Transition from oceanic subduction to continental collision: Insights from volcanogenic-sedimentary rocks of the Tannuola terrane (northern Central Asian Orogenic Belt)
E.V. Vetrov, N.I. Vetrova
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (4) : 101803.
Transition from oceanic subduction to continental collision: Insights from volcanogenic-sedimentary rocks of the Tannuola terrane (northern Central Asian Orogenic Belt)
Magmatism associated with oceanic subduction plays a dominant role in crustal growth during the Earth’s evolution. The Tannuola terrane, situated in the northern Central Asian Orogenic Belt (CAOB), is a key area to understanding oceanic subduction and initial collision processes in the northern CAOB. In order to investigate the switch from subduction to collision settings, detailed field mapping, zircon SHRIMP U-Pb geochronological and whole-rock geochemical studies of volcanogenic-sedimentary rocks from the Tannuola terrane were carried out. Zircon U-Pb ages indicate multi-stage volcanism lasted at least 30 Ma from ∼540 to ∼510 Ma, that can be divided into three events: the late Ediacaran (before ∼540 Ma), the early Cambrian (∼520 Ma) and the middle Cambrian (∼510 Ma). These ages are interpreted to the initial, main and final stages of oceanic subduction during the late Proterozoic – early Paleozoic. During the late Ediacaran, tholeiitic basalts with high εNd(t) values (from +7.4 to +8.5) were emplaced. Likely forming by the 10 %–30 % partial melting of spinel – garnet mantle source during slab subduction. During the early Cambrian, transitional from tholeiitic to calc-alkaline basaltic rocks with εNd(t) value (+5.6) and coeval intermediate–felsic volcanic rocks with similar εNd(t) values (+5.9 and +6.5) formed. The early Cambrian basaltic rocks are interpreted to be derived by 10 %–30 % partial melting of a depleted mantle source metasomatized by slab-derived fluids released from the subducting oceanic slab. The middle Cambrian calc-alkaline basaltic rocks with εNd(t) value of +6.2 might be emplaced as a result of low (5 %–10 %) degree partial melting of a metasomatized mantle followed by fractional crystallization of clinopyroxene and plagioclase. Associated intermediate-felsic volcanic rocks with εNd(t) values from +6.0 to +6.8 were formed through fractionation of the juvenile Neoproterozoic sources. The middle Cambrian volcanism is interpreted to be triggered by the slab break-off during the transition to a collisional setting.
Island-arc magmatism / Ediacaran / Cambrian / zircon U-Pb dating / Nd isotopes / Central asian orogenic belt
E. Aldanmaz, N. Köprübaş, Ö.F. Gürer, N. Kaymakçi, A. Gourgaud. Geochemical constraints on the Cenozoic, OIB-type alkaline volcanic rocks of NW Turkey: implications for mantle sources and melting processes. Lithos, 86 (2006), pp. 50-76
|
Ş. Altunkaynak. Collision-driven slab break off magmatism in Northwestern Anatolia, Turkey. J. Geol., 115 (2007), pp. 63-82
|
G.A. Babin, S.P. Shokalsky. Major geological features of the Altai-Sayan Folded Region (tectonic zoning, stratigraphy, magmatism, geological evolution). Geol. Miner. Resour. Sib., 6s (2017), pp. 19-37
|
C. Beaumont, S. Ellis, J. Hamilton, P. Fullsack. Mechanical model for subduction-collision tectonics of Alpine-type compressional orogens. Geology, 24 (8) (1996), pp. 675-678
|
N.A. Berzin, L.V. Kungurtsev. Geodynamic interpretation of Altai-Sayan Geological complexes. Russ. Geol. Geophys., 37 (1996), pp. 56-73
|
L.P. Black, S.L. Kamo, C.M. Allen, J.N. Aleinikoff, D.W. Davis, R.J. Korsch, C. Foudoulis. TEMORA 1: a new zircon standard for U-Pb geochronology. Chem. Geol., 200 (2003), pp. 155-170
|
B. Bonin. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97 (2007), pp. 1-29
|
M.M. Buslov, T. Watanabe, I.Y. Saphonova, K. Iwata, A. Travin, M. Akiyama. Vendian-Cambrian island arc system of the Siberian continent in Gorny Altai (Russia, Central Asia). Gondwana Res., 5 (4) (2002), pp. 781-800
|
B. Cabanis, M. Lecolle. Le diagramme La/10–Y/15–Nb/8: un outil pour la discrimination des séries volcaniques et la mise en evidence des processus de mélange et/ou de contamination crustale. C.R. Acad. Sci., Ser. II, 309 (20) (1989), pp. 2023-2029
|
P.R. Castillo, S.J. Rigby, R.U. Solidum. Origin of high field strength element enrichment in volcanic arcs: Geochemical evidence from the Sulu arc, southern Philippines. Lithos, 97 (2007), pp. 271-288
|
Cawood, P.A., Kr¨oner, A., Collins, W.J., Kusky, T.M., Mooney, W.D., Windley, B.F., 2009. Accretionary orogens through Earth history. Geol. Soc. Lond., Spec. Publ. 318, 1–36.
|
W.J. Collins, S.D. Beams, A.J.R. White, B.W. Chappell. Nature and origin of A type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol., 80 (1982), pp. 189-200
|
K.C. Condie. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes?. Lithos, 79 (3–4) (2005), pp. 491-504,
CrossRef
Google scholar
|
K.C. Condie. Accretionary orogens in space and time. Geological Society of America Memoirs, 200 (2007), pp. 145-158
|
F. Corfu, J.M. Hanchar, P.W.O. Hoskin, P. Kinny. Atlas of Zircon Textures. Rev. Mineral. Geochem., 53 (2003), pp. 469-500
|
Davies, J.H., Von Blanckenburg, F., 1995. Slab breakoff: amodel of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett. 129, 85–102.
|
N.L. Dobretsov, M.M. Buslov. Late Cambrian-Ordovician tectonics and geodynamics of Central Asia. Russ. Geol. Geophys., 48 (1) (2007), pp. 71-82
|
N.L. Dobretsov, M.M. Buslov, I.Y. Safonova, D.A. Kokh. Fragments of oceanic islands in the Kurai and Katun’ accretionary wedges of Gorny Altai. Russ. Geol. Geophys., 45 (12) (2004), pp. 1381-1403
|
N.L. Dobretsov, V.A. Simonov, M.M. Buslov, A.V. Kotlyarov. Magmatism and geodynamics of the Paleoasian ocean at the Vendian-Cambrian stage of its evolution. Russ. Geol. Geophys., 46 (9) (2005), pp. 933-952
|
S.L. Dorobek. Carbonate-platform facies in volcanic-arc settings: characteristics and controls on deposition and stratigraphic development // Geol. Soc. Am. Spec. Pap., 436 (2008), pp. 55-90
|
G. Faure. Principles of Isotope Geology. John Wiley and Sons Inc, New York (1986)
|
C.D. Frost, J.M. Bell, B.R. Frost, K.R. Chamberlain. Crustal growth by magmatic underplating: isotopic evidence from the northern Sherman batholith. Geology, 29 (2001), pp. 515-518
|
J.F. Gao, M.F. Zhou. Magma mixing in the genesis of the Kalatongke dioritic intrusion: Implications for the tectonic switch from subduction to post-collision, Chinese Altay, NW China. Lithos, 162–163 (2013), pp. 236-250
|
D.P. Gladkochub, T.V. Donskaya, V.S. Fedorovskii. Fragment of the Early Paleozoic (∼500 Ma) island arc in the structure of the Olkhon Terrane, Central Asian fold belt. Dokl. Earth Sci., 457 (2014), pp. 905-909,
CrossRef
Google scholar
|
Gordienko, I.V., Kovach, V.P., Gorokhovsky, D.V., Sal’nikova, E.B., Kotov, A.B., Yakovleva, S.Z., Zagornaya, N.Yu., Fedoseenko, A.M., Plotkina, Yu.V., 2006. Composition, U–Pb age, and geodynamic setting of island-arc gabbroids and granitoids of the Dzhida zone (southwestern Transbaikalia, northern Mongolia). Russ. Geol. Geophys. 47 (8), 948–955.
|
I.V. Gordienko, A.V. Filimonov, O.R. Minina, M.A. Gornova, A.Y. Medvedev, V.S. Klimuk, A.L. Elbaev, O. Tomurtogoo. Dzhida island-arc system in the Paleoasian Ocean: structure and main stages of Vendian-Paleozoic geodynamic evolution. Russ. Geol. Geophys., 48 (1) (2007), pp. 91-106
|
I.V. Gordienko, D.V. Metelkin. The evolution of the subduction zone magmatism on the Neoproterozoic and Early Paleozoic active margins of the Paleoasian Ocean. Russ. Geol. Geophys., 57 (1) (2016), pp. 69-81,
CrossRef
Google scholar
|
W.L. Griffin, X. Wang, S.E. Jackson, N.J. Pearson, S.Y. O’Reilly, X.S. Xu, X.M. Zhou. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61 (2002), pp. 237-269
|
B.F. Han, G.Q. He, X.C. Wang, Z.J. Guo. Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China. Earth-Science Reviews, 109 (2011), pp. 74-93
|
A.R. Hastie, A.C. Kerr, J. Pearce, S.F. Mitchell. Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th-Co discrimination diagram. J. Petrol., 48 (12) (2007), pp. 2341-2357
|
A.R. Hastie, S.F. Mitchell, A.C. Kerr, M.J. Minifie, I.L. Millar. Geochemistry of rare high-Nb basalt lavas: are they derived from a mantle wedge metasomatised by slab melts?. Geochim. Cosmochim. Acta, 75 (2011), pp. 5049-5072
|
J. Hermann, C. Spandler, A. Hack, A.V. Korsakov. Aqueous fluids and hydrous melts in high pressure and ultra-high pressure rocks: implications for element transfer in subduction zones. Lithos, 92 (2006), pp. 399-417
|
T.N. Irvine, W.R.A. Baragar. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci., 8 (523–548) (1971),
CrossRef
Google scholar
|
Jochum, K.P., Nohl, U., Herwig., K., Lammel, E., Stoll, B., Hofmann, A.W., 2007. GeoReM: A New Geochemical Database for Reference Materials and Isotopic Standards. Geost. and Geoan. Res. 29 (3), 333-338.
|
I.V. Karmysheva, V.G. Vladimirov, R.A. Shelepaev, S.N. Rudnev, V.A. Yakovlev, D.V. Semenova. Bayan-Kol gabbro-granite association (Western Sangilen, Southeastern Tuva): composition, age boundaries, and tectonic and geodynamic settings. Russ. Geol. Geophys., 60 (2019), pp. 720-734
|
I.V. Karmysheva, V.G. Vladimirov, S.N. Rudnev, V.A. Yakovlev, D.V. Semenova. Syntectonic metamorphism of a collisional zone in the Tuva-Mongolian massif, Central Asian Orogenic Belt: P-T conditions, U-Pb ages and tectonic setting. J. as. Earth Sci., 220 (2021), Article 104919
|
Kuzmichev, A.B., 2004. Tectonic History of the Tuva-Mongolian Massif: Early Baikalian, Late Baikalian and Early Caledonian Stage. Probel, Moscow (in Russian).
|
R.R. Large, J.B. Gemmell, H. Paulick, D.L. Huston. The alteration box plot: A simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits. Econ. Geol., 96 (5) (2001), pp. 957-971
|
Larionov, A.N., Andreichev, V.A., Gee, D.G., 2004. The Vendian alkaline igneous suite of northern Timan: Ion microprobe U-Pb zircon ages of gabbros and syenite. The Neoproterozoic Timanide Orogen of Eastern Baltica. Eds. D.G. Gee, V.L. Pease. London. Geol. Soc. Memoirs. 30, 69-74.
|
Le Maitre, R.W., Bateman, P., Dudek, A., Keller, J., Lameyre, J., Le Bas, M.J., Sabine, P.A., Schmid, R., Sorensen, H., Streckeisen, A., M.J., Woolley, A.R., Zanettin, B., 1989. A Classification of Igneous Rocks and Glossary of Terms. Recommendations of the International Union of Geological Sciences Commission on the Systematics of Igneous Rocks. Blackwell Science Publication, Oxford, Vol. 552.
|
L. Lu, Z. Zhao, Z. Wu, C. Qiang, P. Ye. Fission track thermochronology evidence for the Cretaceous and Paleogene tectonic event of Nyainrong microcontinent. Tibet. Acta Geol. Sin-Engl., 89 (2015), pp. 133-144
|
P.D. Maniar, P.M. Piccoli. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull., 101 (5) (1989), pp. 635-643
|
Q.G. Mao, W.J. Xiao, T.H. Fang, B.F. Windley, M. Sun, S.J. Ao, J.E. Zhang, X.K. Huang. Geochronology, geochemistry and petrogenesis of early Permian alkaline magmatism in the Eastern Tianshan: implications for tectonics of the Southern Altaids. Lithos, 190–191 (2014), pp. 37-51
|
S. Maruyama, M. Santosh, D. Zhao. Superplume, supercontinent, and postperovskite: mantle dynamics and anti-plate tectonics on the core-mantle boundary. Gondwana Res., 11 (1–2) (2007), pp. 7-37
|
W.F. McDonough, S.S. Sun. The composition of the Earth. Chem. Geol., 120 (1995), pp. 223-253
|
E.D. Mullen. MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth Planet. Sci. Lett., 62 (1983), pp. 53-62
|
Parfenov, L.M., Khanchuk, A.I., Badarch, G., Miller, R.J., Naumova, V.V., Nokleberg, W.J., Ogasawara, M., Prokopiev, A.V., Yan, H., Belichenko, V., Berzin, N.A., Bulgatov, A.N., Byamba, J., Deikunenko, A.V., Dong, Y., Dril, S.I., Gordienko, I.V., Hwang, D.H., Kim, B.I., Korago, E.A., Kos’ko, M.K., Kuzmin, M.I., Orolmaa, D., Oxman, V.S., Popeko, L.I., Rudnev, S.N., Sklyarov, E.V., Smelov, A.P., Sudo, S., Suprunenko, O.I., Sun, F., Sun, J., Sun, W., Timofeev, V.F., Tret’yakov, F.F., Tomurtogoo, O., Vernikovsky, V.A., Vladimirov, A.G., Wakita, K., Ye, M., Zedgenizov, A.N., 2003. Preliminary Northeast Asia Geodynamics Map. Scale 1:5,000,000. U.S. Geological Survey Open-File Report 03-205, 2 sheets.
|
J.A. Pearce. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100 (2008), pp. 14-48
|
Pearce, J.A., Van Der Laan, S.R., Arculus, R.J., Murton, B.J., Ishii, T., Peate, J.A., Parkinson, I.J., 1992. Boninite and Harzburgite from Leg 125 (Bonin-Mariana Forearc): a case study of magma genesis during the initial stages of subduction. In: Fryer, P., Pearce, J.A., Stokking, I.J. (Eds.), Proceedings of the Ocean Drilling Program. College Station, pp. 623–659.
|
J.A. Pearce, N.B.W. Harris, A.G. Tindle. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25 (4) (1984), pp. 956-983,
CrossRef
Google scholar
|
A. Polat, A.W. Hofmann, M.T. Rosing. Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chem. Geol., 184 (2002), pp. 231-254
|
P.-S. Ross, J.H. Bedard. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams. Can. J. Earth Sci., 46 (2009), pp. 823-839
|
S.N. Rudnev, V.P. Kovach, V.A. Ponomarchuk. Vendian-Early Cambrian island-arc plagiogranitoid magmatism in the Altai-Sayan folded area and in the Lake Zone of western Mongolia (geochronological, geochemical, and isotope data). Russ. Geol. Geophys., 54 (2013), pp. 1272-1287
|
S.N. Rudnev, I.V. Karmysheva, D.V. Semenova, V.A. Yakovlev, A.M. Sugorakova. Magmatic and xenogenic zircons from granitoids of the Kaa-Khem batholithas age markers of the crust in the junction zone of the Tannu-Ola island arc and the Tuva-Mongolian Microcontinent (Eastern Tuva). Russ. Geol. Geophys. 64 (7), 763–776.Rudnev, S.N.; Serov, P.A.; Kiseleva, V.Y., 2015. Vendian-Early Paleozoic granitoid magmatism in Eastern Tuva. Russ. Geol. Geophys., 56 (2023), pp. 1232-1255
|
Rudnick, R.L., Gao, S., 2003. Composition of the continental crust. In: Rudnick, R.L. (Ed.), The Crust: Treatise in Geochemistry. vol. 3, pp. 1–64.
|
I. Safonova. Juvenile versus recycled crust in the Central Asian Orogenic Belt: Implications from ocean plate stratigraphy, blueschist belts and intra-oceanic arcs. Gondwana Res., 47 (2017), pp. 6-27,
CrossRef
Google scholar
|
I.Y. Safonova, M.M. Buslov, V.A. Simonov, A.E. Izokh, T. Komiya, E.V. Kurganskaya, T. Ono. Geochemistry, petrogenesis and geodynamic origin of basalts from the Katun’ accretionary complex of Gorny Altai (southwestern Siberia). Russ. Geol. Geophys., 52 (1) (2011), pp. 421-442
|
I.Y. Safonova, A. Kotlyarov, S. Krivonogov, W.J. Xiao. Intra-oceanic arcs of the Paleo-Asian Ocean. Gondwana Res., 50 (2017), pp. 167-194
|
I. Safonova, M. Santosh. Accretionary complexes in the Asia-Pacific region: tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Res., 25 (2014), pp. 126-158
|
I.Y. Safonova, V.A. Simonov, M.M. Buslov, T. Ota, S.h. Maruyama. Neoproterozoic basalts of the Paleoasian Ocean (Kurai accretionary zone, Gorny Altai, Russia): geochemistry, petrogenesis, and geodynamics. Russ. Geol. Geophys., 49 (4) (2008), pp. 254-271
|
M. Santosh, C.N. Hu, X.F. He, S.S. Li, T. Tsunogae, E. Shaji, G. Indu. Neoproterozoic arc magmatism in the southern Madurai block, India: Subduction, relamination, continental outbuilding, and the growth of Gondwana. Gondwana Res., 45 (2017), pp. 1-42,
CrossRef
Google scholar
|
A.D. Saunders, M. Storey, R.W. Kent, M.J. Norry. Consequences of plume lithosphere interactions. B.C. Storey, T. Alabaster, R.J. Pankhurst (Eds.), Magmatism and the Cause of Continental Breakup, vol. 68, Geological Society of Special Publication, London (1992), pp. 41-60
|
H. Sawada, Y. Isozaki, S. Sakata, T. Hirata, S. Maruyama. Secular change in lifetime of granitic crust and the continental growth: a new view from detrital zircon ages of sandstones.. Geosci. Front., 9 (2018), pp. 1099-1115,
CrossRef
Google scholar
|
A.M.C. Sengör, B.A. Natal'in. Turkic-type orogeny and its role in the making of the continental rust.. Annual Rev. Earth Planet. Sci., 24 (1996), pp. 263-337
|
S. Shkolnik, E. Letnikova, E. Vetrov, A. Ivanov, L. Reznitsky, A. Proshenkin. Proterozoic – Paleozoic tectonic evolution of the northern Central Asian Orogenic Belt: new constraints from igneous and metamorphosed rocks of the Khamsara Terrane (East Sayan, Russia). J. Asian Earth Sci., 105785 (2023),
CrossRef
Google scholar
|
V.A. Simonov, I.V. Gordienko, S.I. Stupakov, A.Y. Medvedev, A.V. Kotlyarov, S.V. Kovyazin. Conditions of basalt formation in the Dzhida zone of the Paleoasian Ocean. Russ. Geol. Geophys., 55 (8) (2014), pp. 929-940,
CrossRef
Google scholar
|
P. Song, T. Wang, Y. Tong, J. Zhang, H. Huang. Late Carboniferous intrusions along the Kalamaili suture zone, southwestern Central Asian Orogenic Belt (CAOB): implications for a tectonic switch from subduction to collision. Int. Geol. Rev., 65 (10) (2023), pp. 1601-1621,
CrossRef
Google scholar
|
S.S. Sun, W.F. McDonough. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ., 42 (1989), pp. 313-345
|
T. Tanaka, S. Togashi, H. Kamioka, H. Amakawa, H. Kagami, T. Hamamoto, M. Yuhara, Y. Orihashi, S. Yoneda, H. Shimizu, T. Kunimaru, K. Takahashi, T. Yanagi, T. Nakano, H. Fujimaki, R. Shinjo, Y. Asahara, M. Tanimizu, C. Dragusanu. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol., 168 (2000), pp. 279-281
|
Tomurhuu D., Bolorjargal P., Jian Ping. 2007. New dating and geochemistry of Dzhida boninite series rocks and its tectonic constrain. Abstract and excursion guide book of the third International workshop and field excursion for IGCP-480. Beijing, China, p. 33.
|
Torsvik T. H., Smethurst M. A., Meert J. G., Van der voo R., Mckeerow W. S., Brasier M. D., Sturt B. A. and Walderhaug H. J., 1996. Continental break-up and collision in the Neoproterozoic and Paleozoic — a tale of Baltica and Laurentia. Earth Sc. Rev. 40: 229–258.
|
P. Vermeesch. IsoplotR: a free and open toolbox for geochronology. Geosci. Front., 9 (2018), pp. 1479-1493
|
E.V. Vetrov, A.I. Chernykh, G.A. Babin. Early Paleozoic granitoid magmatism in the East Tannu-Ola sector of the Tuvinian magmatic belt: Geodynamic position, age, and metallogeny. Russ. Geol. Geophys., 60 (2019), pp. 492-513
|
E.V. Vetrov, J. De Grave, N.I. Vetrova, F.I. Zhimulev, S. Nachtergaele, G. Van Ranst, P.I. Mikhailova. Tectonic history of the South Tannuol Fault Zone (Tuva Region of the Northern Central Asian Orogenic Belt, Russia): Constraints from multi-method geochronology. Minerals, 10 (1) (2020), p. 56,
CrossRef
Google scholar
|
E.V. Vetrov, E.A. Pikhutin, N.I. Vetrova. Geochemical constraints on petrogenesis and tectonics of the Middle Devonian granitic and coeval mafic magmatism from the Tannuola terrane (northern Central Asian Orogenic Belt). Minerals, 12 (2022), p. 1282,
CrossRef
Google scholar
|
E.V. Vetrov, N.I. Vetrova, E.A. Pikhutin. Geochronology and geochemistry of early Paleozoic granitic and coeval mafic rocks from the Tannuola terrane (Tuva, Russia): Implications for transition from a subduction to post-collisional setting in the northern part of the Central Asian Orogenic Belt. Gondwana Res., 125 (2024), pp. 130-149,
CrossRef
Google scholar
|
Vladimirov, V.G., Vladimirov, A.G., Gibsher, A.S., Travin, A.V., Rudnev, S.N., Shemelina, I.V., Barabash, N.V., Savinykh, Ya.V., 2005. Model of the tectonometamorphic evolution for the Sangilen block (Southeastern Tuva, Central Asia) as a reflection of the early caledonian accretion-collision tectogenesis. Dokl. Earth Sci. 405, 1159-1165.
|
Wang, K., Plank, T., Walker, J.D., Smith, E.I., 2002. A mantle melting profile across the Basin and Range, SW USA. J. Geophys. Res. 107 (ECV 5-1–ECV 5-21).
|
M.B. Wilson. Igneous Petrogenesis: A Global Tectonic Approach. Unwyn Hyman, London (1989)
|
B.F. Windley, D. Alexeiev, W. Xiao, A. Kroner, G. Badarch. Tectonic models for accretion of the Central Asian Orogenic Belt. J Geol. Soc. London, 164 (2007), pp. 31-47
|
D.A. Wood. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British tertiary volcanic province. Earth Planet. Sci. Lett., 50 (1980), pp. 11-30
|
W. Xiao, B. Huang, C. Han, S. Sun, J. Li. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Res., 18 (2010), pp. 253-273
|
W. Xiao, M. Santosh. The western Central Asian Orogenic Belt: a window to accretionary orogenesis and continental growth. Gondwana Res., 25 (2014), pp. 1429-1444
|
Y.G. Xu, S.L. Chung, H. Shao, B. He. Silicic magmas from the Emeishan large igneous province, Southwest China: petrogenesis and their link with the end-Guadalupian biological crisis. Lithos, 119 (2010), pp. 47-60
|
Yarmolyuk, V.V., Kovalenko, V.I., Kovach, Rytsk, E.Yu., Kozakov, I.K., Kotov, A.B., Sal’nikova, E.B., 2006. Early stages of the Paleoasian Ocean formation: Results of geochronological, isotopic, and geochemical investigations of Late Riphean and Vendian-Cambrian complexes in the Central Asian Foldbelt. Dokl. Earth Sc. 411, 1184–1189 doi:
CrossRef
Google scholar
|
V.V. Yarmolyuk, M.I. Kuzmin, A.A. Vorontsov. West Pacific-type convergent boundaries and their role in the formation of the Central Asian Fold Belt. Russ. Geol. Geophys., 54 (12) (2013), pp. 1427-1441
|
Y.Y. Zhang, C. Yuan, X.P. Long, M. Sun, Z.Y. Huang, L. Du, X.Y. Wang. Carboniferous bimodal volcanic rocks in the Eastern Tianshan, NW China: evidence for arc rifting. Gondwana Res., 43 (2017), pp. 92-106
|
J. Zhao, M. Zhou. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): implications for subduction related metasomatism in the upper mantle. Prec. Res., 152 (2007), pp. 27-47
|
B. Zheng, B.F. Han, B. Liu, Z.Z. Wang. Ediacaran to Paleozoic magmatism in West Junggar Orogenic Belt, NW China, and implications for evolution of Central Asian Orogenic Belt. Lithos, 338–339 (2019), pp. 111-127
|
/
〈 |
|
〉 |