Intramolecular carbon isotope of propane from coal-derived gas reservoirs of sedimentary basins: Implications for source, generation and post-generation of hydrocarbons

Xiaofeng Wang, Peng Liu, Wenhui Liu, Changjie Liu, Ying Lin, Dongdong Zhang

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (4) : 101806.

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (4) : 101806. DOI: 10.1016/j.gsf.2024.101806

Intramolecular carbon isotope of propane from coal-derived gas reservoirs of sedimentary basins: Implications for source, generation and post-generation of hydrocarbons

Author information +
History +

Abstract

An intramolecular isotopic study was conducted on natural gases collected from coal-derived gas reservoirs in sedimentary basins of China to determine their position-specific isotope distributions. The propane from the Turpan-Hami Basin exhibited negative ΔC-T (δ13Ccentral-δ13Cterminal) values ranging from −3.9‰ to −0.3‰, with an average of −2.1‰. Propane from the Ordos Basin, Sichuan Basin, and Tarim Basin showed positive ΔC-T values, with averages of 1.3‰, 5.4‰ and 7.6‰, respectively. Position-specific carbon isotope compositions reveal the precursors and the propane generation pathways in the petroliferous basins. Propane formed from the thermal cracking of Type III kerogen has larger δ13Ccentral and δ13Cterminal values than propane from Type I/II kerogen. The precursor for natural gases collected in this study is identified to be Type III kerogen. Comparing our data to calculated results for thermal cracking of Type III kerogen, we found that propane from the low-maturity gas reservoir in the Turpan Basin was generated via the i-propyl radical pathway, whereas propane from the Sulige tight gas reservoir in the Ordos Basin was formed via the n-propyl radical pathway. δ13Cterminal values covered a narrow range across basins, in contrast to δ13Ccentral. The terminal carbon position in propane is less impacted by microbial oxidation and more relevant to maturity levels and precursors. Thus, δ13Cterminal has a good potential to infer the origin and maturity level of natural gas. In examining post-generation processes, we proposed an improved identification strategy for microbial oxidation of natural gases, based on the position-specific carbon isotope distributions of propane. Samples from the Liaohe Depression of the Bohai Bay Basin and the Sichuan Basin were detected of post-generation microbial oxidation. Overall, position-specific carbon isotope composition of propane provides new insights into the generation mechanism and post-generation processes of natural gas in the geological period at the atomic level.

Keywords

Intramolecular isotope / Position-specific isotope / Kinetic isotope effects / Microbial anaerobic oxidation

Cite this article

Download citation ▾
Xiaofeng Wang, Peng Liu, Wenhui Liu, Changjie Liu, Ying Lin, Dongdong Zhang. Intramolecular carbon isotope of propane from coal-derived gas reservoirs of sedimentary basins: Implications for source, generation and post-generation of hydrocarbons. Geoscience Frontiers, 2024, 15(4): 101806 https://doi.org/10.1016/j.gsf.2024.101806

References

B.B. Bernard, J.M. Brooks, W.M. Sackett. Light hydrocarbons in recent Texas continental shelf and slope sediments. J. Geophys. Res. Oceans, 83 (C8) (1978), pp. 4053-4061,
CrossRef Google scholar
B. Buchardt, J. Clausen, E. Thomsen. Carbon isotope composition of lower palaeozoic kerogen: Effects of maturation. Org. Geochem., 10 (1) (1986), pp. 127-134,
CrossRef Google scholar
C. Cai, G. Hu, H. He, J. Li, J. Li, Y. Wu. Geochemical characteristics and origin of natural gas and thermochemical sulphate reduction in Ordovician carbonates in the Ordos Basin, China. J. Petrol. Sci. Eng., 48 (3) (2005), pp. 209-226,
CrossRef Google scholar
J. Chen, X. Wang, J. Chen, Y. Ni, B. Xiang, F. Liao, W. He, L. Yao, E. Li. New equation to decipher the relationship between carbon isotopic composition of methane and maturity of gas source rocks. Sci. China Earth Sci., 64 (3) (2021), pp. 470-493,
CrossRef Google scholar
J. Dai. Major developments of coal-formed gas exploration in the last 30 years in China. Pet. Explor. Dev., 36 (3) (2009), pp. 264-279,
CrossRef Google scholar
J. Dai, J. Li, X. Luo, W. Zhang, G. Hu, C. Ma, J. Guo, S. Ge. Stable carbon isotope compositions and source rock geochemistry of the giant gas accumulations in the Ordos Basin. China. Org. Geochem., 36 (12) (2005), pp. 1617-1635,
CrossRef Google scholar
J. Dai, Y. Ni, C. Zou, S. Tao, G. Hu, A. Hu, C. Yang, X. Tao. Stable carbon isotopes of alkane gases from the Xujiahe coal measures and implication for gas-source correlation in the Sichuan Basin. SW China. Org. Geochem., 40 (5) (2009), pp. 638-646,
CrossRef Google scholar
J. Dai, Y. Ni, C. Zou. Stable carbon and hydrogen isotopes of natural gases sourced from the Xujiahe Formation in the Sichuan Basin. China. Org. Geochem., 43 (2012), pp. 103-111,
CrossRef Google scholar
G. Etiope, M. Schoell. Abiotic gas: atypical, but not rare. Elements, 10 (4) (2014), pp. 291-296
Q. Feng, A. Geng, Z. Liao, X. Zhang. Carbon and hydrogen isotopic compositions of coal-genetic natural gases and their applications in accumulation in Upper Paleozoic. Ordos Basin. Geochimica, 36 (3) (2007), pp. 261-266
J. Fu, L. Fan, X. Liu, D. Huang. Gas accumulation conditions and key technologies for exploration & development of Sulige gasfield. Pet. Res., 3 (2) (2018), pp. 91-109,
CrossRef Google scholar
J. Fu, S. Li, X. Niu, X. Deng, X. Zhou. Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin. NW China. Pet. Explor. Dev., 47 (5) (2020), pp. 931-945,
CrossRef Google scholar
E.M. Galimov. Isotope organic geochemistry. Org. Geochem., 37 (10) (2006), pp. 1200-1262,
CrossRef Google scholar
L. Gao, P. He, Y. Jin, Y. Zhang, X. Wang, S. Zhang, Y. Tang. Determination of position-specific carbon isotope ratios in propane from hydrocarbon gas mixtures. Chem. Geol., 435 (2016), pp. 1-9,
CrossRef Google scholar
A. Gilbert, K. Yamada, N. Yoshida. Exploration of intramolecular 13C isotope distribution in long chain n-alkanes (C11–C31) using isotopic 13C NMR. Org. Geochem., 62 (2013), pp. 56-61,
CrossRef Google scholar
A. Gilbert, K. Yamada, K. Suda, Y. Ueno, N. Yoshida. Measurement of position-specific 13C isotopic composition of propane at the nanomole level. Geochim. Cosmochim. Acta, 177 (2016), pp. 205-216,
CrossRef Google scholar
A. Gilbert, B. Sherwood Lollar, F. Musat, T. Giunta, S. Chen, Y. Kajimoto, K. Yamada, C.J. Boreham, N. Yoshida, Y. Ueno. Intramolecular isotopic evidence for bacterial oxidation of propane in subsurface natural gas reservoirs. Proceedings of the National Academy of Sciences, 116 (14) (2019), pp. 6653-6658,
CrossRef Google scholar
A. Gilbert, M. Nakagawa, K. Taguchi, N. Zhang, A. Nishida, N. Yoshida. Hydrocarbon Cycling in the Tokamachi Mud Volcano (Japan): Insights from Isotopologue and Metataxonomic Analyses. Microorganisms, 10 (7) (2022), p. 1417
H.G. Gou, P. Zhang, J.C. She, Z.Y. Wang, L. Lin, Y.T. Zhang. Petroleum geological conditions, resource potential and exploration direction in Turpan-Hami Basin. Marine Origin Petroleum Geology, 24 (2) (2019), pp. 85-96
D. Györe, R. McKavney, S.M. Gilfillan, F.M. Stuart. Fingerprinting coal-derived gases from the UK. Chem. Geol., 480 (2018), pp. 75-85
F. Hao, X. Zhou, Y. Zhu, Y. Yang. Mechanisms for oil depletion and enrichment on the Shijiutuo uplift, Bohai Bay Basin. China. AAPG Bull., 93 (8) (2009), pp. 1015-1037
L. He. Thermal regime of the North China Craton: Implications for craton destruction. Earth Sci. Rev., 140 (2015), pp. 14-26,
CrossRef Google scholar
J. Hu, W. Zhao, K. Qian, X. Li, Q. Li. Fundamental characteristics of petroleum geology in NW China. Acta Petrol. Sinica, 17 (3) (1996), pp. 1-11
J. Hunt. Petroleum geochemistry and geology (textbook). Petroleum Geochemistry and Geology (Textbook). ((2nd Ed.),), WH Freeman Company (1995)
U. Jaekel, C. Vogt, A. Fischer, H.H. Richnow, F. Musat. Carbon and hydrogen stable isotope fractionation associated with the anaerobic degradation of propane and butane by marine sulfate-reducing bacteria. Environ. Microbiol., 16 (1) (2014), pp. 130-140,
CrossRef Google scholar
P.D. Jenden, I.R. Kaplan, R. Poreda, H. Craig. Origin of nitrogen-rich natural gases in the California Great Valley: Evidence from helium, carbon and nitrogen isotope ratios. Geochim. Cosmochim. Acta, 52 (4) (1988), pp. 851-861,
CrossRef Google scholar
B. Jin, M. Rolle. Position-specific isotope modeling of organic micropollutants transformation through different reaction pathways. Environ. Pollut., 210 (2016), pp. 94-103,
CrossRef Google scholar
M. Julien, P. Nun, P. Höhener, J. Parinet, R.J. Robins, G.S. Remaud. Enhanced forensic discrimination of pollutants by position-specific isotope analysis using isotope ratio monitoring by 13C nuclear magnetic resonance spectrometry. Talanta, 147 (2016), pp. 383-389,
CrossRef Google scholar
S. Kotelnikova. Microbial production and oxidation of methane in deep subsurface. Earth Sci. Rev., 58 (3) (2002), pp. 367-395,
CrossRef Google scholar
D.E. LaRowe, S. Arndt, J.A. Bradley, E. Burwicz, A.W. Dale, J.P. Amend. Organic carbon and microbial activity in marine sediments on a global scale throughout the Quaternary. Geochim. Cosmochim. Acta, 286 (2020), pp. 227-247,
CrossRef Google scholar
X. Li, G. Hu, J. Li, D. Hou, P. Dong, Z. Song, Y. Yang. The characteristics and sources of natural gases from Ordovician weathered crust reservoirs in the Central Gas Field in the Ordos Basin. Chin. J. Geochem., 27 (2) (2008), pp. 109-120,
CrossRef Google scholar
J. Li, J. Li, Z. Li, D. Wang, S. Gong, Y. Zhang, H. Cui, H. Aisheng, C. Ma, Q. Sun. The hydrogen isotopic characteristics of the Upper Paleozoic natural gas in Ordos Basin. Org. Geochem., 74 (2014), pp. 66-75,
CrossRef Google scholar
X. Li, G.P. McGovern, J. Horita. Kinetics of propane cracking and position-specific isotope fractionation: Insights into the origins of natural gases. Org. Geochem., 155 (2021), Article 104234,
CrossRef Google scholar
M. Liang, Z. Wang, J. Zheng. Organic geochemistry characteristics of source rocks in Liaohe Depression. Lithologic Reservoirs, 26 (4) (2014), pp. 110-116
W. Liu, M. Chen, P. Guan, J. Zheng, Q. Jin, J. Li, W. Wang, G. Hu, Y. Xia, D. Zhang. Ternary geochemical-tracing system in natural gas accumulation. Sci. China Series d: Earth Sci., 50 (10) (2007), pp. 1494-1503,
CrossRef Google scholar
Q. Liu, Z. Jin, J. Li, A. Hu, C. Bi. Origin of marine sour natural gas and gas-filling model for the Wolonghe Gas Field, Sichuan Basin. China. J. Asian Earth Sci., 58 (2012), pp. 24-37,
CrossRef Google scholar
Q. Liu, Z. Jin, Q. Meng, X. Wu, H. Jia. Genetic types of natural gas and filling patterns in Daniudi gas field, Ordos Basin. China. J. Asian Earth Sci., 107 (2015), pp. 1-11,
CrossRef Google scholar
P. Liu, X. Wang, C. Liu, W. Liu. Kinetic isotope effects and reaction pathways of thermogenic propane generation at early maturation stage: Insights from position-specific carbon isotope analysis. Mar. Pet. Geol., 153 (2023), Article 106252
W. Liu, Y. Xu. A two-stage model of carbon isotopic fractionation in coal-gas. Geochimica, 28 (4) (1999), pp. 359-366
S. Liu, Y. Yang, B. Deng, Y. Zhong, L. Wen, W. Sun, Z. Li, L. Jansa, J. Li, J. Song, X. Zhang, H. Peng. Tectonic evolution of the Sichuan Basin. Southwest China. Earth Sci. Rev., 213 (2021), Article 103470,
CrossRef Google scholar
T.M. McCollom, J.S. Seewald. Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem. Rev., 107 (2) (2007), pp. 382-401
Q. Meng, X. Wang, X. Wang, B. Shi, X. Luo, L. Zhang, Y. Lei, C. Jiang, P. Liu. Gas geochemical evidences for biodegradation of shale gases in the Upper Triassic Yanchang Formation, Ordos Basin. China. Int. J. Coal Geol., 179 (2017), pp. 139-152,
CrossRef Google scholar
Q. Meng, X. Wang, X. Wang, Y. Lei, P. Liu, L. Zhang, C. Jiang, C. Gao. Biodegradation of light hydrocarbon(C5–C8) in shale gases from the Triassic Yanchang Formation, Ordos basin. China. J. Nat. Gas Sci. Eng., 51 (2018), pp. 183-194,
CrossRef Google scholar
L. Pei, X. Wang, G. Gao, W. Liu. Geochemical heterogeneity, origin and secondary alteration of natural gas inside and outside buried hills of Xinglongtai area, West Sag, Liaohe Depression, Bohai Bay Basin. J. Petrol. Sci. Eng., 208 (2022), Article 109456,
CrossRef Google scholar
B.K. Peterson, M.J. Formolo, M. Lawson. Molecular and detailed isotopic structures of petroleum: Kinetic Monte Carlo analysis of alkane cracking. Geochim. Cosmochim. Acta, 243 (2018), pp. 169-185,
CrossRef Google scholar
A. Piasecki, A. Sessions, B. Peterson, J. Eiler. Prediction of equilibrium distributions of isotopologues for methane, ethane and propane using density functional theory. Geochim. Cosmochim. Acta, 190 (2016), pp. 1-12,
CrossRef Google scholar
A. Piasecki, A. Sessions, M. Lawson, A.A. Ferreira, E.V. Santos Neto, G.S. Ellis, M.D. Lewan, J.M. Eiler. Position-specific 13C distributions within propane from experiments and natural gas samples. Geochim. Cosmochim. Acta, 220 (2018), pp. 110-124,
CrossRef Google scholar
S. Qin, F. Li, W. Li, Z. Zhou, G. Zhou. Formation mechanism of tight coal-derived-gas reservoirs with medium-low abundance in Xujiahe Formation, central Sichuan Basin. China. Mar. Pet. Geol., 89 (2018), pp. 144-154,
CrossRef Google scholar
D.D. Rice, J.L. Clayton, M.J. Pawlewicz. Characterization of coal-derived hydrocarbons and source-rock potential of coal beds, San Juan Basin, New Mexico and Colorado, USA. Int. J. Coal Geol., 13 (1–4) (1989), pp. 597-626
M.A. Rooney, G.E. Claypool, H. Moses Chung. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chem. Geol., 126 (3) (1995), pp. 219-232,
CrossRef Google scholar
M. Schoell. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim. Cosmochim. Acta, 44 (5) (1980), pp. 649-661,
CrossRef Google scholar
M. Schoell. Genetic Characterization of Natural Gases1. AAPG Bull., 67 (12) (1983), pp. 2225-2238,
CrossRef Google scholar
M. Schoell. Multiple origins of methane in the Earth. Chem. Geol., 71 (1) (1988), pp. 1-10,
CrossRef Google scholar
L. Shao, P. Zhang, J. Hilton, R. Gayer, Y. Wang, C. Zhao, Z. Luo. Paleoenvironments and paleogeography of the Lower and lower Middle Jurassic coal measures in the Turpan-Hami oil-prone coal basin, northwestern China. AAPG Bull., 87 (2) (2003), pp. 335-355,
CrossRef Google scholar
J.W. Smith, R.J. Pallasser. Microbial origin of Australian coalbed methane. AAPG Bull., 80 (6) (1996), pp. 891-897
Y. Song, C. Jia, M. Zhao, Z. Tian. Controlling factors for large gas field formation in thrust belt of Kuqa coal derived hydrocarbon foreland basin. Chin. Sci. Bull., 47 (1) (2002), pp. 55-61,
CrossRef Google scholar
W.J. Stahl, B.D. Carey. Source-rock identification by isotope analyses of natural gases from fields in the Val Verde and Delaware basins, west Texas. Chem. Geol., 16 (4) (1975), pp. 257-267,
CrossRef Google scholar
K. Suda, A. Gilbert, K. Yamada, N. Yoshida, Y. Ueno. Compound– and position–specific carbon isotopic signatures of abiogenic hydrocarbons from on–land serpentinite–hosted Hakuba Happo hot spring in Japan. Geochim. Cosmochim. Acta, 206 (2017), pp. 201-215,
CrossRef Google scholar
X. Sun, T. Zhang, Y. Sun, K.L. Milliken, D. Sun. Geochemical evidence of organic matter source input and depositional environments in the lower and upper Eagle Ford Formation, south Texas. Org. Geochem., 98 (2016), pp. 66-81,
CrossRef Google scholar
Y. Tang, J.K. Perry, P.D. Jenden, M. Schoell. Mathematical modeling of stable carbon isotope ratios in natural gases. Geochim. Cosmochim. Acta, 64 (15) (2000), pp. 2673-2687,
CrossRef Google scholar
X. Wang, W. Liu, J. Zheng. Formation Mechanism of Urengoy Gas Field in the West Siberian Basin and Its Implication. Nat. Gas Ind., 26 (5) (2006), pp. 29-32
X. Wang, W. Liu, B. Shi, Z. Zhang, Y. Xu, J. Zheng. Hydrogen isotope characteristics of thermogenic methane in Chinese sedimentary basins. Org. Geochem., 83 (2015), pp. 178-189
Y. Wang, J. Wang, S. Hu. Thermal history and tectono-thermal evolution of Eastern Depression, the Liaohe Basin. Sci. Geol. Sinica, 38 (2003), pp. 220-228
M.A. Webb, T.F. Miller III. Position-specific and clumped stable isotope studies: comparison of the Urey and path-integral approaches for carbon dioxide, nitrous oxide, methane, and propane. J. Phys. Chem. A, 118 (2) (2014), pp. 467-474,
CrossRef Google scholar
M.J. Whiticar. Stable isotope geochemistry of coals, humic kerogens and related natural gases. Int. J. Coal Geol., 32 (1) (1996), pp. 191-215,
CrossRef Google scholar
M.J. Whiticar. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol., 161 (1) (1999), pp. 291-314,
CrossRef Google scholar
X. Wu, Q. Liu, G. Liu, C. Ni. Genetic types of natural gas and gas-source correlation in different strata of the Yuanba gas field, Sichuan Basin. SW China. J. Asian Earth Sci., 181 (2019), Article 103906,
CrossRef Google scholar
H. Xie, C. Ponton, M.J. Formolo, M. Lawson, G.S. Ellis, M.D. Lewan, A.A. Ferreira, E.T. Morais, A.L.D. Spigolon, A.L. Sessions, J.M. Eiler. Position-specific distribution of hydrogen isotopes in natural propane: Effects of thermal cracking, equilibration and biodegradation. Geochim. Cosmochim. Acta, 290 (2020), pp. 235-256,
CrossRef Google scholar
H. Xie, G. Dong, M. Formolo, M. Lawson, J. Liu, F. Cong, X. Mangenot, Y. Shuai, C. Ponton, J. Eiler. The evolution of intra- and inter-molecular isotope equilibria in natural gases with thermal maturation. Geochim. Cosmochim. Acta, 307 (2021), pp. 22-41,
CrossRef Google scholar
H. Xie, M. Formolo, J. Eiler. Predicting isotopologue abundances in the products of organic catagenesis with a kinetic Monte-Carlo model. Geochim. Cosmochim. Acta, 327 (2022), pp. 200-228,
CrossRef Google scholar
Y. Xu. Origin Theory and Application of Natural Gas. Science Press, Beijing (1994)
Y. Xu, W. Liu, P. Shen, W. Wang, X. Wang, Y. Tenger, R. Liu. Carbon and hydrogen isotopic characteristics of natural gases from the Luliang and Baoshan basins in Yunnan Province, China. Sci. China Series d: Earth Sci., 49 (9) (2006), pp. 938-946,
CrossRef Google scholar
Y. Xu, Z. Wang, X. Wang, J. Zheng, H. Du. Low-mature gases and typical low-mature gas fields in China. Science in China Series d: Earth Sciences, 51 (2) (2008), pp. 312-320,
CrossRef Google scholar
Y. Xu, X. Wang, B. Shi. Low-mature gases and their resource potentiality. Chin. J. Geochem., 28 (3) (2009), pp. 231-238,
CrossRef Google scholar
H. Yang, J. Fu, X. Wei, X. Liu. Sulige field in the Ordos Basin: Geological setting, field discovery and tight gas reservoirs. Mar. Pet. Geol., 25 (4) (2008), pp. 387-400,
CrossRef Google scholar
Y. Yang, W. Li, L. Ma. Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos basin: A multicycle cratonic basin in central China. AAPG Bull., 89 (2) (2005), pp. 255-269,
CrossRef Google scholar
P. Zhang, H. Gou, F. Long, J. She, Z. Wang, Y. Jin. Natural gas geological conditions, resource potential and exploration direction in Turpan-Hami Basin. Nat. Gas Geosci., 29 (10) (2018), pp. 1531-1541
L. Zhang, Y. Li, W. Jiang, Y. Xiong. Position-specific carbon isotopic composition of thermogenic propane: Insights from pyrolysis experiments. Org. Geochem., 166 (2022), Article 104379,
CrossRef Google scholar
T. Zhang, X. Sun, K.L. Milliken, S.C. Ruppel, D. Enriquez. Empirical relationship between gas composition and thermal maturity in Eagle Ford Shale, south Texas. AAPG Bull., 101 (8) (2017), pp. 1277-1307,
CrossRef Google scholar
C. Zhao, M. Du, L. Shao, J. Chen, K. Cheng, Z. He. Types of organic facies and source rock assessment of the coal-measure mudstone in the Turpan-Hami basin. Acta Geol. Sinica-English Edit., 72 (2) (1998), pp. 169-179
H. Zhao, C. Liu, T.E. Larson, G.P. McGovern, J. Horita. Bulk and position-specific isotope geochemistry of natural gases from the Late Cretaceous Eagle Ford Shale, south Texas. Mar. Pet. Geol., 122 (2020), Article 104659,
CrossRef Google scholar
C. Zou, S. Tao, W. Han, Z. Zhao, W. Ma, C. Li, B. Bai, X. Gao. Geological and Geochemical Characteristics and Exploration Prospect of Coal-Derived Tight Sandstone Gas in China: Case Study of the Ordos, Sichuan, and Tarim Basins. Acta Geol. Sinica - English Edit., 92 (4) (2018), pp. 1609-1626,
CrossRef Google scholar
C. Zou, Z. Yang, S. Huang, F. Ma, Q. Sun, F. Li, S. Pan, W. Tian. Resource types, formation, distribution and prospects of coal-measure gas. Pet. Explor. Dev., 46 (3) (2019), pp. 451-462,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/