Application of geophysical well logs in solving geologic issues: Past, present and future prospect

Jin Lai, Yang Su, Lu Xiao, Fei Zhao, Tianyu Bai, Yuhang Li, Hongbin Li, Yuyue Huang, Guiwen Wang, Ziqiang Qin

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (3) : 101779.

Geoscience Frontiers All Journals
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (3) : 101779. DOI: 10.1016/j.gsf.2024.101779

Application of geophysical well logs in solving geologic issues: Past, present and future prospect

Author information +
History +

Abstract

Geophysical well logs are widely used in geological fields, however, there are considerable incompatibilities existing in solving geological issues using well log data. This review critically fills the gaps between geology and geophysical well logs, as assessed from peer reviewed papers and from the authors’ personal experiences, in the particular goal of solving geological issues using geophysical well logs. The origin and history of geophysical logging are summarized. Next follows a review of the state of knowledge for geophysical well logs in terms of type of specifications, vertical resolution, depth of investigations and demonstrated applications. Then the current status and advances in applications of geophysical well logs in fields of structural geology, sedimentary geology and petroleum geology are discussed. Well logs are used in structural and sedimentary geology in terms of structure detection, in situ stress evaluation, sedimentary characterization, sequence stratigraphy division and fracture prediction. Well logs can also be applied in petroleum geology fields of optimizing sweet spots for hydraulic fracturing in unconventional oil and gas resource. Geophysical well logs are extending their application in other fields of geosciences, and geological issues will be efficiently solved via well logs with the improvements of advanced well log suits. Further work is required in order to improve accuracy and diminish uncertainties by introducing artificial intelligence. This review provides a systematic and clear descriptions of the applications of geophysical well log data along with examples of how the data is displayed and processed for solving geologic problems.

Keywords

Geophysical well logs / Sequence stratigraphy / Source rock / Unconventional oil and gas resources / Artificial intelligence

Cite this article

Download citation ▾
Jin Lai, Yang Su, Lu Xiao, Fei Zhao, Tianyu Bai, Yuhang Li, Hongbin Li, Yuyue Huang, Guiwen Wang, Ziqiang Qin. Application of geophysical well logs in solving geologic issues: Past, present and future prospect. Geoscience Frontiers, 2024, 15(3): 101779 https://doi.org/10.1016/j.gsf.2024.101779

CRediT authorship contribution statement

Jin Lai: Conceptualization, Methodology, Software, Data curation, Writing – original draft, Visualization, Investigation, Writing – review & editing. Yang Su: Conceptualization, Methodology, Software, Data curation, Writing – original draft. Lu Xiao: Data curation, Writing – original draft. Fei Zhao: Data curation, Writing – original draft. Tianyu Bai: Data curation, Writing – original draft. Yuhang Li: Conceptualization, Methodology, Software. Hongbin Li: Visualization, Investigation. Yuyue Huang: Visualization, Investigation. Guiwen Wang: Conceptualization, Methodology, Software, Writing – review & editing. Ziqiang Qin: Visualization, Investigation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work is financially supported by National Natural Science Foundation of China (Grant No. 42002133), strategic cooperation project of PetroChina and CUPB (China University of Petroleum, Beijing) (ZLZX2020-01), and Science Foundation of China University of Petroleum, Beijing (No. 2462023QNXZ010). The authors would like to express their sincere thanks to the PetroChina Xinjiang, Tarim, Southwest and Changqing Oilfield Company for their assistance in providing data and for their technical input to this work.

References

[]
B.A. Abuamarah, B.S. Nabawy, A.M. Shehata, O.M.K. Kassem, H. Ghrefat. Integrated geological and petrophysical characterization of Oligocene deep marine unconventional poor to tight sandstone gas reservoir. Mar. Pet. Geol., 109 (2019), pp. 868-885
[]
A.R. Adebayo, H.Y. Al-Yousef, M.A. Mahmoud. An investigation of the effect of CO2 –brine–rock interaction on determination of Archie’s saturation exponent for carbon dioxide evaluation in carbonate reservoirs. J. Pet. Sci. Eng., 133 (335) (2015), pp. 665-676
[]
G. Aghli, B. Soleimani, R. Moussavi-Harami, R. Mohammadian. Fractured zones detection using conventional petrophysical logs by differentiation method and its correlation with image logs. J. Pet. Sci. Eng., 142 (2016), pp. 152-162
[]
H. Al Khalifah, P. Glover, P. Lorinczi. Permeability prediction and diagenesis in tight carbonates using machine learning techniques. Mar. Pet. Geol., 112 (2020), Article 104096
[]
A.F. Al-Anazi, I.D. Gates. Support-vector regression for permeability prediction in a heterogeneous reservoir: a comparative study. SPE Reserv. Eval. Eng., 13 (3) (2010), pp. 485-495
[]
L. Allaud, M. Martin. Schlumberger: The History of a Technique. Wiley, New York (1977)
[]
W.J. Al-Mudhafar. Integrating machine learning and data analytics for geostatistical characterization of clastic reservoirs. J. Pet. Sci. Eng., 195 (2020), Article 107837
[]
M.S. Ameen. Fracture modes in the Silurian Qusaiba shale play, northern Saudi Arabia and their geomechanical implications. Mar. Pet. Geol., 78 (2016), pp. 312-355
[]
M.S. Ameen, E.A. Hailwood. A new technology for the characterization of microfractured reservoirs (test case: Unayzah reservoir, Wudayhi field, Saudi Arabia). AAPG Bull., 92 (1) (2008), pp. 31-52
[]
M.S. Ameen, K. MacPherson, M.I. Al-Marhoon, Z. Rahim. Diverse fracture properties and their impact on performance in conventional and tight-gas reservoirs, Saudi Arabia: The Unay. AAPG Bull., 96 (3) (2012), pp. 459-492
[]
S. Amin, M. Wehner, Z. Heidari, M.M. Tice. Rock classification in the eagle ford formation through integration of petrophysical, geological, geochemical, and geomechanical characterization. AAPG Bull., 105 (7) (2021), pp. 1357-1381
[]
A. Amosu, M. Imsalem, Y. Sun. Effective machine learning identification of TOC-rich zones in the Eagle Ford Shale. J. Appl. Geophys., 188 (2021), Article 104311
[]
Y. Ao, H. Li, L. Zhu, S. Ali, Z. Yang. The linear random forest algorithm and its advantages in machine learning assisted logging regression modeling. J. Pet. Sci. Eng., 174 (2019), pp. 776-789
[]
G.E. Archie. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME, 146 (1942), pp. 54-62
[]
A. Avanzini, P. Balossino, M. Brignoli, E. Spelta, C. Tarchiani. Lithologic and geomechanical facies classification for sweet spot identification in gas shale reservoir. Interpretation, 4 (3) (2016), pp. SL21-SL31
[]
H.M. Ayyad, M. Fathy, A.G.A. Hewaidy, A. Abdallah. Sequence stratigraphy of the Burdigalian Rudeis Formation in Ras El-Ush oil field, Gulf of Suez: application of gamma-ray analysis and biostratigraphy. Mar. Pet. Geol., 122 (2020), Article 104694
[]
Z. Bai, M. Tan, G. Li, Y. Shi. Analysis of low-resistivity oil pay and fluid typing method of Chang 81 Member, Yanchang Formation in Huanxian area, Ordos Basin, China. J. Pet. Sci. Eng., 175 (2019), pp. 1099-1111
[]
C.A. Barton, M.D. Zoback. Discrimination of natural fractures from drilling-induced wellbore failures in wellbore image data-implications for reservoir permeability. SPE Reserv. Eval. Eng., 5 (2002), pp. 249-254
[]
R.M. Bateman. Formation Evaluation with Pre-Digital Well Logs. Elsevier, Amsterdam, Netherlands (2020)
[]
K. Bauer, J. Kulenkampff, J. Henninges, E. Spangenberg. Lithological control on gas hydrate saturation as revealed by signal classification of NMR logging data. J. Geophys. Res.: Solid Earth, 120 (2015), pp. 6001-6017
[]
J.S. Bell. Petro geoscience 2. In situ stresses in sedimentary rocks (part 2): applications of stress measurements. Geosci. Can., 23 (3) (1996), pp. 135-153
[]
S. Bhattacharya, T.R. Carr, M. Pal. Comparison of supervised and unsupervised approaches for mudstone lithofacies classification: case studies from the Bakken and Mahantango-Marcellus Shale, USA. J. Nat. Gas Sci. Eng., 33 (2016), pp. 1119-1133
[]
Bize, E., Karoon, A.T., Laronga, R., Bize-Forest, N., 2015. Virtual Core: State-of-the-Art Wireline Technologies to Provide a Viable Substitute for Whole Conventional Coring. Presentation at the Offshore Technology Conference Brazil. Rio de Janeiro, Brazil, 27–29 October 2015. OTC-26206-MS.
[]
H. Brekke, J.A. MacEachern, T. Roenitz, S.E. Dashtgard. The use of microresistivity image logs for facies interpretations: An example in point-bar deposits of the McMurray Formation, Alberta, Canada. AAPG Bull., 101 (5) (2017), pp. 655-682
[]
M. Brudy, M.D. Zoback. Drilling-induced tensile wall-fractures: implications for determination of in situ stress orientation and magnitude. Int. J. Rock Mech. Min. Sci., 36 (1999), pp. 191-215
[]
A. Carrasquilla, R. Lima. Basic and specialized geophysical well logs to characterize an offshore carbonate reservoir in the Campos Basin, southeast Brazil. J. S. Am. Earth. Sci., 98 (2020), Article 102436
[]
O. Catuneanu, V. Abreu, J.P. Bhattacharya, M.D. Blum, R.W. Dalrymple, P.G. Eriksson, C.R. Fielding, W.L. Fisher, W.E. Galloway, M.R. Gibling, K.A. Giles, J.M. Holbrook, R. Jordan, C.G. Kendall, C. St, B. Macurda, O.J. Martinsen, A.D. Miall, J.E. Neal, D. Nummedal, L. Pomar, H.W. Posamentier, B.R. Pratt, J.F. Sarg, K.W. Shanley, R.J. Steel, A. Strasser, M.E. Tucker, C. Winker. Towards the standardization of sequence stratigraphy. Earth-Sci. Rev., 92 (1–2) (2009), pp. 1-33
[]
R. Chatterjee, S.D. Gupta, M.Y. Farooqui. Application of nuclear magnetic resonance logs for evaluating low-resistivity reservoirs: a case study from the Cambay basin, India. J. Geophys. Eng., 9 (5) (2012), p. 595
[]
C. Clavier, G. Coates, J. Dumanoir. Theoretical and experimental bases for the dual-water model for interpretation of shaly sands. Soc. Pet. Eng. J., 24 (2) (1984), pp. 153-168
[]
Coates, G.R., Peveraro, R.C.A., Hardwick, A., Roberts, D., 1991. The magnetic resonance imaging log characterized by comparison with petrophysical properties and laboratory core data: Proceedings of the 66th Annual Technical Conference and Exhibition, Formation Evaluation and Reservoir Geology. SPE Reservoir Evaluation and Engineering, 22723, 627–635.
[]
G.R. Coates, L. Xiao, M.G. Prammer. NMR Logging. Principle and Applications, Halliburton, Houston, TX (1999)
[]
T.S. Collett, R.E. Lewis, W.J. Winters, M.W. Lee, K.K. Rose, R.M. Boswell. Downhole well log and core montages from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope. Mar. Pet. Geol., 28 (2011), pp. 561-577
[]
O.M. Dada, O.B. Awojoyogbe, A.C. Ukoha. A computational analysis for quantitative evaluation of petrol-physical properties of rock fluids based on Bloch NMR diffusion model for porous media. J. Pet. Sci. Eng., 127 (2015), pp. 137-147
[]
N.C. Dixit, C.L. Hanks, W.K. Wallace, M. Ahmadi, O. Awoleke. In situ stress variations associated with regional changes in tectonic setting, northeastern Brooks Range and eastern North Slope of Alaska. AAPG Bull., 101 (3) (2017), pp. 343-360
[]
T. Dong, N.B. Harris, L.J. Knapp, J.M. McMillan, D.L. Bish. The effect of thermal maturity on geomechanical properties in shale reservoirs: An example from the Upper Devonian Duvernay Formation, Western Canada Sedimentary Basin. Mar. Pet. Geol., 97 (2018), pp. 137-153
[]
A.D. Donovan. The Sequence Stratigraphy Family Tree: Understanding the Portfolio of Sequence Methodologies. K.T. Ratcliffe, B.A. Zaitlin (Eds.), Application of Modern Stratigraphic Techniques: Theory and Case Histories. SEPM Society for Sedimentary Geology, Volume 94, SEPM Special Publication. GeoScienceWorld, McLean, VA (2010)
[]
M.E. Donselaar, J.M. Schmidt. Integration of outcrop and borehole image logs for high-resolution facies interpretation: example from a fluvial fan in the Ebro Basin, Spain. Sedimentology, 52 (2005), pp. 1021-1042
[]
Y. Du, T. Fan, H.G. Machel, Z. Gao. Genesis of Upper Cambrian-Lower Ordovician dolomites in the Tahe oilfield, Tarim basin, NW China: several limitations from petrology, geochemistry, and fluid inclusions. Mar. Pet. Geol., 91 (2018), pp. 43-70
[]
Q. Du, L. Xiao, Y. Zhang, G. Liao, H. Liu, J. Guo. A novel two-dimensional NMR relaxometry pulse sequence for petrophysical characterization of shale at low field. J. Magn. Reson., 310 (2020), Article 106643
[]
M.W. Dunham, A. Malcolm, J.K. Welford. Improved well log classification using semisupervised Gaussian mixture models and a new hyper-parameter selection strategy. Comput. Geosci., 140 (2020), Article 104501
[]
B.A. Eaton. Fracture gradient prediction and its application in oilfield operations. J. Pet. Technol., 246 (1969), pp. 1353-1360
[]
O. Egbue, J. Kellogg, H. Aguirre, C. Torres. Evolution of the stress and strain fields in the Eastern Cordillera, Colombia. J. Struct. Geol., 58 (2014), pp. 8-21
[]
D.V. Ellis, J.M. Singer. Well Logging for Earth Scientists. (2nd Edition), Springer, Dordrecht, The Netherlands (2007)
[]
T. Engelder. Stress Regimes in the Lithosphere. Princeton University Press, New Jersey (1993)
[]
O. Falahatkhah, M. Kordi, V. Fatemi, H.H. Koochi. Recognition of Milankovitch cycles during the Oligocene-Early Miocene in the Zagros Basin, SW Iran: Implications for paleoclimate and sequence stratigraphy. Sediment. Geol., 421 (2021), Article 105957
[]
A.A. Farrag, M.O. Ebraheem, R. Sawires, H.A. Ibrahim, A.L. Khalil. Petrophysical and aquifer parameters estimation using geophysical well logging and hydrogeological data, Wadi El-Assiuoti, Eastern Desert, Egypt. J. Afr. Earth Sci., 149 (2019), pp. 42-54
[]
R. Feng. Lithofacies classification based on a hybrid system of artificial neural networks and hidden Markov models. J. Afr. Earth Sci., 221 (2020), pp. 1484-1498
[]
R. Feng. Improving uncertainty analysis in well log classification by machine learning with a scaling algorithm. J. Pet. Sci. Eng., 196 (2021), Article 107995
[]
A. Folkestad, Z. Veselovsky, P. Roberts. Utilising borehole image logs to interpret delta to estuarine system: A case study of the subsurface Lower Jurassic Cook Formation in the Norwegian northern North Sea. Mar. Pet. Geol., 29 (2012), pp. 255-275
[]
Z. Geng, Y. Wang. Physics-guided deep learning for predicting geological drilling risk of wellbore instability using seismic attributes data. Eng. Geol., 279 (2020), Article 105857
[]
P.W.J. Glover, I.I. Zadjali, K.A. Frew. Permeability prediction from MICP and NMR data using an electrokinetic approach. Geophysics, 71 (4) (2006), pp. F49-F60
[]
T.M. Goodall, N.K. Moller, T.M. Ronningsland. The integration of electrical image logs 237 with core data for improved sedimentological interpretation. Geol. Soc. London Spec. Pub., 136 (1998), pp. 237-248
[]
K.M. Gould, D.J.W. Piper, G. Pe-Piper, R.A. MacRae. Facies, provenance and paleoclimate interpretation using spectral gamma logs: Application to the Lower Cretaceous of the Scotian Basin. Mar. Pet. Geol., 57 (2014), pp. 445-454
[]
F. Gozalpour, A. Danesh, A.C. Todd, B. Tohidi. Application of tracers in oil-based mud for obtaining high-quality fluid composition in lean gas/condensate reservoirs. SPE Reserv. Eval. Eng., 10 (1) (2007), pp. 5-11
[]
B. Grollimund, M.D. Zoback, D.J. Wiprut, L. Arnesen. Stress orientation, pore pressure and least principal stress in the Norwegian sector of the North Sea. Pet. Geosci., 7 (2001), pp. 173-180
[]
Z. Guo, X. Li, C. Liu, X. Feng, Y. Shen. A shale rock physics model for analysis of brittleness index, mineralogy and porosity in the Barnett Shale. J. Geophys. Eng., 10 (2) (2013), pp. 1742-2132
[]
P. Guo, C. Liu, L. Wang, G. Zhang, X. Fu. Mineralogy and organic geochemistry of the terrestrial lacustrine pre-salt sediments in the Qaidam Basin: Implications for good source rock development. Mar. Pet. Geol., 107 (2019), pp. 149-162
[]
T. Guo, S. Zhang, H. Ge, X. Wang, X. Lei, B. Xiao. A new method for evaluation of fracture network formation capacity of rock. Fuel, 140 (2015), pp. 778-787
[]
A. Haagsma, M. Scharenberg, L. Keister, J. Schuetter, N. Gupta. Secondary porosity prediction in complex carbonate reefs using 3D CT scan image analysis and machine learning. J. Pet. Sci. Eng., 207 (2021), Article 109087
[]
G.M. Hamada, M.N.J. Al-Awad. Petrophysical evaluation of low resistivity sandstone reservoirs. J. Can. Pet. Tech., 39 (7) (2000), pp. 7-14
[]
N.M. Hamada, A.S. Al-Blehed, M.N. Al-Awad, M.A. Al-Saddique. Petrophysical evaluation of low-resistivity sandstone reservoir with nuclear magnetic resonance log. J. Pet. Sci. Eng., 39 (2) (2001), pp. 129-138
[]
A.M. Handhal, A.M. Al-Abadi, H.E. Chafeet, M.J. Ismail. Prediction of total organic carbon at Rumaila oil field, Southern Iraq using conventional well logs and machine learning algorithms. Mar. Pet. Geol., 116 (2020), Article 104347
[]
A.H. Hassani, M. Veyskarami, A.M. Al-Ajmi, M. Masihi. A modified method for predicting the stresses around producing boreholes in an isotropic in-situ stress field. Int. J. Rock Mech. Min. Sci., 96 (2017), pp. 85-93
[]
J. He, A.D.L. Croix, J. Wang, W. Ding, J.R. Underschultz. Using neural networks and the Markov Chain approach for facies analysis and prediction from well logs in the Precipice Sandstone and Evergreen Formation, Surat Basin, Australia. Mar. Pet. Geol., 101 (2019), pp. 410-427
[]
J.V. Herwanger, A.D. Bottrill, S.D. Mildren. Uses and abuses of the brittleness index with applications to hydraulic stimulation. Unconventional Resources Technology Conference, San Antonio, Texas. (2015), 10.15530/urtec-2015-2172545
[]
F.L. Hu, C.C. Zhou, C.L. Li, H.J. Xu, F.M. Zhou, Z.W. Si. Fluid identification method based on 2D diffusion-relaxation nuclear magnetic resonance (NMR). Pet. Explor. Dev., 39 (5) (2012), pp. 591-596
[]
G. Hui, S. Chen, Y. He, H. Wang, F. Gu. Machine learning-based production forecast for shale gas in unconventional reservoirs via integration of geological and operational factors. J. Nat. Gas Sci. Eng., 94 (2021), Article 104045
[]
O. Iqbal, M. Ahmad, A. Kadir. Effective evaluation of shale gas reservoirs by means of an integrated approach to petrophysics and geomechanics for the optimization of hydraulic fracturing: A case study of the Permian Roseneath and Murteree Shale Gas reservoirs, Cooper Basin, Australia. J. Nat. Gas Sci. Eng., 58 (2018), pp. 34-58
[]
M.A. Iqbal, A.M.A. Salim, H. Baioumy, G.R. Gaafar, A. Wahi. Identification and characterization of low resistivity low contrast zones in a clastic outcrop from Sarawak, Malaysia. J. Appl. Geophys., 160 (2019), pp. 207-217
[]
D.M. Jarvie, R.J. Hill, T.E. Ruble. Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull., 91 (2007), pp. 475-499
[]
X. Ji, H. Wang, Y. Ge, J. Liang, X. Xu. Empirical mode decomposition-refined composite multiscale dispersion entropy analysis and its application to geophysical well log data. J. Pet. Sci. Eng., 208 (2022), Article 109495
[]
M. Josh, L. Esteban, C. Delle Piane, J. Sarout, D.N. Dewhurst, M.B. Clennell. Laboratory characterisation of shale properties. J. Pet. Sci. Eng., 88–89 (2012), pp. 107-124
[]
W. Ju, K. Wang. A preliminary study of the present-day in-situ stress state in the Ahe tight gas reservoir, Dibei Gasfield, Kuqa Depression. Mar. Pet. Geol., 96 (2018), pp. 154-165
[]
W. Ju, J. Shen, Y. Qin, S. Meng, C. Wu, Y. Shen, Z. Yang, G. Li, C. Li. In-situ stress state in the Linxing region, eastern Ordos basin, China: implications for unconventional gas exploration and production. Mar. Pet. Geol., 86 (2017), pp. 66-78
[]
A. Kadkhodaie, R. Rezaee. Intelligent sequence stratigraphy through a wavelet-based decomposition of well log data. J. Nat. Gas Sci. Eng., 40 (2017), pp. 38-50
[]
J.D. Kana, N. Djongyang, D. Raïdandi, P.N. Nouck, A. Dadjé. A review of geophysical methods for geothermal exploration. Renew. Sustain. Energy Rev., 44 (2015), pp. 87-95
[]
D. Kang, J. Lu, Z. Zhang, J. Liang, Z. Kuang, C. Lu, B. Kou, Q. Lu, J. Wang. Fine-grained gas hydrate reservoir properties estimated from well logs and lab measurements at the Shenhu gas hydrate production test site, the northern slope of the South China sea. Mar. Pet. Geol., 122 (2020), Article 104676
[]
G. Karthikeyan, C. Jagadish, C. Rima. Impact of geomechanics in coal bed methane development and production, Barakar coals in central India. J. Pet. Sci. Eng., 194 (2020), Article 107515
[]
G. Keeton, M. Pranter, R.D. Cole, E.R. Gustason. Stratigraphic architecture of fluvial deposits from borehole images, spectral-gamma-ray response, and outcrop analogs, Piceance Basin, Colorado. AAPG Bull., 99 (10) (2015), pp. 1929-1956
[]
H.A. Khair, D. Cooke, M. Hand. Paleo stress contribution to fault and natural fracture distribution in the Cooper Basin. J. Struct. Geol., 79 (2015), pp. 31-41
[]
F. Khoshbakht, H. Memarian, M. Mohammadnia. Comparison of Asmari, Pabdeh and Gurpi formation’s fractures, derived from image log. J. Pet. Sci. Eng., 67 (2009), pp. 65-74
[]
F. Khoshbakht, M. Azizzadeh, H. Memarian, G.H. Nourozi, S.A. Moallemi. Comparison of electrical image log with core in a fractured carbonate reservoir. J. Pet. Sci. Eng., 86–87 (2012), pp. 289-296
[]
E. Kosari, S. Ghareh-Cheloo, A. Kadkhodaie-Ilkhchi, A. Bahroudi. Fracture characterization by fusion of geophysical and geomechanical data: a case study from the Asmari reservoir, the Central Zagros fold-thrust belt. J. Geophys. Eng., 12 (2015), pp. 130-143
[]
S. Kumar, S. Das, R. Bastia, K. Ojha. Mineralogical and morphological characterization of Older Cambay Shale from North Cambay Basin, India: Implication for shale oil/gas development. Mar. Pet. Geol., 97 (2018), pp. 339-354
[]
Kumar, A., Laronga, R., Kherroubi, J., Bringer, F., Kear, G., Herrera, J., 2014. Visualizing Borehole Images in a Slabbed-Core Format: EAGE Borehole Geology Workshop, Dubai, United Arab Emirates, 12-15 October 2014, Paper BG20.
[]
A. Kumar, H. Hassanzadeh. A qualitative study of the impact of random shale barriers on SAGD performance using data analytics and machine learning. J. Pet. Sci. Eng., 205 (2021), Article 108950
[]
M.T. LaGrange, K.O. Konhauser, O. Catuneanu, B.S. Harris, T.L. Playter, M.K. Gingras. Sequence stratigraphy in organic-rich marine mudstone successions using chemostratigraphic datasets. Earth-Sci. Rev., 203 (2020), Article 103137
[]
J. Lai, G. Wang, L. Huang, W. Li, Y. Ran, D. Wang, Z. Zhou, J. Chen. Brittleness index estimation in a tight shaly sandstone reservoir using well logs. J. Nat. Gas Sci. Eng., 27 (2015), pp. 1536-1545
[]
J. Lai, G. Wang, Y. Ran, Z. Zhou, Y. Cui. Impact of diagenesis on the petrophysical properties of tight oil reservoirs: The case of Upper Triassic Yanchang Formation Chang 7 oil layers in Ordos Basin, China. J. Pet. Sci. Eng., 145 (2016), pp. 54-65
[]
J. Lai, G. Wang, Z. Fan, Z. Wang, J. Chen, Z. Zhou, S. Wang, C. Xiao. Fracture detection in oil-based drilling mud using a combination of borehole image and sonic logs. Mar. Pet. Geol., 84 (2017), pp. 195-214
[]
J. Lai, G. Wang, S. Wang, J. Cao, M. Li, X. Pang, C. Han, X. Fan, L. Yang, Z. He, Z. Qin. A review on the applications of image logs in structural analysis and sedimentary characterization. Mar. Pet. Geol., 95 (2018), pp. 139-166
[]
J. Lai, S. Wang, C. Zhang, G. Wang, Q. Song, X. Chen, K. Yang, C. Yuan. Spectrum of pore types and networks in the deep Cambrian to Lower Ordovician dolostones in Tarim Basin, China. Mar. Pet. Geol., 112 (2020), Article 104081
[]
J. Lai, S. Liu, Y. Xin, S. Wang, C. Xiao, Q. Song, X. Chen, G. Wang, Z. Qin, X. Ding. Geological-petrophysical insights in the deep Cambrian dolostone reservoirs in Tarim Basin, China. AAPG Bull., 105 (11) (2021), pp. 2263-2296
[]
J. Lai, G. Wang, Q. Fan, X. Pang, H. Li, F. Zhao, Y. Li, X. Zhao, Y. Zhao, Y. Huang, M. Bao, Z. Qin, Q. Wang. Geophysical well log evaluation in the era of unconventional hydrocarbon resources: A review on current status and prospects. Surv. Geophys., 43 (2022), pp. 913-957
[]
X. Lan, C. Zou, Z. Kang, X. Wu. Log facies identification in carbonate reservoirs using multiclass semi-supervised learning strategy. Fuel, 302 (2021), Article 121145
[]
S.E. Laubach. Practical approaches to identifying sealed and open fractures. AAPG Bull., 87 (4) (2003), pp. 561-579
[]
S.E. Laubach, J.E. Olson, J.F.W. Gale. Are open fractures necessarily aligned with maximum horizontal stress?. Earth Planet. Sci. Lett., 222 (1) (2004), pp. 191-195
[]
S.E. Laubach, R.H. Lander, L.J. Criscenti, L.M. Anovitz, J.L. Urai, R.M. Pollyea, J.N. Hooker, W. Narr, M.A. Evans, S.N. Kerisit, J.E. Olson, T. Dewers, D. Fisher, R. Bodnar, B. Evans, P. Dove, L.M. Bonnell, M.P. Marder, L. Pyrak-Nolte. The role of chemistry in fracture pattern development and opportunities to advance interpretations of geological materials. Rev. Geophys., 57 (3) (2019), pp. 1065-1111
[]
M.W. Lee, W.F. Waite. Estimating pore-space gas hydrate saturations from well log acoustic data. Geochem. Geophys. Geosyst., 9 (2008), Article Q07008
[]
X. Li, Q. Chen, H. Liu, Y. Wan, L. Wei, J. Liao, L. Long. Features of sandy debris flows of the Yanchang Formation in the Ordos Basin and its oil and gas exploration significance. Acta Geol. Sin.-English Edition, 85 (5) (2011), pp. 187-1202
[]
Y. Li, Z. Hu, C. Cai, X. Liu, X. Duan, J. Chang, Y. Li, Y. Mu, Q. Zhang, S. Zeng, J. Guo. Evaluation method of water saturation in shale: a comprehensive review. Mar. Pet. Geol., 128 (2021), Article 105017
[]
G. Li, G. Li, Y. Wang, S. Qi, J. Yang. A rock physics model for estimating elastic properties of upper Ordovician-lower Silurian mudrocks in the Sichuan Basin, China. Eng. Geol., 266 (2020), Article 105460
[]
M. Liang, S. Peng, W. Du, Y. Lu. Tectonic stress estimation from ultrasonic borehole image logs in a coal bed methane well, northeastern Qinshui Basin, China. J. Nat. Gas Sci. Eng., 52 (2018), pp. 44-58
[]
C.R. Liu. Theory of Electromagnetic Well Logging. Elsevier (2017)
[]
J. Liu, S. Dong, L. Zhang, Q. Ma, C. Wu. Estimation of archie parameters by a novel hybrid optimization algorithm. J. Pet. Sci. Eng., 135 (2015), pp. 232-239
[]
J. Liu, W. Ding, R. Wang, H. Yang, X. Wang, A. Li. Correlation analysis of element contents and mechanical characteristics of shale reservoirs: A case study in the Cen’gong block, South China. Mar. Pet. Geol., 91 (2018), pp. 19-28
[]
T. Liu, Z. Ma, J. Wang, H. Lv. Integrating MDT, NMR log and conventional logs for one-well evaluation. J. Pet. Sci. Eng., 46 (2005), pp. 73-80
[]
S. Luthi. Geological Well Logs: Their Use in Reservoir Modeling. Springer-Verlag, Berlin Heidelberg New York (2001)
[]
A. Lv, L. Cheng, M.A. Aghighi, H. Masoumi, H. Roshan. A novel workflow based on physics-informed machine learning to determine the permeability profile of fractured coal seams using downhole geophysical logs. Mar. Pet. Geol., 131 (2021), Article 105171
[]
A.J.C. Magalhães, G.P. Raja Gabaglia, D.G.C. Fragoso, E. Bento Freire, R. Lykawka, C.D. Arregui, M.M.L. Silveira, K.M.T. Carpio, A.D. Gasperi, S. Pedrinha, V.M. Artagão, G.J.S. Terra, R.B. Bunevich, E. Roemers-Oliveira, J.P. Gomes, J.I. Hernández, R.M. Hernández, C.H.L. Bruhn. High-resolution sequence stratigraphy applied to reservoir zonation and characterisation, and its impact on production performance-shallow marine, fluvial downstream, and lacustrine carbonate settings. Earth-Sci. Rev., 210 (2020), Article 103325
[]
A.A. Mahmoud, S. Elkatatny, A. Al-AbdulJabbar. Application of machine learning models for real-time prediction of the formation lithology and tops from the drilling parameters. J. Pet. Sci. Eng., 203 (2021), Article 108574
[]
S. Maleki, A. Moradzadeh, R.G. Riabi, F. Sadaghzadeh. Comparison of several different methods of in situ stress determination. Int. J. Rock Mech. Min. Sci., 71 (71) (2014), pp. 395-404
[]
R.G. Maliva, E.A. Clayton, T.M. Missimer. Application of advanced borehole geophysical logging to managed aquifer recharge investigations. Hydrogeol. J., 17 (6) (2009), pp. 1547-1556
[]
A. Mansour, O. Mohamed, S.S. Tahoun, A.M.T. Elewa. Sequence stratigraphy of the Raha Formation, Bakr Oil Field, Gulf of Suez, Egypt: Insights from electrical well log and palynological data. J. Afr. Earth Sci., 139 (2018), pp. 205-221
[]
I. Marzan, D. Martí, A. Lobo, J. Alcalde, M. Ruiz, J. Alvarez-Marron, R. Carbonell. Joint interpretation of geophysical data: Applying machine learning to the modeling of an evaporitic sequence in Villar de Canas (Spain). Eng. Geol., 288 (2021), Article 106126
[]
C. Massiot, D.D. Mcnamara, B. Lewis. Processing and analysis of high temperature geothermal acoustic borehole image logs in the Taupo volcanic zone, New Zealand. Geothermics, 53 (2015), pp. 190-201
[]
A.H. Melo, A.J.C. Magalhães, M.C. Menegazzo, D.G.C. Fragoso, C.P. Florencio, F.P. Lima-Filho. High-resolution sequence stratigraphy applied for the improvement of hydrocarbon production and reserves: A case study in Cretaceous fluvial deposits of the Potiguar basin, northeast Brazil. Mar. Pet. Geol., 130 (2021), Article 105124
[]
J. Moreau, J.B. Joubert. Glacial sedimentology interpretation from borehole image log: Example from the Late Ordovician deposits, Murzuq Basin (Libya). Interpretation, 4 (2) (2016), pp. B1-B16
[]
C. Morelli, C. Kodaira, S. Irie. Maximize the value of image log data and core samples: how to utilize geological data. The 22Nd Formation Evaluation Symposium of Japan (2016)
[]
Z. Movahed, R. Junin, Z. Safarkhanlou, M. Akbar. Formation evaluation in Dezful embayment of Iran using oil-based-mud imaging techniques. J. Pet. Sci. Eng., 121 (2014), pp. 23-37
[]
M.C. Muniz, D.W.J. Bosence. Pre-salt microbialites from the campos basin (offshore Brazil): image log facies, facies model and cyclicity in lacustrine carbonates. Geol. Soc. London Spec. Pub., 418 (2015), pp. 221-242
[]
B.S. Nabawy. Impacts of the pore- and petro-fabrics on porosity exponent and lithology factor of Archie’s equation for carbonate rocks. J. Afr. Earth Sci., 108 (2015), pp. 101-114
[]
B.S. Nabawy, M.S. El Sharawy. Reservoir assessment and quality discrimination of Kareem Formation using integrated petrophysical data, Southern Gulf of Suez, Egypt. Mar. Pet. Geol., 93 (2018), pp. 230-246
[]
B.S. Nabawy, Y. Géraud. Impacts of pore- and petro-fabrics, mineral composition and diagenetic history on the bulk thermal conductivity of sandstones. J. Afr. Earth Sci., 115 (2016), pp. 48-62
[]
B.S. Nabawy, P. Rochette, Y. Géraud. Electric pore fabric of the Nubia sandstones in south Egypt: Characterization and modelling. J. Afr. Earth Sci., 183 (2) (2010), pp. 681-694
[]
A.R. Najibi, M. Ghafoori, G.R. Lashkaripour, M.R. Asef. Reservoir geomechanical modeling: In-situ stress, pore pressure, and mud design. J. Pet. Sci. Eng., 151 (2017), pp. 31-39
[]
M. Nasr, J. Raymond, M. Malo, E. Gloaguen. Geothermal potential of the St. Lawrence Lowlands sedimentary basin from well log analysis. Geothermics, 75 (2018), pp. 68-80
[]
X. Nie, C. Zou, L. Pan, Z. Huang, D. Liu. Fracture analysis and determination of in-situ stress direction from resistivity and acoustic image logs and core data in the Wenchuan Earthquake Fault Scientific Drilling Borehole-2 (50–1370 m). Tectonophysics, 593 (2013), pp. 161-171
[]
O.B. Olatinsu, D.O. Olorode, B. Clennell, L. Esteban, M. Josh. Lithotype characterizations by nuclear magnetic resonance (NMR): A case study on limestone and associated rocks from the Eastern Dahomey basin, Nigeria. J. Afr. Earth Sci., 129 (2017), pp. 701-712
[]
A.U. Osarogiagbon, O. Oloruntobi, F. Khan, R. Venkatesan, S. Butt. Gamma ray log generation from drilling parameters using deep learning. J. Pet. Sci. Eng., 195 (2020), Article 107906
[]
O. Osogba, S. Misra, C. Xu. Machine learning workflow to predict multi-target subsurface signals for the exploration of hydrocarbon and water. Fuel, 278 (2020), Article 118357
[]
A. Ozkan, S.P. Cumella, K.L. Milliken, S.E. Laubach. Prediction of lithofacies and reservoir quality using well logs, Late Cretaceous Williams Fork Formation, Mamm Creek field, Piceance Basin, Colorado. AAPG Bull., 95 (10) (2011), pp. 1699-1723
[]
B. Pan, X. Wang, Y. Guo, L. Zhang, A. Ruhan, N. Zhang, P. Zhang, Y. Li. Study on reservoir characteristics and evaluation methods of altered igneous reservoirs in Songliao Basin, China. J. Pet. Sci. Eng., 212 (2022), Article 110266
[]
X. Pang, G. Wang, L. Kuang, H. Li, Y. Zhao, D. Li, X. Zhao, S. Wu, Z. Feng, J. Lai. Insights into the pore structure and oil mobility in fine-grained sedimentary rocks: The Lucaogou Formation in Jimusar Sag, Junggar Basin, China. Mar. Pet. Geol., 137 (2022), Article 105492
[]
Q. Passey, S. Creaney, J. Kulla, F. Moretti, J. Stroud. A practical model for organic richness from porosity and resistivity logs. AAPG Bull., 74 (1990), pp. 1777-1794
[]
N. Podugu, D. Goswami, V.V. Akkiraju, S. Roy. In-situ physical and elastic properties of Archaean basement granitoids in the Koyna seismogenic zone, western India from 3 km downhole geophysical well logs: Implications for water percolation at depth. Tectonophysics, 848 (2023), Article 229725
[]
A. Poupon, J. Leveaux. Evaluation of water saturation in shaly formations. SPWLA 12 Annual Logging Symposium (1971)
[]
A. Poupon, M.A. Loy, M.P. Tixier. A ccontribution to electrical log interpretation in shaly sands. J. Pet. Technol., 6 (6) (1954), pp. 27-34
[]
R. Prioul, A. Donald, R. Koepsell, Z.E. Marzouki, T. Bratton. Forward modeling of fracture-induced sonic anisotropy using a combination of borehole image and sonic logs. Geophysics, 72 (4) (2007), pp. 135-147
[]
Z. Qin, H. Pan, H. Ma, A.A. Konaté, M. Hou, S. Luo. Fast prediction method of Archie’s cementation exponent. J. Nat. Gas Sci. Eng., 34 (2016), pp. 291-297
[]
X. Qiu, C. Liu, G. Mao, Y. Deng, F. Wang, J. Wang. Late Triassic tuff intervals in the Ordos basin, Central China: Their depositional, petrographic, geochemical characteristics and regional implications. J. Asian Earth Sci., 80 (2014), pp. 48-160
[]
A.A. Radwan, B.S. Nabawy, A. Abdelmaksoud, A. Lashin. Integrated sedimentological and petrophysical characterization for clastic reservoirs: A case study from New Zealand. J. Nat. Gas Sci. Eng., 88 (2021), Article 103797
[]
M. Raeesi, A. Moradzadeh, F.D. Ardejani, M. Rahimi. Classification and identification of hydrocarbon reservoir lithofacies and their heterogeneity using seismic attributes, logs data and artificial neural networks. J. Pet. Sci. Eng., 82–83 (2012), pp. 151-165
[]
M. Rajabi, S. Sherkati, B. Bohloli, M. Tingay. Subsurface fracture analysis and determination of in-situ stress direction using FMI logs: An example from the Santonian carbonates (Ilam Formation) in the Abadan Plain, Iran. Tectonophysics, 492 (2010), pp. 192-200
[]
M. Rajabi, M. Tingay, O. Heidbach. The present-day state of tectonic stress in the darling basin, Australia: implications for exploration and production. Mar. Pet. Geol., 77 (2016), pp. 776-790
[]
Y. Ran, G.W. Wang, Z.L. Zhou, J. Lai, Q.Q. Dai, J. Chen, X.Q. Fan, S.C. Wang. Identification of lithology and lithofacies type and its application to Chang 7 tight oil in Heshui area, Ordos Basin. Geol. China, 43 (4) (2016), pp. 1331-1340
[]
R. Rezaee, A. Saeedi, B. Clennell. Tight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data. J. Pet. Sci. Eng., 88–89 (2012), pp. 92-99
[]
Rickman, R., Mullen, M.J., Petre, J.E., Grieser, B., Kundert, D., 2008. A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett Shale. SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
[]
M.H. Rider. The Geological Interpretation of Well Logs. (second edition), Sutherland, Scotland (2002), p. 280
[]
E. Rybacki, T. Meier, G. Dresen. What controls the mechanical properties of shale rocks? Part II: Brittleness. J. Pet. Sci. Eng., 144 (2016), pp. 39-58
[]
M.A. Sarhan. Seismic delineation and well logging evaluation for Albian Kharita Formation, South West Qarun (SWQ) field, Gindi Basin, Egypt. J. Afr. Earth Sci., 158 (2019), Article 103544
[]
Schlumberger, 1981. Dipmeter interpretation. Volume 1- Fundamentals. Schlumberger, New York.
[]
Schlumberger, 1989. Log Interpretation Principles and Applications, Schlumberger Educational Services.
[]
Schlumberger, 2004. Schlumberger WTA Marketing Service: FMI Fullbore Formation MicroImager. Schlumberger Educational Services, Houston, Texas, 2 pp.
[]
Schlumberger, 2006. ECS Elemental Capture Spectroscopy Sonde. Schlumberger, Houston, TX.
[]
Schlumberger, 2013. Log Interpretation Charts. Schlumberger Publication.
[]
R. Schultz, R.J. Skoumal, M.R. Brudzinski, D. Eaton, B. Baptie, W. Ellsworth. Hydraulic fracturing-induced seismicity. Rev. Geophys., 58 (2020), Article e2019RG000695
[]
O. Serra. Fundamentals of Well-log Interpretation. Elsevier, Amsterdam, The Netherlands (1984)
[]
O. Serra. Formation Microscanner Image Interpretation. Schlumberger Educational Services, Houston Texas (1989), p. 117
[]
E. Sfidari, M. Sharifi, A. Amini, S.M. Zamanzadeh, A. Kadkhodaie. Reservoir quality of the Surmeh (Arab-D) reservoir in the context of sequence stratigraphy in Salman Field. Persian Gulf. J. Pet. Sci. Eng., 198 (2021), Article 108180
[]
A. Shakirov, E. Chekhonin, Y. Popov, E. Popov, M. Spasennykh, D. Zagranovskaya, M. Serkin. Rock thermal properties from well-logging data accounting for thermal anisotropy. Geothermics, 92 (2021), Article 102059
[]
M.R. Shalaby, N. Jumat, D. Lai, O. Malik. Integrated TOC prediction and source rock characterization using machine learning, well logs and geochemical analysis: Case study from the Jurassic source rocks in Shams Field, NW Desert, Egypt. J. Pet. Sci. Eng., 176 (2019), pp. 369-380
[]
L. Shan, Y. Liu, M. Tang, M. Yang, X. Bai. CNN-BiLSTM hybrid neural networks with attention mechanism for well log prediction. J. Pet. Sci. Eng., 205 (2021), Article 108838
[]
T.F. Shazly, E. Tarabees. Using of dual laterolog to detect fracture parameters for Nubia Sandstone Formation in Rudeis-Sidri area, Gulf of Suez, Egypt. Egypt. J. Petrol., 22 (2013), pp. 313-319
[]
P. Simandoux. . Dielectric Measurements on Porous Media Application to the Measurement of Water Saturations: Study of the Behaviour of Argillaceous Formations, vol. 18 (1963), pp. 193-215
[]
Sondergeld, C.H., Newsham, K.E., Comisky, J.T., 2010. Petrophysical considerations in evaluating and producing shale gas resources. SPE Unconventional Gas Conference. Society of Petroleum Engineers.
[]
Souza, A.C.B., Nascimento, Jr. D.R., Filho, F.N., Batezelli, A., Santos, F.H., Oliveira, K.M. L., Almeida, N.M., 2021. Sequence stratigraphy and organic geochemistry: An integrated approach to understand the anoxic events and paleoenvironmental evolution of the Ceara basin, Brazilian Equatorial margin. Mar. Pet. Geol. 129, 105074.
[]
M. Stadtmuller, A. Lis-Sledziona, M. Słota-Valim. Petrophysical and geomechanical analysis of the Lower Paleozoic shale formation, North Poland. Interpretation, 6 (3) (2018), pp. SH91-SH106
[]
M. Tan, P. Wang, K. Mao. Comparative study of inversion methods of three-dimensional NMR and sensitivity to fluids. J. Appl. Geophys., 103 (4) (2014), pp. 12-30
[]
N.R.K. Tatsipie, J.J. Sheng. Generating pseudo well logs for a part of the upper Bakken using recurrent neural networks. J. Pet. Sci. Eng., 200 (2021), Article 108253
[]
Tiab, D., Donaldson, E.C., 2004. Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties. Second Edition. Elsevier. https://doi.org/10.1016/B978-0-7506-7711-0.X5000-2.
[]
M.R.P. Tingay, R.R. Hillis, C.K. Morley, R.C. King, R.E. Swarbrick, A.R. Damit. Present-day stress and neotectonics of Brunei: implications for petroleum exploration and production. AAPG Bull., 93 (2009), pp. 75-100
[]
B. Tokhmchi, H. Memarian, M.R. Rezaee. Estimation of the fracture density in fractured zones using petrophysical logs. J. Pet. Sci. Eng., 72 (2010), pp. 206-213
[]
J.M. Verweij, T.A.P. Boxem, S. Nelskamp. 3D spatial variation in vertical stress in on- and offshore Netherlands; integration of density log measurements and basin modeling results. Mar. Pet. Geol., 78 (2016), pp. 870-882
[]
C. Wang, R.M. Hazen, Q. Cheng, M.H. Stephenson, C. Zhou, P. Fox, S. Shen, R. Oberhansli, Z. Hou, X. Ma, Z. Feng, J. Fan, C. Ma, X. Hu, B. Luo, J. Wang, C.M. Schiffries. The Deep-Time Digital Earth program: data-driven discovery in geosciences. Natl. Sci. Rev., 8 (2021), p. nwab027
[]
G.W. Wang, J. Lai, B.C. Liu, Z.Y. Fan, S.C. Liu, Y.J. Shi, H.T. Zhang, J. Chen. Fluid property discrimination in dolostone reservoirs using well logs. Acta Geol. Sin.-Engl. Edit., 94 (3) (2020), pp. 831-846
[]
H. Wang, W. Wu, T. Chen, X. Dong, G. Wang. An improved neural network for TOC, S1 and S2 estimation based on conventional well logs. J. Pet. Sci. Eng., 176 (2019), pp. 664-678
[]
O.P. Wennberg, G. Casini, S. Jonoud, D.C.P. Peacock. The characteristics of open fractures in carbonate reservoirs and their impact on fluid flow: a discussion. Pet. Geosci., 22 (2016), pp. 91-104
[]
M.E.J. Wilson, D. Lewis, O. Yogi, D. Holland, L. Hombo, A. Goldberg. Development of a Papua New Guinean onshore carbonate reservoir: a comparative borehole image (BHI) and petrographic evaluation. Mar. Pet. Geol., 44 (2013), pp. 164-195
[]
T.H. Wilson, V. Smith, A. Brown. Developing a model discrete fracture network, drilling, and enhanced oil recovery strategy in an unconventional naturally fractured reservoir using integrated field, image log, and three-dimensional seismic data. AAPG Bull., 99 (4) (2015), pp. 735-762
[]
D. Wood. Predicting porosity, permeability and water saturation applying an optimized nearest-neighbour, machine-learning and data-mining network of well-log data. J. Pet. Sci. Eng., 184 (2020), Article 106587
[]
P.F. Worthington. Recognition and evaluation of low-resistivity pay. Pet. Geosci., 6 (1) (2000), pp. 77-92
[]
M. Xiang, Z. Wang, J. Liu. Extracting array acoustic logging signal information by combining fractional Fourier transform and Choi-Williams distribution. Appl. Acoust., 90 (2015), pp. 111-115
[]
C. Xu. Interpreting shoreline sands using borehole images—A case study of the Cretaceous Ferron sands in Utah. AAPG Bull., 91 (2007), pp. 1319-1338
[]
C. Xu, T.P. Cronin, T.E. McGinness, B. Steer. Middle Atokan sediment gravity flows in the Red Oak field, Arkoma Basin, Oklahoma: A sedimentary analysis using electrical borehole images and wireline logs. AAPG Bull., 93 (1) (2009), pp. 1-29
[]
C. Xu, J.M. Gehenn, D. Zhao, G. Xie, M.K. Teng. The fluvial and lacustrine sedimentary systems and stratigraphic correlation in the Upper Triassic Xujiahe Formation in Sichuan Basin, China. AAPG Bull., 99 (11) (2015), pp. 2023-2041
[]
J. Xu, B. Zhang, Y. Qin, G. Cao, H. Zhang. Method for calculating the fracture porosity of tight-fracture reservoirs. Geophysics, 81 (4) (2016), p. IM57-IM70
[]
Z. Yang, C. Zou, L. Hou, S. Wu, S. Lin, X. Luo, L. Zhang, Z. Zhao, J. Cui, S. Pan. Division of fine-grained rocks and selection of “sweet sections” in the oldest continental shale in China: Taking the coexisting combination of tight and shale oil in the Permian Junggar Basin. Mar. Pet. Geol., 109 (2019), pp. 339-348
[]
Y. Yao, D. Liu, Y. Che, D. Tang, S. Tang, W. Huang. Non-destructive characterization of coal samples from China using microfocus X-ray computed tomography. Int. J. Coal Geol., 80 (2) (2009), pp. 113-123
[]
S. Yarmohammadi, A. Kadkhodaie, S. Hosseinzadeh. An integrated approach for heterogeneity analysis of carbonate reservoirs by using image log based porosity distributions, NMR T2 curves, velocity deviation log and petrographic studies: A case study from the South Pars gas field, Persian Gulf Basin. J. Pet. Sci. Eng., 192 (2020), Article 107283
[]
S. Yu, J. Ma. Deep learning for geophysics: current and future trends. Rev. Geophys., 59 (2021), Article e2021RG000742
[]
V. Zaree, M.A. Riahi, F. Khoshbakht, H.R. Hemmati. Estimating fracture intensity in hydrocarbon reservoir: an approach using DSI data analysis. Carbonates Evaporites, 31 (2016), pp. 101-107
[]
R.S. Zazoun. Fracture density estimation from core and conventional well logs data using artificial neural networks: The Cambro-Ordovician reservoir of Mesdar oil field, Algeria. J. Afr. Earth Sci., 83 (2013), pp. 55-73
[]
L. Zeng, H. Liu. Influence of fractures on the development of low-permeability sandstone reservoirs: A case study from the Taizhao district, Daqing Oilfield, China. J. Pet. Sci. Eng., 72 (2010), pp. 120-127
[]
J. Zhang. Pore pressure prediction from well logs: Methods, modifications, and new approaches. Earth-Sci. Rev., 108 (1–2) (2011), pp. 50-63
[]
D.X. Zhang, Y.T. Chen, J. Meng. Synthetic well logs generation via recurrent neural networks. Pet. Explor. Dev., 45 (4) (2018), pp. 598-607
[]
H. Zhang, W. Wu, H. Wu. TOC prediction using a gradient boosting decision tree method: A case study of shale reservoirs in Qinshui Basin. J. Pet. Sci. Eng., 221 (2023), Article 111271
[]
J. Zhao, D. Tang, Y. Qin, H. Xu. Experimental study on structural models of coal macrolithotypes and its well logging responses in the Hancheng area, Ordos Basin, China. J. Pet. Sci. Eng., 166 (2018), pp. 658-672
[]
D. Zheng, S. Wu, M. Hou. Fully connected deep network: An improved method to predict TOC of shale reservoirs from well logs. Mar. Pet. Geol., 132 (2021), Article 105205
[]
L. Zhu, Y. Ma, J. Cai, C. Zhang, S. Wu, X. Zhou. Key factors of marine shale conductivity in southern China—Part II: The influence of pore system and the development direction of shale gas saturation models. J. Pet. Sci. Eng., 209 (2022), Article 109516
[]
M. Zoback, C. Barton, M. Brudy, D. Castillo, T. Finkbeiner, B. Grollimund, D. Moos, P. Peska, C. Ward, D. Wiprut. Determination of stress orientation and magnitude in deep wells. Int. J. Rock Mech. Min. Sci., 40 (2003), pp. 1049-1076
[]
M.D. Zoback, D. Moose, L. Mastin, R.N. Anderson. Well-bore breakouts and in situ stress. J. Geophys. Res., 90 (1985), pp. 5523-5538
[]
M. Zoback, J. Townend. Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere. Tectonophysics, 336 (1–4) (2001), pp. 19-30
[]
C.N. Zou, L. Wang, Y. Li, S. Tao, L.H. Hou. Deep-lacustrine transformation of sandy debrites into turbidites, Upper Triassic, Central China. Sediment. Geol., 265–266 (2012), pp. 143-155
[]
C.N. Zou, R. Zhu, Z. Chen, J.G. Ogg, S. Wu, D. Dong, Z. Qiu, Y. Wang, L. Wang, S. Lin, J. Cui, L. Su, Z. Yang. Organic-matter-rich shales of China. Earth-Sci. Rev., 189 (2019), pp. 51-78

17

Accesses

0

Citations

Detail

Sections
Recommended

/