Tracking δ13C and δ18O fluctuations uncovers stable modes and key patterns of paleoclimate

Shifeng Sun , Haiying Wang , Yongjian Huang

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (4) : 101805

PDF
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (4) : 101805 DOI: 10.1016/j.gsf.2024.101805

Tracking δ13C and δ18O fluctuations uncovers stable modes and key patterns of paleoclimate

Author information +
History +
PDF

Abstract

The examination of fluctuations in the correlations between δ13C and δ18O is of significant importance for the reconstruction of the Earth’s climate history. A key challenge in paleoclimatology is finding a suitable method to represent the correlated fluctuation system between δ13C and δ18O. The method must be able to handle data sets with missing or inaccurate values, while still retaining the full range of dynamic information about the system. The non-linear and complex correlations between δ13C and δ18O poses a challenge in developing reliable and interpretable approaches. The transition network, which involves embedding the δ13C and δ18O sequence into the network using phase space reconstruction, is a coarse-grained based approach. This approach is well-suited to nonlinear, complex dynamic systems, and is particularly adept at emerging knowledge from low-quality datasets. We have effectively represented the fluctuations in the correlation between δ13C and δ18O since 66 million years ago (Ma) using a system of complex network. This system, which has topological dynamical structures, is able to uncover the stable modes and key patterns in Cenozoic climate dynamics. Our findings could help to improve climate models and predictions of future climate change.

Keywords

Cenozoic climate dynamics / Correlation analysis / Complex network / Coarse-grained methods / Phase space reconstruction

Cite this article

Download citation ▾
Shifeng Sun, Haiying Wang, Yongjian Huang. Tracking δ13C and δ18O fluctuations uncovers stable modes and key patterns of paleoclimate. Geoscience Frontiers, 2024, 15(4): 101805 DOI:10.1016/j.gsf.2024.101805

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Shifeng Sun: Conceptualization, Investigation, Methodology, Software, Formal analysis, Data curation, Visualization , Writing – original draft. Haiying Wang: Supervision, Conceptualization, Investigation, Resources, Methodology, Data curation, Validation, Writing – review & editing, Funding acquisition. Yongjian Huang: Writing – review & editing, Data curation, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors are very grateful to Prof. M. Santosh, Dr. Yirang Jang and other anonymous reviewers for their constructive and substantive comments on our paper, which have considerably improved its presentation and quality. This work is supported by 2022 Subject Development Research Fund Project of China University of Geosciences, Beijing (Grant No. 2022XK211) and 2023 Graduate Innovation Fund Project of China University of Geosciences, Beijing (Grant No. YB2023YC014). This research is also supported by the National Natural Science Foundation of China (Grant No. 42174149 and No. 42272134).

Supplementary data

The following are the Supplementary data to this article:

Download: Download Word document (13KB)

All the data analyzed in our work can be accessed through this website (accessed on 2023-11-29):www.science.org/doi/suppl/10.1126/science.aba6853/suppl_file/aba6853_tables_s8_s34.xlsx. This is taken from the data by Westerhold et al. (2020).

References

[1]

I. Bailey, G.M. Hole, G.L. Foster, P.A. Wilson, C.D. Storey, C.N. Trueman, M.E. Raymo. An alternative suggestion for the Pliocene onset of major northern hemisphere glaciation based on the geochemical provenance of North Atlantic Ocean ice-rafted debris. Quat. Sci. Rev., 75 (2013), pp. 181-194,

[2]

C. Basak, E.E. Martin. Antarctic weathering and carbonate compensation at the Eocene-Oligocene transition. Nat. Geosci., 6 (2013), pp. 121-124,

[3]

P.J. Bickel, A. Chen. A nonparametric view of network models and Newman-Girvan and other modularities. Proc. Natl. Acad. Sci. U.S.A., 106 (2009), pp. 21068-21073,

[4]

N. Boers, J. Kurths, N. Marwan. Complex systems approaches for Earth system data analysis. J. Phys.-Complex., 2 (2021), p. 011001,

[5]

N. Bouttes, D.M. Roche, D. Paillard. Systematic study of the impact of fresh water fluxes on the glacial carbon cycle. Clim. Past., 8 (2012), pp. 589-607,

[6]

U. Brandes. A faster algorithm for betweenness centrality. J. Math. Sociol., 25 (2001), pp. 163-177,

[7]

J.D. Bridges, J.A. Tarduno, R.D. Cottrell, T.D. Herbert. Rapid strengthening of westerlies accompanied intensification of Northern Hemisphere glaciation. Nat. Commun., 14 (2023), p. 3905,

[8]

W. Cao, D. Xi, M.C. Melinte-Dobrinescu, T. Jiang, S.W. Wise, X. Wan. Calcareous nannofossil changes linked to climate deterioration during the Paleocene-Eocene thermal maximum in Tarim Basin, NW China. Geosci. Front., 9 (2018), pp. 1465-1478,

[9]

S. Cauvy-Fraunié, T. Condom, A. Rabatel, M. Villacis, D. Jacobsen, O. Dangles. Technical note: glacial influence in tropical mountain hydrosystems evidenced by the diurnal cycle in water levels. Hydrol. Earth Syst. Sci., 17 (2013), pp. 4803-4816,

[10]

P. Cornuault, T. Westerhold, H. Pälike, T. Bickert, K.H. Baumann, M. Kucera. Nature and origin of variations in pelagic carbonate production in the tropical ocean since the mid-Miocene (ODP Site 927). Biogeosciences, 20 (2023), pp. 597-618,

[11]

L.J. Cotton, P.N. Pearson. Extinction of larger benthic foraminifera at the Eocene/Oligocene boundary. Paleogeogr. Paleoclimatol. Paleoecol., 311 (2011), pp. 281-296,

[12]

H.K. Coxall, P.A. Wilson, H. Pälike, C.H. Lear, J. Backman. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature, 433 (2005), pp. 53-57,

[13]

D. De Vleeschouwer, A.J. Drury, M. Vahlenkamp, F. Rochholz, D. Liebrand, H. Pälike. High-latitude biomes and rock weathering mediate climate–carbon cycle feedbacks on eccentricity timescales. Nat. Commun., 11 (2020), p. 5013,

[14]

G. Fasano, A. Franceschini. A multidimensional version of the Kolmogorov-Smirnov test. Mon. Not. Roy. Astron. Soc., 225 (1987), pp. 155-170,

[15]

M. Gallegati. A systematic wavelet-based exploratory analysis of climatic variables. Clim. Change, 148 (2018), pp. 325-338,

[16]

E.G.W. Gasson, R.M. DeConto, D. Pollard, C.D. Clark. Numerical simulations of a kilometre-thick Arctic ice shelf consistent with ice grounding observations. Nat. Commun., 9 (2018), p. 1510,

[17]

D.F. Gleich. PageRank beyond the Web. SIAM Rev., 57 (2015), pp. 321-363,

[18]

M. Harzhauser, M. Peresson, C. Benold, O. Mandic, S. Ćorić, G.J.D. Lange. Environmental shifts in and around Lake Pannon during the Tortonian Thermal Maximum based on a multi-proxy record from the Vienna Basin (Austria, Late Miocene, Tortonian). Paleogeogr. Paleoclimatol. Paleoecol., 610 (2023), p. 111332,

[19]

D.J. Hill, A.M. Haywood, P.J. Valdes, J.E. Francis, D.J. Lunt, B.S. Wade, V.C. Bowman. Paleogeographic controls on the onset of the Antarctic circumpolar current. Geophys. Res. Lett., 40 (2013), pp. 5199-5204,

[20]

P. Hu, T. Mei. Ranking influential nodes in complex networks with structural holes. Physica A, 490 (2018), pp. 624-631,

[21]

M. Jolivet, P. Boulvais. Global significance of oxygen and carbon isotope compositions of pedogenic carbonates since the Cretaceous. Geosci. Front., 12 (2021), p. 101132,

[22]

S.M. Jones, M. Hoggett, S.E. Greene, T. Dunkley Jones. Large Igneous Province thermogenic greenhouse gas flux could have initiated Paleocene-Eocene Thermal Maximum climate change. Nat. Commun., 10 (2019), p. 5547,

[23]

J.J. Lindsay, H.S.R. Hughes, C.M. Yeomans, J.C.Ø. Andersen, I. McDonald. A machine learning approach for regional geochemical data: platinum-group element geochemistry vs geodynamic settings of the North Atlantic Igneous Province. Geosci. Front., 12 (2021), p. 101098,

[24]

J. Longman, B.J.W. Mills, Y. Donnadieu, Y. Goddéris. Assessing volcanic controls on Miocene climate change. Geophys. Res. Lett., 49 (2022),

[25]

X. Ma, W. Ma, J. Tian, J. Yu, E. Huang. Ice sheet and terrestrial input impacts on the 100-kyr ocean carbon cycle during the Middle Miocene. Glob. Planet. Change, 208 (2022), p. 103723,

[26]

N. Marwan, M. Carmen Romano, M. Thiel, J. Kurths. Recurrence plots for the analysis of complex systems. Phys. Rep.-Rev. Sec. Phys. Lett., 438 (2007), pp. 237-329,

[27]

K. Morita. A fine-grained distinction of coarse graining. Eur. J. Philos. Sci., 13 (2023), p. 12,

[28]

A.D. Myers, M.M. Chumley, F.A. Khasawneh, E. Munch. Persistent homology of coarse-grained state-space networks. Phys. Rev. E., 107 (2023), p. 034303,

[29]

P. Nowack, J. Runge, V. Eyring, J.D. Haigh. Causal networks for climate model evaluation and constrained projections. Nat. Commun., 11 (2020), p. 1415,

[30]

J. Okuno, H. Miura. Last deglacial relative sea level variations in Antarctica derived from glacial isostatic adjustment modelling. Geosci. Front., 4 (2013), pp. 623-632,

[31]

Rohling, E.J., Hibbert, F.D., Williams, F.H., Grant, K.M., Marino, G., Foster, G.L., Hennekam, R., Lange, G.J.d., Roberts, A.P., Yu, J., Webster, J.M., Yokoyama, Y., 2017. Differences between the last two glacial maxima and implications for ice-sheet, δ18O, and sea-level reconstructions. Quat. Sci. Rev. 176, 1–28. doi:10.1016/j.quascirev.2017.09.009.

[32]

J. Runge, S. Bathiany, E. Bollt, G. Camps-Valls, D. Coumou, E. Deyle, C. Glymour, M. Kretschmer, M.D. Mahecha, J. Muñoz-Marí, E.H. Van Nes, J. Peters, R. Quax, M. Reichstein, M. Scheffer, B. Schölkopf, P. Spirtes, G. Sugihara, J. Sun, K. Zhang, J. Zscheischler. Inferring causation from time series in Earth system sciences. Nat. Commun., 10 (2019), p. 2553,

[33]

J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, D. Sejdinovic. Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv., 5 (2019), p. 4996,

[34]

J. Saramaki, M. Kivela, J.P. Onnela, K. Kaski, J. Kertesz. Generalizations of the clustering coefficient to weighted complex networks. Phys. Rev. E., 75 (2007), p. 027105,

[35]

J.F. Spray, S.M. Bohaty, A. Davies, I. Bailey, B.W. Romans, M.J. Cooper, J.A. Milton, P.A. Wilson. North Atlantic evidence for a unipolar icehouse climate state at the Eocene-Oligocene transition. Paleoceanogr. Paleoclimatol., 34 (2019), pp. 1124-1138,

[36]

K. Takemoto, C. Oosawa, T. Akutsu. Structure of n-clique networks embedded in a complex network. Physica A, 380 (2007), pp. 665-672,

[37]

D.J. Thomas, T.J. Bralower. Sedimentary trace element constraints on the role of North Atlantic Igneous Province volcanism in late Paleocene-early Eocene environmental change. Mar. Geol., 217 (2005), pp. 233-254,

[38]

R. Tomás, Z. Li, J.M. Lopez-Sanchez, P. Liu, A. Singleton. Using wavelet tools to analyse seasonal variations from InSAR time-series data: a case study of the Huangtupo landslide. Landslides, 13 (2016), pp. 437-450,

[39]

S.K. Turner. Pliocene switch in orbital-scale carbon cycle/climate dynamics: Pliocene carbon cycle switch. Paleoceanography, 29 (2014), pp. 1256-1266,

[40]

M. Wang, L. Tian. From time series to complex networks: the phase space coarse graining. Physica A, 461 (2016), pp. 456-468,

[41]

H. Weng, A. Maleki, L. Zheng. Overcoming the limitations of phase transition by higher order analysis of regularization techniques. Ann. Stat., 46 (2018), pp. 3099-3129,

[42]

T. Westerhold, N. Marwan, A.J. Drury, D. Liebrand, C. Agnini, E. Anagnostou, J.S.K. Barnet, S.M. Bohaty, D. De Vleeschouwer, F. Florindo, T. Frederichs, D.A. Hodell, A.E. Holbourn, D. Kroon, V. Lauretano, K. Littler, L.J. Lourens, M. Lyle, H. Pälike, U. Röhl, J. Tian, R.H. Wilkens, P.A. Wilson, J.C. Zachos. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369 (2020), pp. 1383-1387,

[43]

Y. Xiang, J. Ding, V. Tarokh. Evolutionary spectra based on the multitaper method with application to stationarity test. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB (2018), pp. 3994-3998,

[44]

C. Zhang, Z. Guo. Clay mineral changes across the Eocene-Oligocene transition in the sedimentary sequence at Xining occurred prior to global cooling. Paleogeogr. Paleoclimatol. Paleoecol., 411 (2014), pp. 18-29,

[45]

J. Zhang, J. Zhou, M. Tang, H. Guo, M. Small, Y. Zou. Constructing ordinal partition transition networks from multivariate time series. Sci. Rep., 7 (2017), p. 7795,

[46]

Y. Zou, R.V. Donner, N. Marwan, J.F. Donges, J. Kurths. Complex network approaches to nonlinear time series analysis. Phys. Rep.-Rev. Sec. Phys. Lett., 787 (2019), pp. 1-97,

AI Summary AI Mindmap
PDF

206

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/