Enhancing landslide susceptibility mapping incorporating landslide typology via stacking ensemble machine learning in Three Gorges Reservoir, China

Lanbing Yu , Yang Wang , Biswajeet Pradhan

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (4) : 101802

PDF
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (4) : 101802 DOI: 10.1016/j.gsf.2024.101802

Enhancing landslide susceptibility mapping incorporating landslide typology via stacking ensemble machine learning in Three Gorges Reservoir, China

Author information +
History +
PDF

Abstract

Different types of landslides exhibit distinct relationships with environmental conditioning factors. Therefore, in regions where multiple types of landslides coexist, it is required to separate landslide types for landslide susceptibility mapping (LSM). In this paper, a landslide-prone area located in Chongqing Province within the middle and upper reaches of the Three Gorges Reservoir area (TGRA), China, was selected as the study area. 733 landslides were classified into three types: reservoir-affected landslides, non-reservoir-affected landslides, and rockfalls. Four landslide inventory datasets and 15 landslide conditional factors were trained by three Machine Learning models (logistic regression, random forest, support vector machine), and a Deep Learning (DL) model. After comparing the models using receiver operating characteristics (ROC), the landslide susceptibility indexes of three types landslides were acquired by the best performing model. These indexes were then used as input to generate the final map based on the Stacking method. The results revealed that DL model showed the best performance in LSM without considering landslide types, achieving an area under the curve (AUC) of 0.854 for testing and 0.922 for training. Moreover, when we separated the landslide types for LSM, the AUC improved by 0.026 for testing and 0.044 for training. Thus, this paper demonstrates that considering different landslide types in LSM can significantly improve the quality of landslide susceptibility maps. These maps in turn, can be valuable tools for evaluating and mitigating landslide hazards.

Keywords

Landslide susceptibility mapping / Deep learning model / Landslide types / Stacking method

Cite this article

Download citation ▾
Lanbing Yu, Yang Wang, Biswajeet Pradhan. Enhancing landslide susceptibility mapping incorporating landslide typology via stacking ensemble machine learning in Three Gorges Reservoir, China. Geoscience Frontiers, 2024, 15(4): 101802 DOI:10.1016/j.gsf.2024.101802

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Lanbing Yu: Conceptualization, Data curation, Methodology, Writing – original draft. Yang Wang: Supervision. Biswajeet Pradhan: Conceptualization, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Thanks for the help from Prof. Kunlong Yin in Faculty of Engineering, China University of Geosciences, Wuhan 430074, China, and Qingli Liu from the Geological Environment Monitoring Station of Wanzhou District, Chongqing, China for their assistance.

References

[1]

H.A.H. Al-Najjar, B. Pradhan. Spatial landslide susceptibility assessment using machine learning techniques assisted by additional data created with generative adversarial networks. Geosci. Front., 12 (2) (2021), pp. 625-637,

[2]

B. Aslam, A. Zafar, U. Khalil. Comparative analysis of multiple conventional neural networks for landslide susceptibility mapping. Nat. Hazards, 115 (1) (2023), pp. 673-707,

[3]

S. Bera, V.K. Upadhyay, B. Guru, T. Oommen. Landslide inventory and susceptibility models considering the landslide typology using deep learning: Himalayas, India. Nat. Hazards, 108 (1) (2021), pp. 1257-1289,

[4]

M.E.A. Budimir, P.M. Atkinson, H.G. Lewis. A systematic review of landslide probability mapping using logistic regression. Landslides, 12 (3) (2015), pp. 419-436,

[5]

Camera, C.A.S., Bajni, G., Corno, I., Raffa, M., Stevenazzi, S., Apuani, T., 2021. Introducing intense rainfall and snowmelt variables to implement a process-related non-stationary shallow landslide susceptibility analysis. Sci. Total Environ. 786, 147360-147360. doi:

[6]

J. Choi, H.-J. Oh, H.-J. Lee, C. Lee, S. Lee. Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Eng. Geol., 124 (2012), pp. 12-23,

[7]

F.C. Dai, C.F. Lee, Y.Y. Ngai. Landslide risk assessment and management: an overview. Eng. Geol., 64 (1) (2002), pp. 65-87,

[8]

J. Dou, A.P. Yunus, D. Tien Bui, A. Merghadi, M. Sahana, Z. Zhu, C.-W. Chen, K. Khosravi, Y. Yang, B.T. Pham. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci. Total Environ., 662 (2019), pp. 332-346,

[9]

J. Dou, A.P. Yunus, D.T. Bui, A. Merghadi, M. Sahana, Z. Zhu, C.-W. Chen, Z. Han, B.T. Pham. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides, 17 (3) (2020), pp. 641-658,

[10]

J. Du, T. Glade, T. Woldai, B. Chai, B. Zeng. Landslide susceptibility assessment based on an incomplete landslide inventory in the Jilong Valley, Tibet, Chinese Himalayas. Eng. Geol., 270 (2020), Article 105572,

[11]

B. Epifânio, J.L. Zêzere, M. Neves. Susceptibility assessment to different types of landslides in the coastal cliffs of Lourinhã (Central Portugal). J. Sea Res., 93 (2014), pp. 150-159,

[12]

A. Erener, A. Mutlu, H. Sebnem Düzgün. A comparative study for landslide susceptibility mapping using GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining (ARM). Eng. Geol., 203 (2016), pp. 45-55,

[13]

P.V. Gorsevski, M.K. Brown, K. Panter, C.M. Onasch, A. Simic, J. Snyder. Landslide detection and susceptibility mapping using LiDAR and an artificial neural network approach: a case study in the Cuyahoga Valley National Park, Ohio. Landslides, 13 (3) (2016), pp. 467-484,

[14]

Z. Guo, K. Yin, S. Fu, F. Huang, L. Gui, H. Xia. Evaluation of landslide susceptibility based on GIS and WOE-BP model. Earth Sci., 44 (12) (2019), pp. 4299-4312,

[15]

Guzzetti, F., Mihalić Arbanas, S., Reichenbach, P., Sassa, K., Bobrowsky, P.T., Takara, K., 2020. Understanding and Reducing Landslide Disaster Risk: Volume 2 from Mapping to Hazard and Risk Zonation. ICL Contribution to Landslide Disaster Risk Reduction. Springer International Publishing AG, Cham.

[16]

F. Guzzetti, P. Reichenbach, M. Cardinali, M. Galli, F. Ardizzone. Probabilistic landslide hazard assessment at the basin scale. Geomorphology, 72 (1) (2005), pp. 272-299,

[17]

F. Guzzetti, M. Galli, P. Reichenbach, F. Ardizzone, M. Cardinali. Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Nat. Hazards Earth Syst. Sci., 6 (1) (2006), pp. 115-131,

[18]

F. Guzzetti, A.C. Mondini, M. Cardinali, F. Fiorucci, M. Santangelo, K.-T. Chang. Landslide inventory maps: New tools for an old problem. Earth-Sci. Rev., 112 (1–2) (2012), pp. 42-66,

[19]

K. He, X. Zhang, S. Ren, J. Sun. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), pp. 770-778

[20]

H. Hong, H.R. Pourghasemi, Z.S. Pourtaghi. Landslide susceptibility assessment in Lianhua County (China): A comparison between a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology, 259 (2016), pp. 105-118,

[21]

Z. Hu, G. Zhu, G. Liu, B. Zhang. The folding time of the eastern Sichuan Jura-type Fold Belt: Evidence from unconformity. Geol. Rev., 55 (1) (2009), pp. 32-42,

[22]

F. Huang, J. Chen, W. Liu, J. Huang, H. Hong, W. Chen. Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold. Geomorphology, 408 (2022), Article 108236,

[23]

O. Hungr, S. Leroueil, L. Picarelli. The Varnes classification of landslide types, an update. Landslides, 11 (2) (2014), pp. 167-194,

[24]

S. Lee, K. Min. Statistical analysis of landslide susceptibility at Yongin, Korea. Environ. Geol., 40 (9) (2001), pp. 1095-1113,

[25]

M. Liao, H. Wen, L. Yang. Identifying the essential conditioning factors of landslide susceptibility models under different grid resolutions using hybrid machine learning: A case of Wushan and Wuxi counties, China. Catena, 217 (2022), Article 106428,

[26]

D. Lin, D.P. Foster, L.H. Ungar. VIF regression: A fast regression algorithm for large data. J. Am. Stat. Assoc., 106 (493) (2011), pp. 232-247,

[27]

T. Liu, T. Chen, R. Niu, A. Plaza. Landslide detection mapping employing CNN, ResNet, and DenseNet in the Three Gorges Reservoir, China. IEEE J-STARS, 14 (2021), pp. 11417-11428,

[28]

S. Liu, L. Wang, W. Zhang, Y. He, S. Pijush. A comprehensive review of machine learning-based methods in landslide susceptibility mapping. Geol. J., 58 (6) (2023), pp. 2283-2301,

[29]

M. Loche, M. Alvioli, I. Marchesini, H. Bakka, L. Lombardo. Landslide susceptibility maps of Italy: Lesson learnt from dealing with multiple landslide types and the uneven spatial distribution of the national inventory. Earth-Sci. Rev., 232 (2022), Article 104125,

[30]

L. Lombardo, M. Cama, C. Conoscenti, M. Märker, E. Rotigliano. Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messina (Sicily, southern Italy). Nat. Hazards, 79 (3) (2015), pp. 1621-1648,

[31]

I. Marchesini, F. Ardizzone, M. Alvioli, M. Rossi, F. Guzzetti. Non-susceptible landslide areas in Italy and in the Mediterranean region. Nat. Hazards Earth Syst. Sci., 14 (8) (2014), pp. 2215-2231,

[32]

M. Marjanović, M. Kovačević, B. Bajat, V. Voženílek. Landslide susceptibility assessment using SVM machine learning algorithm. Eng. Geol., 123 (3) (2011), pp. 225-234,

[33]

V. Medina, M. Hürlimann, Z. Guo, A. Lloret, J. Vaunat. Fast physically-based model for rainfall-induced landslide susceptibility assessment at regional scale. Catena, 201 (2021), Article 105213,

[34]

A. Merghadi, A.P. Yunus, J. Dou, J. Whiteley, B. ThaiPham, D.T. Bui, R. Avtar, B. Abderrahmane. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Sci. Rev., 207 (2020), Article 103225,

[35]

H.-J. Oh, B. Pradhan. Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Comput. Geosci., 37 (9) (2011), pp. 1264-1276,

[36]

P. Reichenbach, M. Rossi, B.D. Malamud, M. Mihir, F. Guzzetti. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev., 180 (2018), pp. 60-91,

[37]

J. Samia, A. Temme, A. Bregt, J. Wallinga, F. Guzzetti, F. Ardizzone, M. Rossi. Characterization and quantification of path dependency in landslide susceptibility. Geomorphology, 292 (2017), pp. 16-24,

[38]

S. Segoni, G. Pappafico, T. Luti, F. Catani. Landslide susceptibility assessment in complex geological settings: sensitivity to geological information and insights on its parameterization. Landslides, 17 (10) (2020), pp. 2443-2453,

[39]

L.P. Sharma, N. Patel, M.K. Ghose, P. Debnath. Development and application of Shannon’s entropy integrated information value model for landslide susceptibility assessment and zonation in Sikkim Himalayas in India. Nat. Hazards, 75 (2) (2015), pp. 1555-1576,

[40]

K.-J. Shou, J. Chen. On the rainfall induced deep-seated and shallow landslide hazard in Taiwan. Eng. Geol., 288 (2021), Article 106156,

[41]

H. Shu, Z. Guo, S. Qi, D. Song, H. Pourghasemi, J. Ma. Integrating landslide typology with weighted frequency ratio model for landslide susceptibility mapping: A case study from Lanzhou city of northwestern China. Remote Sens., 13 (18) (2021), p. 3623,

[42]

R. Silva, R. Marques, J. Gaspar. Implications of landslide typology and predisposing factor combinations for probabilistic landslide susceptibility models: A case study in Lajedo Parish (Flores Island, Azores—Portugal). Geosciences, 8 (5) (2018), p. 153,

[43]

P. Smyth, D. Wolpert. Linearly combining density estimators via stacking. Mach. Learn., 36 (1) (1999), pp. 59-83,

[44]

H. Tang, J. Wasowski, C.H. Juang. Geohazards in the three Gorges Reservoir Area, China – Lessons learned from decades of research. Eng. Geol., 261 (2019), Article 105267,

[45]

S. Tekin, T. Çan. Slide type landslide susceptibility assessment of the Büyük Menderes watershed using artificial neural network method. Environ. Sci. Pollut. Res., 29 (31) (2022), pp. 47174-47188,

[46]

A. Temme, F. Guzzetti, J. Samia, B.B. Mirus. The future of landslides’ past—a framework for assessing consecutive landsliding systems. Landslides, 17 (7) (2020), pp. 1519-1528,

[47]

Y. Thiery, J.P. Malet, S. Sterlacchini, A. Puissant, O. Maquaire. Landslide susceptibility assessment by bivariate methods at large scales: Application to a complex mountainous environment. Geomorphology, 92 (1) (2007), pp. 38-59,

[48]

D. Tien Bui, T.A. Tuan, H. Klempe, B. Pradhan, I. Revhaug. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 13 (2) (2016), pp. 361-378,

[49]

V. Tofani, G. Bicocchi, G. Rossi, S. Segoni, M. D’Ambrosio, N. Casagli, F. Catani. Soil characterization for shallow landslides modeling: a case study in the Northern Apennines (Central Italy). Landslides, 14 (2) (2017), pp. 755-770,

[50]

A.C. Valdés Carrera, M.E. Mendoza, T. Carlón Allende, J.L. Macías. Multitemporal landslide inventory analysis of an intertropical mountain in west-central Mexico — Basis for hazard management. J. MT Sci.-Engl., 19 (6) (2022), pp. 1650-1669,

[51]

B. van den Bout, C. Tang, C. van Westen, V.G. Jetten. Physically based modeling of co-seismic landslide, debris flow, and flood cascade. Nat. Hazards Earth Syst. Sci., 22 (10) (2022), pp. 3183-3209,

[52]

L. Wang, C. Wu, Z. Yang, L. Wang. Deep learning methods for time-dependent reliability analysis of reservoir slopes in spatially variable soils. Comput. Geotech., 159 (2023), Article 105413,

[53]

T. Xiao, K. Yin, T. Yao, S. Liu. Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning models in Wanzhou County, Three Gorges Reservoir, China. Acta Geochimica, 38 (5) (2019), pp. 654-669,

[54]

T. Xiao, S. Segoni, L. Chen, K. Yin, N. Casagli. A step beyond landslide susceptibility maps: a simple method to investigate and explain the different outcomes obtained by different approaches. Landslides, 17 (3) (2020), pp. 627-640,

[55]

H. Xu, Y.-Q. Liu, H.-W. Kuang, Y.-X. Liu, N. Peng. Jurassic-Cretaceous terrestrial transition red beds in northern North China and their implication on regional paleogeography, paleoecology, and tectonic evolution. Palaeoworld, 26 (2) (2017), pp. 403-422,

[56]

K. Yin. Statistical prediction models for slope instability of metamorphosed rocks. Int. J. Rock Mech. Min. Sin. Geomech. Abstr., 27 (1) (1990), p. 43,

[57]

A.M. Youssef, B. Pradhan, A. Dikshit, M.M. Al-Katheri, S.S. Matar, A.M. Mahdi. Landslide susceptibility mapping using CNN-1D and 2D deep learning algorithms: comparison of their performance at Asir Region, KSA. Bull. Eng. Geol. Environ., 81 (4) (2022),

[58]

L. Yu, C. Zhou, Y. Wang, Y. Cao, D.J. Peres. Coupling data- and knowledge-driven methods for landslide susceptibility mapping in human-modified environments: A case study from Wanzhou County, Three Gorges Reservoir Area, China. Remote Sens., 774 (2022),

[59]

R. Yuan, J. Chen. A hybrid deep learning method for landslide susceptibility analysis with the application of InSAR data. Nat. Hazards, 114 (2) (2022), pp. 1393-1426,

[60]

J.L. Zêzere. Landslide susceptibility assessment considering landslide typology. A case study in the area north of Lisbon (Portugal). Nat. Hazards Earth Syst. Sci., 2 (1/2) (2002), pp. 73-82,

[61]

J. Zhang, K. Yin, J. Wang, L. Liu, F. Huang. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 35 (2016), pp. 284-296, 10.13722/j.cnki.jrme.2015.0318

[62]

W. Zhang, C. Wu, L. Tang, X. Gu. Efficien Optimization of random forest through the use of MVO, GWO and MFO in evaluating the stability of underground entry-type excavations t time-variant reliability analysis of Bazimen landslide in the Three Gorges Reservoir Area using XGBoost and LightGBM algorithms. Gongwana Res., 123 (2023), pp. 41-53,

[63]

C. Zhou, K. Yin, Y. Cao, B. Ahmed, Y. Li, F. Catani, H.R. Pourghasemi. Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the Three Gorges Reservoir area, China. Comput. Geosci., 112 (2018), pp. 23-37,

[64]

X. Zhou, H. Wen, Y. Zhang, J. Xu, W. Zhang. Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization. Geosci. Front., 12 (5) (2021), Article 101211,

[65]

A.X. Zhu, R. Wang, J. Qiao, C.-Z. Qin, Y. Chen, J. Liu, F. Du, Y. Lin, T. Zhu. An expert knowledge-based approach to landslide susceptibility mapping using GIS and fuzzy logic. Geomorphology, 214 (2014), pp. 128-138,

[66]

Y. Zou, S. Qi, S. Guo, B. Zheng, Z. Zhan, N. He, X. Huang, X. Hou, H. Liu. Factors controlling the spatial distribution of coseismic landslides triggered by the Mw 6.1 Ludian earthquake in China. Eng. Geol., 296 (2022), Article 106477,

AI Summary AI Mindmap
PDF

386

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/