Refining aquifer heterogeneity and understanding groundwater recharge sources in an intensively exploited agrarian dominated region of the Ganga Plain
Abhinav Patel, Shive Prakash Rai, Nijesh Puthiyottil, Abhinesh Kumar Singh, Jacob Noble, Rajesh Singh, Dharmappa Hagare, U.D. Saravana Kumar, Nachiketa Rai, Kossitse Venyo Akpataku
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (4) : 101808.
Refining aquifer heterogeneity and understanding groundwater recharge sources in an intensively exploited agrarian dominated region of the Ganga Plain
Densely populated region of Ganga Plain is facing aquifer vulnerability through waterborne pollutants and groundwater stress due to indiscriminate abstraction, causing environmental and socio-economic instabilities. To address long-term groundwater resilience, it is crucial to understand aquifer heterogeneity and connectivity, groundwater recharge sources, effects of groundwater abstraction etc. In this context, present study aims to understand factors responsible for vertical and spatial variability of groundwater chemistry and to identify groundwater recharge sources in an intensively exploited agrarian region of the Ganga Plain.
Stable isotopes / Hydrogeochemical attributes / Groundwater recharge sources / Ganga Plain
S.Y. Acheampong, J.W. Hess. Origin of the shallow groundwater system in the southern Voltaian Sedimentary Basin of Ghana: an isotopic approach. J. Hydrol., 2331–4 (2000), pp. 37-53
|
S. Ahamed, M.K. Sengupta, A. Mukherjee, M.A. Hossain, B. Das, B. Nayak, D. Chakraborti. Arsenic groundwater contamination and its health effects in the state of Uttar Pradesh UP in upper and middle Ganga plain, India: a severe danger. Sci. Total Environ., 3702–3 (2006), pp. 310-322
|
K.V. Akpataku, M.D. Gnazou, G. Djanéyé-Boundjou, L.M. Bawa, S. Faye. Role of Natural and Anthropogenic Influence on the Salinization of Groundwater from Basement Aquifers in the Middle Part of Mono River Basin, Togo. J. Environ. Prot., 1112 (2020), pp. 1030-1051
|
S. Ali, S. Shekhar, T. Chandrasekhar, A.K. Yadav, N.K. Arora, C.A. Kashyap, D. Chandrasekharam. Influence of the water–sediment interaction on the major ions chemistry and fluoride pollution in groundwater of the Older Alluvial Plains of Delhi, India. J. Earth Syst. Sci., 1302 (2021), p. 98
|
M.A. Ansari, J. Noble, A. Deodhar, U.S. Kumar. Isotope hydrogeochemical models for assessing the hydrological processes in a part of the largest continental flood basalts province of India. Geosci. Front., 132 (2022), Article 101336
|
APHA 2017 Standard methods for the examination of water and wastewater 23rd ed. American Public Health Association. www.standardmethods.org.
|
Baweja, S., Aggarwal, R., Brar, M., Lal, R., 2017. Groundwater depletion in Punjab, India. In R. Lal Ed., Encyclopedia of soil science 3rd ed., 3 Vol Set, p. 5. CRC Press.
|
BIS 2012. Indian standard drinking water specification, second revision ISO: 10500:2012. Bureau of Indian Standards. Drinking Water Sectional Committee, FAD25, New Delhi.
|
H.C. Bonsor, A.M. MacDonald, K.M. Ahmed, W.G. Burgess, M. Basharat, R.C. Calow, A. Zahid. Hydrogeological typologies of the Indo-Gangetic basin alluvial aquifer, South Asia. Hydrgeol. J., 255 (2017), pp. 1377-1406
|
P. Castellazzi, R. Martel, A. Rivera, J. Huang, G. Pavlic, A.I. Calderhead, J. Salas. Groundwater depletion in Central Mexico: Use of GRACE and InSAR to support water resources management. Water Resour. Res., 528 (2016), pp. 5985-6003
|
Census of India 2011 India. https://censusindia.gov.in/census.website/. Accessed 1 Feb 2023.
|
T.E. Cerling, B.L. Pederson, K.L. Von Damm. Sodium-calcium ion exchange in the weathering of shales: Implications for global weathering budgets. Geology, 176 (1989), pp. 552-554
|
CGWB. Groundwater Year Book. Central Ground Water Board, Ministry of Water Resources Government of India, Faridabad (2010)
|
CGWB. Groundwater Yearbook. Central Ground Water Board, Ministry of Water Resources Government of India, Faridabad (2020)
|
CGWB, 2017. Aquifer Mapping and Management of Ground Water Resources, Varanasi District, Uttar Pradesh. Central Ground Water Board, Ministry of Water Resources Government of India, Lucknow.
|
CGWB, 2019. National Compilation on Ground Water Resources of India, 2017, Central Ground Water Board, Government of India.
|
M. Chakraborty, A. Mukherjee, K.M. Ahmed. Regional-scale hydrogeochemical evolution across the arsenic-enriched transboundary aquifers of the Ganges River Delta system, India and Bangladesh. Sci. Total Environ., 823 (2022), Article 153490
|
J. Chatterjee, S.K. Singh. Impact of Dissolution of Saline-Alkaline Soils on the Hydrochemistry and Erosion Rates of the Ganga River System. Geochem. Geophys. Geosyst., 232 (2022)
|
A.K. Chaurasia, H.K. Pandey, S.K. Tiwari, R. Prakash, P. Pandey, A. Ram. Groundwater quality assessment using water quality index WQI in parts of Varanasi District, Uttar Pradesh, India. J. Geol. Soc. India, 92 (2018), pp. 76-82
|
W. Dansgaard. Stable Isotopes in Precipitation. Tellus, 164 (1964), pp. 436-468
|
P. Das, A. Mukherjee, S.A. Hussain, M.S. Jamal, K. Das, A. Shaw, P. Sengupta. Stable isotope dynamics of groundwater interactions with Ganges River. Hydrol. Process., 351 (2021), p. e14002
|
P.S. Datta, S.K. Tyagi. Major ion chemistry of groundwater in Delhi area: chemical weathering processes and groundwater flow regime. Geol. Soc. India, 472 (1996), pp. 179-188
|
S. Dey, D. Bhatt, S. Haq, R.K. Mall. Potential impact of rainfall variability on groundwater resources: a case study in Uttar Pradesh, India. Arab. J. Geosci., 13 (2020), pp. 1-11
|
P. Dubey, M.M. Singh, H.K. Pandey. Aquifer Parameterization in an Alluvial Area: Varanasi District, Uttar Pradesh, India-A Case Study. Int. J. Innov. Res. Sci. Eng. Technol., 3 (1) (2014), pp. 9016-9033
|
Fetter, C. W., Boving, T. B., Kreamer, D. K., 1999. Contaminant hydrogeology Vol. 1138. Upper Saddle River, NJ: Prentice Hall.
|
M. Giordano. Global groundwater? Issues and solutions. Annu. Rev. Env. Resour., 34 (2009), pp. 153-178
|
Gsi. Evaluation of Urban Geochemical Environment for Heavy and Trace Elements in Water and Soil, Varanasi District. U.P. Geological Survey of India. Mission -IV, Northern region, Lucknow (2021)
|
Q. Guo, Y. Wang, T. Ma, R. Ma. Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China. J. Geochem. Explor., 931 (2007), pp. 1-12
|
S.K. Gupta, S.K. Chaudhari, P.C. Sharma. Handbook of saline and alkali soils diagnosis reclamation and management. Scientific Publishers (2019)
|
P.F. Hudak. Chloride and nitrate distributions in the Hickory aquifer, Central Texas, USA. Environ. Int., 254 (1999), pp. 393-401
|
Indian Meteorological Department, 2021. Ministry of Earth Sciences, Government of India https://mausam.imd.gov.in/.
|
Jal-Kal, 2016. Drillers Logs for Municipal Abstraction Sites for Ramnagar and Varanasi Accessed at the Jal Kal Offices in Varanasi in 2016. Jal-Kal, Varanasi, India.
|
S.K. Joshi, S.P. Rai, R. Sinha, S. Gupta, A.L. Densmore, Y.S. Rawat, S. Shekhar. Tracing groundwater recharge sources in the northwestern Indian alluvial aquifer using water isotopes δ18O Das, δ2H and 3H. J. Hydrol., 559 (2018), pp. 835-847
|
S.K. Joshi, S. Gupta, R. Sinha, A.L. Densmore, S.P. Rai, S. Shekhar, W.M. van Dijk. Strongly heterogeneous patterns of groundwater depletion in Northwestern India. J. Hydrol., 598 (2021), Article 126492
|
G. Kanagaraj, L. Elango. Chromium and fluoride contamination in groundwater around leather tanning industries in southern India: Implications from stable isotopic ratio δ53Cr/δ52Cr, geochemical and geostatistical modelling. Chemosphere, 220 (2019), pp. 943-953
|
T. Keesari, U.K. Sinha, D. Saha, S.N. Dwivedi, R.R. Shukla, H. Mohokar, A. Roy. Isotope and hydrochemical systematics of groundwater from a multi-tiered aquifer in the central parts of Indo-Gangetic Plains, India–implications for groundwater sustainability and security. Sci. Total Environ., 789 (2021), Article 147860
|
L.F. Konikow, E. Kendy. Groundwater depletion: A global problem. Hydrgeol. J., 13 (2005), pp. 317-320
|
S. Kumar, S.K. Joshi, N. Pant, S. Singh, B. Chakravorty, R.K. Saini, V. Singh. Hydrogeochemical evolution and groundwater recharge processes in arsenic enriched area in central Gangetic plain, India. Appl. Geochem., 131 (2021), Article 105044
|
B. Kumar, S.P. Rai, U. Saravana Kumar, S.K. Verma, P. Garg, S.V. Vijaya Kumar, R. Jaiswal, B.K. Purendra, S.R. Kumar, N.G. Pande. Isotopic characteristics of Indian precipitation. Water Resource Res., 46 (2010), p. W12548
|
D.J. Lapworth, A.M. MacDonald, G. Krishan, M.S. Rao, D.C. Gooddy, W.G. Darling. Groundwater recharge and age-depth profiles of intensively exploited groundwater resources in northwest India. Geophys. Res. Lett., 4218 (2015), pp. 7554-7562
|
D.J. Lapworth, P. Das, A. Shaw, A. Mukherjee, W. Civil, J.O. Petersen, A.M. MacDonald. Deep urban groundwater vulnerability in India revealed through the use of emerging organic contaminants and residence time tracers. Environ. Pollut., 240 (2018), pp. 938-949
|
C. Li, X. Gao, Y. Wang. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China. Sci. Total Environ., 508 (2015), pp. 155-165
|
S.A. Lone, G. Jeelani, R.D. Deshpande, A. Mukherjee. Stable isotope δ18O and δD dynamics of precipitation in a high-altitude Himalayan cold desert and its surroundings in Indus River basin, Ladakh. Atmos. Res., 221 (2019), pp. 46-57
|
A.M. MacDonald, H.C. Bonsor, K.M. Ahmed, W.G. Burgess, M. Basharat, R.C. Calow, S.K. Yadav. Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations. Nat. Geosci., 910 (2016), pp. 762-766
|
A.A. Masoud, M.M. El-Horiny, M.G. Atwia, K.S. Gemail, K. Koike. Assessment of groundwater and soil quality degradation using multivariate and geostatistical analyses, Dakhla Oasis, Egypt. J. Afr. Earth Sci., 142 (2018), pp. 64-81
|
J. Maurya, S.N. Pradhan, G. Seema, A. k.,. Evaluation of ground water quality and health risk assessment due to nitrate and fluoride in the Middle Indo-Gangetic plains of India. Hum. Ecol. Risk Assess. Int. J., 275 (2020), pp. 1349-1365
|
S. Mishra, D. Tiwary, A. Ohri, A.K. Agnihotri. Impact of Municipal Solid Waste Landfill leachate on groundwater quality in Varanasi, India. Groundwater Sustain. Dev., 9 (2019), Article 100230
|
A.M. Mohammed, L.J. Crossey, K.E. Karlstrom, R.V. Krishnamurthy, A.E. Kehew, T.H. Darrah, E.L. Emry. Mantle-derived fluids in the continental-scale Nubian aquifer. Chem. Geol., 608 (2022), Article 121023
|
A. Mukherjee, B.R. Scanlon, A.E. Fryar, D. Saha, A. Ghosh, S. Chowdhuri, R. Mishra. Solute chemistry and arsenic fate in aquifers between the Himalayan foothills and Indian craton including central Gangetic plain: influence of geology and geomorphology. Geochimica Et Cosmochimica Acta, 90 (2012), pp. 283-302
|
J.R. Nandimandalam. Evaluation of hydrogeochemical processes in the Pleistocene aquifers of Middle Ganga Plain, Uttar Pradesh, India. Environ. Earth Sci., 65 (2012), pp. 1291-1308
|
P. Nijesh, K.V. Akpataku, A. Patel, P. Rai, S.P. Rai. Spatial variability of hydrochemical characteristics and appraisal of water quality in stressed phreatic aquifer of Upper Ganga Plain, Uttar Pradesh, India. Environ. Earth Sci., 805 (2021), pp. 1-15
|
R.A. Olea, N.J. Raju, J.J. Egozcue, V. Pawlowsky-Glahn, S. Singh. Advancements in hydrochemistry mapping: methods and application to groundwater arsenic and iron concentrations in Varanasi, Uttar Pradesh, India. Stoch. Env. Res. Risk A, 32 (2018), pp. 241-259
|
A. Patel, S.P. Rai, K.V. Akpataku, N. Puthiyottil, A.K. Singh, N. Pant, R. Singh, S.P. Rai, J. Noble. Hydrogeochemical characterization of groundwater in the shallow aquifer system of Middle Ganga Basin, India. Groundwater for Sustainable Development, 21 (2023), Article 100934,
CrossRef
Google scholar
|
A.M. Piper. A Graphic Procedure in the Chemical Interpretation of Water Analysis. US Geological Survey Groundwater Note, 12 (1953)
|
S.C. Priestley, K.T. Meredith, P.C. Treble, D.I. Cendón, A.D. Griffiths, S.E. Hollins, J.P. Pigois. A 35ka record of groundwater recharge in south-west Australia using stable water isotopes. Sci. Total Environ., 717 (2020), Article 135105
|
S.P. Rai, D. Singh, N. Jacob, Y.S. Rawat, M. Arora. Identifying contribution of snowmelt and glacier melt to the Bhagirathi River Upper Ganga near snout of the Gangotri Glacier using environmental isotopes. Catena, 173 (2019), pp. 339-351
|
S.P. Rai, J. Noble, D. Singh, Y.S. Rawat, B. Kumar. Spatiotemporal variability in stable isotopes of the Ganga River and factors affecting their distributions. Catena, 204 (2021), Article 105360,
CrossRef
Google scholar
|
S.P. Rai, K.V. Akpataku, J. Noble, A. Patel, S.K. Joshi. Hydrochemical evolution of groundwater in northwestern part of the Indo-Gangetic Basin. A geochemical and isotopic approach. Geoscience Frontiers, India (2023), p. 101676
|
P. Roy, S.C. Pal, R. Chakrabortty, I. Chowdhuri, A. Saha, M. Shit. Climate change and groundwater overdraft impacts on agricultural drought in India: Vulnerability assessment, food security measures and policy recommendation. Sci. Total Environ., 849 (2022), Article 157850
|
K. Rozanski, L. Araguás-Araguás, R. Gonfiantini. Isotopic patterns in modern global precipitation. Climate Change in Continental Isotopic Records, 1–36 (1993),
CrossRef
Google scholar
|
A.K. Samal, P.K. Mishra, A. Biswas. Assessment of origin and distribution of fluoride contamination in groundwater using an isotopic signature from a part of the Indo-Gangetic Plain (IGP), India. HydroResearch, 3 (2020), pp. 75-84
|
M. Senthilkumar, L. Elango. Geochemical processes controlling the groundwater quality in lower Palar River basin, southern India. J. Earth Syst. Sci., 1222 (2013), pp. 419-432
|
U.K. Shukla, N. Janardhana Raju. Migration of the Ganga River and its implication on hydro-geological potential of Varanasi area, UP, India. J. Earth Syst. Sci., 1174 (2008), pp. 489-498
|
U.K. Shukla, P. Srivastava, I.B. Singh. Migration of the Ganga River and development of cliffs in the Varanasi region, India during the late Quaternary: Role of active tectonics. Geomorphology, 171 (2012), pp. 101-113
|
I.B. Singh. Geological evolution of Ganga Plain—an overview. Journal of the Palaeontological Society of India, 41 (1996), pp. 99-137
|
R.F. Stallard, J.M. Edmond. Geochemistry of the Amazon: 3. Weathering chemistry and limits to dissolved inputs. J. Geophys. Res. Oceans, 92C8 (1987), pp. 8293-8302
|
D.R. Steward, A.J. Allen. Peak groundwater depletion in the High Plains Aquifer, projections from 1930 to 2110. Agric Water Manag, 170 (2016), pp. 36-48
|
Who. Guidelines for drinking-water quality. (4th edition), World Health Organization, Geneva (2017)
|
S.K. Yadav, A.L. Ramanathan, M. Kumar, S. Chidambaram, Y.P. Gautam, C. Tiwari. Assessment of arsenic and uranium co-occurrences in groundwater of central Gangetic Plain, Uttar Pradesh, India. Environ. Earth Sci., 796 (2020), pp. 1-14
|
Zektser, I. S., Everett, L. G., 2004. Groundwater resources of the world and their use.
|
/
〈 |
|
〉 |