), pp. 203-220
|
J.E. Saylor, K.E. Sundell, G.R. Sharman. Characterizing sediment sources by non-negative matrix factorization of detrital geochronological data. Earth Planet. Sci. Lett., 512 (2019), pp. 46-58
|
G.E. Schwarz. Estimating the dimension of a model. Ann. Stat., 6 (2) (1978), pp. 461-464
|
K.N. Sircombe. AgeDisplay: an EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Comput. Geosci., 30 (2004), pp. 21-31
|
J.A. Speer. Zircon. P.H. Ribbe (Ed.), Orthosilicates, Reviews in Mineralogy, Mineralogical Society of America, Washington, DC (1980), pp. 67-112
|
K.E. Sundell, J.E. Saylor. Unmixing detrital geochronology age distributions. Geochem. Geophys. Geosyst., 18 (2017), pp. 2872-2886
|
K.E. Sundell, G.E. Gehrels, M.E. Pecha. Rapid U-Pb geochronology by laser ablation multi-collector ICP-MS. Geostand. Geoanal. Res., 45 (2) (2020), pp. 37-57
|
K.E. Sundell, J.E. Saylor. Two-dimensional quantitative comparison of density distributions in detrital geochronology and geochemistry. Geochem. Geophys. Geosyst., 22 (4) (2021), Article e2020GC009559
|
P. Vermeesch. On the visualisation of detrital age distributions. Chem. Geol., 312–313 (2012), pp. 190-194
|
P. Vermeesch. Multi-sample comparison of detrital age distributions. Chem. Geol., 341 (2013), pp. 140-146
|
P. Vermeesch. Isoplot R: A free and open toolbox for geochronology. Geosci. Front., 9 (2018), pp. 224-238
|
P. Vermeesch. On the treatment of discordant detrital zircon U-Pb data. Geochronology, 3 (2021), pp. 247-257
|
Vermeesch, P., 2004. How many grains are needed for a provenance study? Earth and Planetary Science Letters, 2004, 224 (3–4), 441–451.
|
X.S. Xu, S.Y. O’Reilly, W.L. Griffin, X.L. Wang, N.J. Pearson, Z.Y. He. The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambr. Res., 158 (2007), pp. 51-78
|
/
〈 |
|
〉 |