A shift in redox conditions near the Ediacaran/Cambrian transition and its possible influence on early animal evolution, Corumbá Group, Brazil
Fabricio A. Caxito , Erik Sperling , Gabriella Fazio , Rodrigo Rodrigues Adorno , Matheus Denezine , Dermeval Aparecido Do Carmo , Martino Giorgioni , Gabriel J. Uhlein , Alcides N. Sial
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (4) : 101810
A shift in redox conditions near the Ediacaran/Cambrian transition and its possible influence on early animal evolution, Corumbá Group, Brazil
The Ediacaran–Cambrian transition witnessed some of the most important biological, tectonic, climatic and geochemical changes in Earth’s history. Of utmost importance for early animal evolution is the likely shift in redox conditions of bottom waters, which might have taken place in distinct pulses during the late Ediacaran and early Paleozoic. To track redox changes during this transition, we present new trace element, total organic carbon and both inorganic and organic carbon isotopes, and the first iron speciation data on the Tamengo and Guaicurus formations of the Corumbá Group in western Brazil, which record important paleobiological changes between 555 Ma to < 541 Ma. The stratigraphically older Tamengo Formation is composed mainly of limestone with interbedded marls and mudrocks, and bears fragments of upper Ediacaran biomineralized fossils such as Cloudina lucianoi and Corumbella werneri. The younger Guaicurus Formation represents a regional transgression of the shallow carbonate platform and is composed of a homogeneous fine-grained siliciclastic succession, bearing meiofaunal bilateral burrows. The new iron speciation data reveal predominantly anoxic and ferruginous (non-sulfidic) bottom water conditions during deposition of the Tamengo Formation, with FeHR/FeT around 0.8 and FePy/FeHR below 0.7. The transition from the Tamengo to the Guaicurus Formation is marked by a stratigraphically rapid drop in FeHR/FeT to below 0.2, recording a shift to likely oxic bottom waters, which persist upsection. Redox-sensitive element (RSE) concentrations are muted in both formations, but consistent with non-sulfidic bottom water conditions throughout. We interpret the collected data to reflect a transition between two distinct paleoenvironmental settings. The Tamengo Formation represents an environment with anoxic bottom waters, with fragments of biomineralized organisms that lived on shallower, probably mildly oxygenated surficial waters, and that were then transported down-slope. Similar to coeval successions (e.g., the Nama Group in Namibia), our data support the hypothesis that late Ediacaran biomineralized organisms lived in a thin oxygenated surface layer above a relatively shallow chemocline. The Guaicurus Formation, on the other hand, records the expansion of oxic conditions to deeper waters during a sea level rise. Although the relationship between global biogeochemical changes and the activities of early bioturbators remains complex, these results demonstrate an unequivocal synchronous relationship between oxygenation of the Corumbá basin and the local appearance of meiofaunal bioturbators.
Atmospheric oxygenation / Gondwana / Redox proxies / Iron speciation / Ediacaran biota / Redox-sensitive elements
| [1] |
M. Ader, P. Sansjofre, G.P. Halverson, V. Busigny, R.I. Trindade, M. Kunzmann, A.C. Nogueira. Ocean redox structure across the late neoproterozoic oxygenation event: a nitrogen isotope perspective. Earth Planet. Sci. Lett., 396 (2014), pp. 1-13 |
| [2] |
R.R. Adorno, D.A.d. Carmo, G. Germs, D.H.G. Walde, M. Denezine, P.C. Boggiani, S.C. Sousa e Silva, J.R. Vasconcelos, T.C. Tobias, E.M. Guimarães, L.C. Vieira, M.F. Figueiredo, R. Moraes, S.A. Caminha, P.A.Z. Suarez, C.V. Rodrigues, G.M. Caixeta, D. Pinho, G. Schneider, R. Muyamba. Cloudina lucianoi (Beurlen & Sommer, 1957), Tamengo Formation, Ediacaran, Brazil: Taxonomy, analysis of stratigraphic distribution and biostratigraphy. Precambrian Res., 301 (2017), pp. 19-35, |
| [3] |
in South America, Tamengo Formation, Corumbá Group, upper Ediacaran of Midwestern. Estud. Geol., 75 (2019), pp. 10-13, |
| [4] |
A.S. Ahm, J. Husson. . Local and Global Controls on Carbon Isotope Chemostratigraphy, Cambridge University Press (2022) |
| [5] |
R.C. Aller, J.Y. Aller. Meiofauna and solute transport in marine muds. Limnol. Oceanogr., 37 (1992), pp. 1018-1033, |
| [6] |
Almeida, F.F.M., 1965. Geologia da Serra da Bodoquena (Mato Grosso), Brasil. Boletim da Divisão de Geologia e Mineralogia, vol. 219. Departamento Nacional de Produção Mineral – DNPM (in Spanish). |
| [7] |
K.B. Amorim, J.W.L. Afonso, J.d.M. Leme, C.Q.C. Diniz, L.C.M. Rivera, J.C. Gómez-Gutiérrez, P.C. Boggiani, R.I.F. Trindade. Sedimentary facies, fossil distribution and depositional setting of the late Ediacaran Tamengo Formation (Brazil). Sedimentology, 67 (2020), pp. 3422-3450, |
| [8] |
Babinski, M., Boggiani, P.C., Fanning, C.M., Fairchild, T.R., Simon, C.M., Sial, A.N., 2008. U-Pb SHRIMP geochronology and isotope chemostratigraphy (C, O, Sr) of the Tamengo Formation, southern Paraguay belt, Brazil, in: South American Symposium on Isotope Geology. Buenos Aires. |
| [9] |
Beurlen, K., Sommer, F.W., 1957. Observações estratigráficas e paleontológicas sobre o calcário de Corumbá. Bol. Geol. e Mineral. - DNPM 168 (in Spanish). |
| [10] |
P.C. Boggiani. Análise estratigráfica da Bacia Corumbá (Neoproterozóico) - Mato Grosso do Sul. Universidade De São Paulo (in Spanish) (1998) |
| [11] |
P.C. Boggiani, C. Gaucher, A.N. Sial, M. Babinski, C.M. Simon, C. Riccomini, V.P. Ferreira, T.R. Fairchild, A.N. Sial, M. Babinski, C.M. Simon, C. Riccomini, V.P. Ferreira, T.R. Fairchild. Chemostratigraphy of the Tamengo Formation (Corumbá Group, Brazil): A contribution to the calibration of the Ediacaran carbon-isotope curve. Precambrian Res., 182 (2010), pp. 382-401, |
| [12] |
F.T. Bowyer, A.J. Shore, R.A. Wood, L.J. Alcott, A.L. Thomas, I.B. Butler, A. Curtis, S. Hainanan, S. Curtis-Walcott, A.M. Penny, S.W. Poulton. Regional nutrient decrease drove redox stabilisation and metazoan diversification in the late Ediacaran Nama Group. Namibia. Sci. Rep., 10 (2020), pp. 1-11, |
| [13] |
F. Bowyer, R.A. Wood, S.W. Poulton. Controls on the evolution of Ediacaran metazoan ecosystems: A redox perspective. Geobiology, 15 (2017), pp. 516-551, |
| [14] |
F.T. Bowyer, A.Y. Zhuravlev, R. Wood, G.A. Shields, Y. Zhou, A. Curtis, S.W. Poulton, D.J. Condon, C. Yang, M. Zhu. Calibrating the temporal and spatial dynamics of the Ediacaran - Cambrian radiation of animals. Earth-Science Rev., 225 (2022), Article 103913, |
| [15] |
Campanha, G.A. da C., Boggiani, P.C., Sallun Filho, W., Sá, F.R. de, Zuquim, M. de P.S., Piacentini, T., 2011. A faixa de dobramento Paraguai na Serra da Bodoquena e depressão do Rio Miranda, Mato Grosso do Sul. Geol. USP. Série Científica 11, 79–96. https://doi.org/10.5327/Z1519-874X2011000300005 (in Spanish). |
| [16] |
I.H. Campbell, R.J. Squire. The mountains that triggered the Late Neoproterozoic increase in oxygen: The Second Great Oxidation Event. Geochim. Cosmochim. Acta, 74 (2010), pp. 4187-4206, |
| [17] |
D.E. Canfield, J. Farquhar. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc. Natl. Acad. Sci. u.s.a., 106 (2009), pp. 8123-8127, |
| [18] |
D.E. Canfield, R. Raiswell, J.T. Westrich, C.M. Reaves, R.A. Berner. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol., 54 (1986), pp. 149-155, |
| [19] |
F.A. Caxito, G.J. Uhlein, A. Uhlein, A.C. Pedrosa-Soares, M. Kuchenbecker, H. Reis, A.N. Sial, V.P. Ferreira, C.J.S. Alvarenga, R.V. Santos, L.C. Vieira, E. Dantas, M. Babinski, R. Trindade, P.C. Boggiani, L. Warren, J.P. Hippertt, M.P. Sotero, J. Rodrigues de Paula. Isotope stratigraphy of Precambrian sedimentary rocks from Brazil: Keys to unlock Earth’s hydrosphere, biosphere, tectonic, and climate evolution. Stratigraphy & Timescales, 4 (2019), pp. 73-132, |
| [20] |
F.A. Caxito, C. Lana, R. Frei, G.J. Uhlein, A.N. Sial, E.L. Dantas, A.G. Pinto, F.C. Campos, P. Galvão, L.V. Warren, J. Okubo, C.E. Ganade. Goldilocks at the dawn of complex life: mountains might have damaged Ediacaran-Cambrian ecosystems and prompted an early Cambrian greenhouse world. Sci. Rep., 11 (2021), pp. 1-15, |
| [21] |
X. Chen, M. Li, E.A. Sperling, T. Zhang, K. Zong, Y. Liu, Y. Shen. Mesoproterozoic paleo-redox changes during 1500–1400 Ma in the Yanshan Basin. North China. Precambrian Res., 347 (2020), Article 105835, |
| [22] |
M.O. Clarkson, S.W. Poulton, R. Guilbaud, R.A. Wood. Assessing the utility of Fe/Al and Fe-speciation to record water column redox conditions in carbonate-rich sediments. Chem. Geol., 382 (2014), pp. 111-122, |
| [23] |
D.B. Cole, D.B. Mills, D.H. Erwin, E.A. Sperling, S.M. Porter, C.T. Reinhard, N.J. Planavsky. On the co-evolution of surface oxygen levels and animals. Geobiology, 18 (2020), pp. 260-281, |
| [24] |
I. Cortijo, M. Martí Mus, S. Jensen, T. Palacios. A new species of Cloudina from the terminal Ediacaran of Spain. Precambrian Res., 176 (2010), pp. 1-10, |
| [25] |
A.T. Cribb, S.J. van de Velde, W.M. Berelson, D.J. Bottjer, F.A. Corsetti. Ediacaran-Cambrian bioturbation did not extensively oxygenate sediments in shallow marine ecosystems. Geobiology, 21 (4) (2023), pp. 435-453, |
| [26] |
T.W. Dahl, J.N. Connelly, A. Kouchinsky, B.C. Gill, S.F. Månsson, M. Bizzarro. Reorganisation of earth’s biogeochemical cycles briefly oxygenated the oceans 520 myr ago. Geochemical Perspect. Lett., 10 (2017), pp. 210-220, |
| [27] |
S.A.F. Darroch, A.T. Cribb, L.A. Buatois, G.J.B. Germs, C.G. Kenchington, E.F. Smith, H. Mocke, G.R. O’Neil, J.D. Schiffbauer, K.M. Maloney, R.A. Racicot, K.A. Turk, B.M. Gibson, J. Almond, B. Koester, T.H. Boag, S.M. Tweedt, M. Laflamme. The trace fossil record of the Nama Group, Namibia: Exploring the terminal Ediacaran roots of the Cambrian explosion. Earth-Science Rev., 212 (2021), Article 103435, |
| [28] |
C.Q.C. Diniz, J. de M. Leme, P.C. Boggiani. New Species of Macroalgae from Tamengo Formation, Ediacaran, Brazil. Front. Earth Sci., 9 (2021), pp. 1-11, |
| [29] |
D.H. Erwin, M. Laflamme, S.M. Tweedt, E.A. Sperling, D. Pisani, K.J. Peterson. The Cambrian conundrum: Early divergence and later ecological success in the early history of animals. Science, 334 (6059) (2011), pp. 1091-1097, |
| [30] |
G. Fazio, E.M. Guimarães, D.W.G. Walde, D.A.d. Carmo, R.R. Adorno, L.C. Vieira, M. Denezine, C.B. da Silva, H.V. de Godoy, P.C. Borges, D. Pinho. Mineralogical and chemical composition of Ediacaran-Cambrian pelitic rocks of The Tamengo and Guaicurus formations, (Corumbá Group - MS, Brazil): Stratigraphic positioning and paleoenvironmental interpretations. J. South Am. Earth Sci., 90 (2019), pp. 487-503, |
| [31] |
H.A. Fernandes, P.C. Boggiani, J.W.L. Afonso, K.B. Amorim, R.I.F. Trindade. Sedimentary and tectonic breccias at the base of the Ediacaran Tamengo Formation (Corumbá Group): a comparative study. Brazilian Journal of Geology, 52 (2022), Article e20210062 |
| [32] |
C. Gaucher, P.C. Boggiani, P. Sprechmann, A.N. Sial, T.R. Fairchild. Integrated correlation of the Vendian to Cambrian Arroyo del Soldado and Corumba groups (Uruguay and Brazil). Precambrian Res., 120 (2003), pp. 241-278, |
| [33] |
G. Hahn, R. Hahn, O.H. Leonardos, H.D. Pflug, D.H.G. Walde. Körperlich erhaltene Scyphozoen-Reste aus dem Jungpräkambrium Brasiliens. Geol. Palaeontol., 16 (1982), pp. 1-18 |
| [34] |
E.R. Haxen, N.H. Schovsbo, A.T. Nielsen, S. Richoz, D.K. Loydell, N.R. Posth, D. Canfield, E.U. Hammarlund. “Hypoxic” Silurian oceans suggest early animals thrived in a low-O2 world. Earth Planet. Sci. Lett., 622 (2023), Article 118416 |
| [35] |
T. He, M. Zhu, B.J.W. Mills, P.M. Wynn, A.Y. Zhuravlev, R. Tostevin, P.A.E. Pogge von Strandmann, A. Yang, S.W. Poulton, G.A. Shields. Possible links between extreme oxygen perturbations and the Cambrian radiation of animals. Nat. Geosci., 12 (2019), pp. 468-474, |
| [36] |
P.F. Hoffman, D.S. Abbot, Y. Ashkenazy, D.I. Benn, J.J. Brocks, P.A. Cohen, G.M. Cox, J.R. Creveling, Y. Donnadieu, D.H. Erwin, I.J. Fairchild, D. Ferreira, J.C. Goodman, G.P. Halverson, M.F. Jansen, G. Le Hir, G.D. Love, F.A. Macdonald, A.C. Maloof, C.A. Partin, G. Ramstein, B.E.J.J. Rose, C.V. Rose, P.M. Sadler, E. Tziperman, A. Voigt, S.G. Warren. Snowball Earth climate dynamics and Cryogenian geology-geobiology. Sci. Adv., 3 (2017), Article e1600983, |
| [37] |
C. Jin, C. Li, T.J. Algeo, B. O’Connell, M. Cheng, W. Shi, J. Shen, N.J. Planavsky. Highly heterogeneous “poikiloredox” conditions in the early Ediacaran Yangtze Sea. Precambrian Res., 311 (2018), pp. 157-166, |
| [38] |
D.T. Johnston, F.A. Macdonald, B.C. Gill, P.F. Hoffman, D.P. Schrag. Uncovering the Neoproterozoic carbon cycle. Nature, 483 (7389) (2012), pp. 320-323 |
| [39] |
J.P. Jones. The southern border of the Guaporé Shield in Wesern Brazil and Bolivia: an interpretation of its geologic evolution. Precambrian Res., 28 (1985), pp. 111-135 |
| [40] |
T.A. Laakso, E.A. Sperling, D.T. Johnston, A.H. Knoll. Ediacaran reorganization of the marine phosphorus cycle. Proc. Natl. Acad. Sci. u.s.a., 117 (2020), pp. 1-7, |
| [41] |
T.W. Lyons, S. Severmann. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochim. Cosmochim. Acta, 70 (2006), pp. 5698-5722, |
| [42] |
C. März, S.W. Poulton, B. Beckmann, K. Küster, T. Wagner, S. Kasten. Redox sensitivity of P cycling during marine black shale formation: dynamics of sulfidic and anoxic, non-sulfidic bottom waters. Geochim. Cosmochim. Acta, 72 (15) (2008), pp. 3703-3717 |
| [43] |
B. McGee, A.S. Collins, R.I.F. Trindade. G’day Gondwana - the final accretion of a supercontinent: U-Pb ages from the post-orogenic São Vicente Granite, northern Paraguay Belt, Brazil. Gondwana Res., 21 (2012), pp. 316-322, |
| [44] |
B. McGee, M. Babinski, R. Trindade, A.S. Collins. Tracing final Gondwana assembly: Age and provenance of key stratigraphic units in the southern Paraguay Belt, Brazil. Precambrian Res., 307 (2018), pp. 1-33, |
| [45] |
A.S. Merdith, A.S. Collins, S.E. Williams, S. Pisarevsky, J.D. Foden, D.B. Archibald, M.L. Blades, B.L. Alessio, S. Armistead, D. Plavsa, C. Clark, R.D. Müller. A full-plate global reconstruction of the Neoproterozoic. Gondwana Res., 50 (2017), pp. 84-134, |
| [46] |
D.B. Mills, D.E. Canfield. Oxygen and animal evolution: Did a rise of atmospheric oxygen “trigger” the origin of animals?. Bioessays, 36 (2014), pp. 1145-1155, |
| [47] |
L.M. Och, G.A. Shields-Zhou. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling. Earth-Science Rev., 110 (2012), pp. 26-57, |
| [48] |
R.S. Oliveira. Depósitos de rampa carbonática Ediacarana do Grupo Corumbá, região de Corumbá. Universidade Federal do Pará, Mato Grosso do Sul (2010) |
| [49] |
M.L.F. Pacheco, D. Galante, F. Rodrigues, J. de M. Leme, P. Bidola, W. Hagadorn, M. Stockmar, J. Herzen, I.D. Rudnitzki, F. Pfeiffer, A.C. Marques. Insights into the skeletonization, lifestyle, and affinity of the unusual Ediacaran fossil Corumbella. PLoS One, 10 (3) (2015), Article e0114219 |
| [50] |
L.A. Parry, P.C. Boggiani, D.J. Condon, R.J. Garwood, J. de M. Leme, D. McIlroy, M.D. Brasier, R. Trindade, G.A.C. Campanha, M.L.A.F. Pacheco, C.Q.C. Diniz, A.G. Liu. Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil. Nat. Ecol. Evol., 1 (2017), pp. 1455-1464, |
| [51] |
V. Pasquier, D.A. Fike, S. Révillon, I. Halevy. A global reassessment of the controls on iron speciation in modern sediments and sedimentary rocks: A dominant role for diagenesis. Geochim. Cosmochim. Acta, 335 (2022), pp. 211-230, |
| [52] |
S.W. Poulton, D.E. Canfield. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem. Geol., 214 (2005), pp. 209-221, |
| [53] |
S.W. Poulton, D.E. Canfield. Ferruginous conditions: A dominant feature of the ocean through Earth’s history. Elements, 7 (2011), pp. 107-112, |
| [54] |
R. Raiswell, D.S. Hardisty, T.W. Lyons, D.E. Canfield, J.D. Owens, N.J. Planavsky, S.W. Poulton, C.T. Reinhard. The iron paleoredox proxies: A guide to the pitfalls, problems and proper practice. Am. J. Sci., 318 (2018), pp. 491-526, |
| [55] |
M.E.A.F. Ramos, M. Giorgioni, D.H.G. Walde, D.A.d. Carmo, G. Fazio, L.C. Vieira, M. Denezine, R.V. Santos, R.R. Adôrno, L. Lage Guida. New Facies Model and Carbon Isotope Stratigraphy for an Ediacaran Carbonate Platform From South America (Tamengo Formation—Corumbá Group, SW Brazil). Front. Earth Sci., 10 (2022), pp. 1-24, |
| [56] |
R.L. Rudnick, S. Gao. Composition of the Continental Crust. Treatise on Geochemistry, 3–9 (2003), pp. 1-64, |
| [57] |
M.R. Saltzman, C.T. Edwards, J.M. Adrain, S.R. Westrop. Persistent oceanic anoxia and elevated extinction rates separate the Cambrian and Ordovician radiations. Geology, 43 (2015), pp. 807-810, |
| [58] |
M. Schratzberger, J. Ingels. Meiofauna matters: the roles of meiofauna in benthic ecosystems. J. Exp. Mar. Bio. Ecol., 502 (2018), pp. 12-25, |
| [59] |
Seilacher, A., Pflüger, F., 1994. From biomats to benthic agriculture: A biohistoric revolution. In: Krumbein, W.E., Peterson, D.M., Stal, L.J. (Eds.), Biostabilization of Sediments. Bibliotheks und Informationssystem der Carl von Ossietzky Universität Oldenburg (BIS), Odenburg, Germany, pp. 97–105. |
| [60] |
G. Shields-Zhou, L. Och. The case for a neoproterozoic oxygenation event: geochemical evidence and biological consequences. GSA Today, 21 (2011), pp. 4-11, |
| [61] |
S.P. Slotznick, E.A. Sperling, N.J. Tosca, A.J. Miller, K.E. Clayton, N.A.G.M. van Helmond, C.P. Slomp, N.L. Swanson-Hysell. Unraveling the mineralogical complexity of sediment iron speciation using sequential extractions. Geochem. Geophys. Geosyst., 21 (2020), |
| [62] |
J.E. Spangenberg, M. Bagnoud-Velásquez, P.C. Boggiani, C. Gaucher. Redox variations and bioproductivity in the Ediacaran: Evidence from inorganic and organic geochemistry of the Corumbá Group. Brazil. Gondwana Res., 26 (2014), pp. 1186-1207, |
| [63] |
E.A. Sperling, C.A. Frieder, A.V. Raman, P.R. Girguis, L.A. Levin, A.H. Knoll. Oxygen, ecology, and the Cambrian radiation of animals. Proc. Natl. Acad. Sci., 110 (2013), pp. 13446-13451, |
| [64] |
E.A. Sperling, C.J. Wolock, A.S. Morgan, B.C. Gill, M. Kunzmann, G.P. Halverson, F.A. Macdonald, A.H. Knoll, D.T. Johnston. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature, 523 (2015), pp. 451-454, |
| [65] |
E.A. Sperling, M.J. Melchin, T. Fraser, R.G. Stockey, U.C. Farrell, L. Bhajan, T.N. Brunoir, D.B. Cole, B.C. Gill, A. Lenz, D.K. Loydell, J. Malinowski, A.J. Miller, S. Plaza-Torres, B. Bock, A.D. Rooney, S.A. Tecklenburg, J.M. Vogel, N.J. Planavsky, J.V. Strauss. A long-term record of early to mid-Paleozoic marine redox change. Sci. Adv., 7 (2021), |
| [66] |
E.A. Sperling, T.H. Boag, M.I. Duncan, C.R. Endriga, J.A. Marquez, D.B. Mills, P.M. Monarrez, J.A. Sclafani, R.G. Stockey, J.L. Payne. Breathless through time: oxygen and animals across earth’s history. Biol. Bull., 243 (2022), pp. 184-206, |
| [67] |
R.J. Squire, I.H. Campbell, C.M. Allen, C.J.L. Wilson. Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth? Earth Planet. Sci. Lett., 250 (2006), pp. 116-133, |
| [68] |
R. Stockey, A. Pohl, A. Ridgwell, S. Finnegan, E.A. Sperling. Decreasing phanerozoic extinction intensity is a predictable consequence of earth surface oxygenation and metazoan ecophysiology. Proc. Natl. Acad. Sci., 118 (2021), Article e2101900118, |
| [69] |
L.L. Stookey. Ferrozine - a new spectrophotometric reagent for iron. Anal. Chem., 42 (1970), pp. 779-781 |
| [70] |
L.G. Tarhan, M. Zhao, N.J. Planavsky. Bioturbation feedbacks on the phosphorus cycle. Earth Planet. Sci. Lett., 566 (2021), Article 116961, |
| [71] |
E. Tohver, R.I.F.I.F. Trindade, J.G.G. Solum, C.M.M. Hall, C. Riccomini, A.C.C. Nogueira. Closing the Clymene ocean and bending a Brasiliano belt: Evidence for the Cambrian formation of Gondwana, southeast Amazon craton. Geology, 38 (2010), pp. 267-270, |
| [72] |
R. Tostevin, B.W. Mills. Reconciling proxy records and models of Earth’s oxygenation during the Neoproterozoic and Palaeozoic: Neoproterozoic-Palaeozoic Oxygenation. Interface Focus, 10 (2020), |
| [73] |
R. Tostevin, R.A. Wood, G.A. Shields, S.W. Poulton, R. Guilbaud, F. Bowyer, A.M. Penny, T. He, A. Curtis, K.H. Hoffmann, M.O. Clarkson. Low-oxygen waters limited habitable space for early animals. Nat. Commun., 7 (2016), pp. 1-9, |
| [74] |
R. Trompette, C.J.S. de Alvarenga, D. Walde. Geological evolution of the Neoproterozoic Corumbágraben system (Brazil). Depositional context of the stratified Fe and Mn ores of the Jacadigo Group. J. South Am. Earth Sci., 11 (1998), pp. 587-597, |
| [75] |
D.H.G. Walde, D.A. Do Carmo, E.M. Guimarães, L.C. Vieira, B.D. Erdtmann, E.A.M. Sanchez, R.R. Adorno, T.C. Tobias. New aspects of Neoproterozoic-Cambrian transition in the Corumbá region (state of Mato Grosso do Sul, Brazil). Ann. Paleontol., 101 (2015), pp. 213-224, |
| [76] |
G.Y. Wei, N.J. Planavsky, L.G. Tarhan, X. Chen, W. Wei, D. Li, H.F. Ling. Marine redox fluctuation as a potential trigger for the Cambrian explosion. Geology, 46 (2018), pp. 587-590, |
| [77] |
R. Wood, A.G. Liu, F. Bowyer, P.R. Wilby, F.S. Dunn, C.G. Kenchington, J.F.H. Cuthill, E.G. Mitchell, A. Penny. Integrated records of environmental change and evolution challenge the Cambrian Explosion. Nat. Ecol. Evol., 3 (2019), pp. 528-538, |
| [78] |
R.A. Wood, S.W. Poulton, A.R. Prave, K.H. Hoffmann, M.O. Clarkson, R. Guilbaud, J.W. Lyne, R. Tostevin, F. Bowyer, A.M. Penny, A. Curtis, S.A. Kasemann. Dynamic redox conditions control late Ediacaran metazoan ecosystems in the Nama Group, Namibia. Precambrian Res., 261 (2015), pp. 252-271, |
| [79] |
S. Xiao, M. Laflamme. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends Ecol. Evol., 24 (2009), pp. 31-40, |
| [80] |
Zaine, M., 1991. Análise dos fósseis de parte da Faixa Paraguai (MS, MT) e seu contexto temporal e paleoambiental. Universidade de São Paulo (in Spanish). |
/
| 〈 |
|
〉 |