Probing multi-physical process and deformation mechanism of a large-scale landslide using integrated dual-source monitoring
Hong-Hu Zhu , Xiao Ye , Hua-Fu Pei , Wei Zhang , Gang Cheng , Zi-Li Li
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (2) : 101773
Probing multi-physical process and deformation mechanism of a large-scale landslide using integrated dual-source monitoring
The implementation of isolated heterologous monitoring systems for spatially distant borehole deployments often comes with substantial equipment costs, which can limit the effectiveness of geohazard mitigation and georisk management efforts. To address this, we have developed a novel monitoring system that integrates fiber Bragg grating (FBG) and microelectromechanical system (MEMS) techniques to capture soil moisture, temperature, sliding resistance, strain, surface tilt, and deep-seated inclination. This system enables real-time, simultaneous data acquisition and cross-validation analyses, offering a cost-effective solution for monitoring critical parameters in geohazard-prone areas. We successfully applied this integrated monitoring system to the Xinpu landslide, an active super-large landslide located in the Three Gorges Reservoir Area (TGRA) of China. The resulting strain profile confirmed the presence of two shallow secondary sliding surfaces at depths of approximately 7 m and 12 m, respectively, in addition to the deep-seated sliding surface at a depth of ∼28 m. The lower secondary sliding surface was activated by extreme precipitation, while the upper one was primarily driven by significant changes in reservoir water levels and secondarily triggered by concentrated rainfalls. Anti-slide piles have remarkably reinforced the upper moving masses but failed to control the lower ones. The gap between the pile heads and the soil amplified the rainwater erosion effect, creating a preferential channel for rainwater infiltration. Multi-physical measurements revealed a mixture of seepage-driven and buoyancy-driven behaviors within the landslide. This study offers an integrated dual-source multi-physical monitoring paradigm that enables collaborative management of multiple crucial boreholes on a large-scale landslide, and contributes to the evaluation and improvement of engineering measures in similar geological settings.
Reservoir landslide / Multi-physical process / Integrated dual-source monitoring / Fiber optic / Extreme weather
| [1] |
A. Acharya, T. Kogure. Application of novel distributed fibre-optic sensing for slope deformation monitoring: a comprehensive review. Int. J. Environ. Sci. Technol., 20 (2023), pp. 8217-8240, |
| [2] |
A. AghaKouchak, L.S. Huning, F. Chiang, M. Sadegh, F. Vahedifard, O. Mazdiyasni, H. Moftakhari, I. Mallakpour. How do natural hazards cascade to cause disasters?. Nature, 561 (2018), pp. 458-460, |
| [3] |
M. Berti, A. Simoni. Field evidence of pore pressure diffusion in clayey soils prone to landsliding. J. Geophys. Res. Earth Surf., 115 (2010), p. F03031, |
| [4] |
M.L. Chen, X.G. Yang, J.W. Zhou. Spatial distribution and failure mechanism of water-induced landslides in the reservoir areas of Southwest China. J. Rock Mech. Geotech. Eng., 15 (2) (2022), pp. 442-456, |
| [5] |
A. Ferrari, A. Ledesma, D.A. González, J. Corominas. Effects of the foot evolution on the behaviour of slow-moving landslides. Eng. Geol., 117 (2011), pp. 217-218, |
| [6] |
Finnegan, N.J., Perkins, J.P., Nereson, A.L., Handwerger, A.L., 2021. Unsaturated flow processes and the onset of seasonal deformation in slow-moving landslides. J. Geophys. Res. Earth Surf. 126, e2020JF005758. doi: |
| [7] |
S.L. Gariano, F. Guzzetti. Landslides in a changing climate. Earth-Sci. Rev., 162 (2016), pp. 227-252, |
| [8] |
J.Y. Guo, B. Shi, M.Y. Sun, C.C. Zhang, C.S. Tang, G.Q. Wei, J.H. Fang, H.T. Jiang. Soil total suction sensing using fiber-optic technology. Geoderma, 439 (2023), Article 116687, |
| [9] |
Y.T. Ho, A.B. Huang, J.T. Lee. Development of a fibre Bragg grating sensored ground movement monitoring system. Meas. Sci. Technol., 17 (2006), pp. 1733-1740, |
| [10] |
X. Hu, R. Bürgmann, W.H. Schulz, E.J. Fielding. Four-dimensional surface motions of the Slumgullion landslide and quantification of hydrometeorological forcing. Nat. Commun., 11 (2020), p. 2792, |
| [11] |
X.L. Hu, D.Z. Liu, L.F. Niu, C. Liu, X. Wang, R. Fu. Development of soil-pile interactions and failure mechanisms in a pile-reinforced landslide. Eng. Geol., 294 (2021), Article 106389, |
| [12] |
X.H. Huang, F. Guo, M.L. Deng, W. Yi, H.F. Huang. Understanding the deformation mechanism and threshold reservoir level of the floating weight-reducing landslide in the Three Gorges Reservoir Area, China. Landslides, 17 (2020), pp. 2879-2894, |
| [13] |
D.G. Hurley, G. Pantelis. Unsaturated and saturated flow through a thin porous layer on a hillslope. Water Resour. Res., 21 (1985), pp. 821-824, |
| [14] |
Jones, J.N., Boulton, S.J., Bennett, G.L., Stokes, M., Whitworth, M.R.Z., 2021. Temporal variations in landslide distributions following extreme events: Implications for landslide susceptibility modeling. J. Geophys. Res. Earth Surf. 126, e2021JF006067. doi: |
| [15] |
T. Kogure, Y. Okuda. Monitoring the vertical distribution of rainfall-induced strain changes in a landslide measured by distributed fiber optic sensing with Rayleigh backscattering. Geophys. Res. Lett., 45 (2018), pp. 4033-4040, |
| [16] |
P. Lacroix, A.L. Handwerger, G. Bièvre. Life and death of slow-moving landslides. Nat. Rev. Earth Environ., 8 (2020), pp. 1-419, |
| [17] |
P. Lehmann, D. Or. Hydromechanical triggering of landslides: From progressive local failures to mass release. Water Resour. Res., 48 (2012), p. W03535, |
| [18] |
B. Leshchinsky, M.J. Olsen, C. Mohney, M. O'Banion, M. Bunn, J. Allan, R. McClung. Quantifying the sensitivity of progressive landslide movements to failure geometry, undercutting processes and hydrological changes. J. Geophys. Res. Earth Surf., 124 (2019), pp. 616-638, |
| [19] |
Y. Li, S. Utili, D. Milledge, L.X. Chen, K.L. Yin. Chasing a complete understanding of the failure mechanisms and potential hazards of the slow moving Liangshuijing landslide. Eng. Geol., 281 (2021), Article 105977, |
| [20] |
Y. Liu, C. Xu, B. Huang, X.W. Ren, C.Q. Liu, B.D. Hu, Z. Chen. Landslide displacement prediction based on multi-source data fusion and sensitivity states. Eng. Geol., 271 (2020), Article 105608, |
| [21] |
J.W. Ma, H.M. Tang, X. Liu, X.L. Hu, M.J. Sun, Y.J. Song. Establishment of a deformation forecasting model for a step-like landslide based on decision tree C5.0 and two-step cluster algorithms: a case study in the Three Gorges Reservoir area, China. Landslides, 14 (2017), pp. 1275-1281, |
| [22] |
S. Matsuura, S. Asano, T. Okamoto. Relationship between rain and/or meltwater, pore-water pressure and displacement of a reactivated landslide. Eng. Geol., 101 (2008), pp. 49-59, |
| [23] |
F.S. Miao, Y.P. Wu, A. Török, L.W. Li, Y. Xue. Centrifugal model test on a riverine landslide in the Three Gorges Reservoir induced by rainfall and water level fluctuation. Geosci. Front., 13 (3) (2022), Article 101378, |
| [24] |
L. Nava, E. Carraro, C. Reyes-Carmona, S. Puliero, K. Bhuyan, A. Rosi, O. Monserrat, M. Floris, S.R. Meena, J.P. Galve, F. Catani. Landslide displacement forecasting using deep learning and monitoring data across selected sites. Landslides, 20 (2023), pp. 2111-2129, |
| [25] |
A.L. Nereson, S. Davila Olivera, N.J. Finnegan. Field and remote-sensing evidence for hydro-mechanical isolation of a long-lived earthflow in central California. Geophys. Res. Lett., 45 (2018), pp. 9672-9680, |
| [26] |
R. Prokešová, A. Medveďová, P. Tábořík, Z. Snopková. Towards hydrological triggering mechanisms of large deep-seated landslides. Landslides, 10 (2013), pp. 239-254, |
| [27] |
Rana, K., Bhuyan, K., Ferrer, J.V., Cotton, F., Ozturk, U., Catani, F., Malik, N., 2023. Landslide topology uncovers failure movements. arXiv preprint arXiv:2310.09631, doi: 10.48550/arXiv.2310.09631. |
| [28] |
G. Scaringi, M. Loche. A thermo-hydro-mechanical approach to soil slope stability under climate change. Geomorphology, 401 (2022), Article 108108, |
| [29] |
L. Schenato. Fiber-optic sensors for geo-hydrological applications: basic concepts and applications. Rendiconti Online Della Soc. Geol. Italiana, 30 (2014), pp. 51-54 |
| [30] |
M.R. Sheikh, Y. Nakata, M. Shitano, M. Kaneko. Rainfall-induced unstable slope monitoring and early warning through tilt sensors. Soils Found., 61 (4) (2021), pp. 1033-1053, |
| [31] |
B. Shi. On fields and their coupling in engineering geology. J. Eng. Geol., 21 (5) (2013), pp. 673-680, |
| [32] |
J.C. Stormont, C.E. Morris. Method to estimate water storage capacity of capillary barriers. J. Geotech. Geoenviron. Eng., 124 (4) (1998), pp. 297-302 |
| [33] |
M.Y. Sun, B. Shi, C.C. Zhang, X. Zheng, J.Y. Guo, Y.Q. Wang, M.N. He, J. Liu. Quasi-distributed fiber-optic in-situ monitoring technology for large-scale measurement of soil water content and its application. Eng. Geol., 294 (2021), Article 106373, |
| [34] |
Y.J. Sun, D. Zhang, B. Shi, H.J. Tong, G.Q. Wei, X. Wang. Distributed acquisition, characterization and process analysis of multi-field information in slopes. Eng. Geol., 182 (2014), pp. 49-62, |
| [35] |
H.M. Tang, J. Wasowski, C.H. Juang. Geohazards in the Three Gorges Reservoir area, China-Lessons learned from decades of research. Eng. Geol., 261 (2019), Article 105267, |
| [36] |
I. Towhata, T. Uchimura, I. Seko, L. Wang. Monitoring of unstable slopes by MEMS tilting sensors and its application to early warning. IOP Conf.: Earth Environ. Sci., 26 (2015), Article 012049, |
| [37] |
T. Uchimura, I. Towhata, L. Wang. Simple monitoring method for precaution of landslides watching tilting and water contents on slopes surface. Landslides, 7 (3) (2010), pp. 351-357, |
| [38] |
T. Uchimura, I. Towhata, L. Wang, S. Nishie, H. Yamaguchi, I. Seko, J.P. Qiao. Precaution and early warning of surface failure of slopes by using tilt sensors. Soils Found., 55 (5) (2015), pp. 1086-1099, |
| [39] |
S. Uhlemann, J. Chambers, P. Wilkinson, H. Maurer, A. Merritt, P. Meldrum, O. Kuras, D. Gunn, A. Smith, T. Dijkstra. Four-dimensional imaging of moisture dynamics during landslide reactivation. J. Geophys. Res. Earth Surf., 122 (2017), pp. 398-418, |
| [40] |
Veness, W.A., Butler, A.P., Ochoa-Tocachi, B.F., Moulds, S., Buytaert, W., 2022. Localizing hydrological drought early warning using in situ groundwater sensors. Water Resour. Res. 58, e2022WR032165. doi: |
| [41] |
D.Y. Wang, H.H. Zhu, J. Wang, Y.J. Sun, L. Schenato, A. Pasuto, B. Shi. Characterization of sliding surface deformation and stability evaluation of landslides with fiber-optic strain sensing nerves. Eng. Geol., 314 (2023), Article 107011, |
| [42] |
C. Wasko, A. Sharma, F. Johnson. Does storm duration modulate the extreme precipitation-temperature scaling relationship?. Geophys. Res. Lett., 42 (2015), pp. 8783-8790, |
| [43] |
B.P. Wen, A. Aydin, N.S. Duzgoren-Aydin, Y.R. Li, H.Y. Chen, S.D. Xiao. Residual strength of slip zones of large landslides in the Three Gorges area, China. Eng. Geol., 93 (3–4) (2007), pp. 82-98, |
| [44] |
B. Wu, H.H. Zhu, D.F. Cao, L. Xu, B. Shi. Feasibility study on ice content measurement of frozen soil using actively heated FBG sensors. Cold Reg. Sci. Technol., 39 (2021), Article 103332, |
| [45] |
J.R. Xie, T. Uchimura, G.H. Wang, H. Selvarajah, Z. Maqsood, Q. Shen, G.X. Mei, S.F. Qiao. Predicting the sliding behavior of rotational landslides based on the tilting measurement of the slope surface. Eng. Geol., 269 (2020), Article 105554, |
| [46] |
B.B. Yang, Z.Q. Liu, S. Lacasse, L.Q. Wang, T. Xiao. Deformation triggers and stability evolution of landslide from multiple observations. Front. Ecol. Evol., 11 (2023), p. 1242093, |
| [47] |
B.B. Yang, K.L. Yin, S. Lacasse, Z.Q. Liu. Time series analysis and long short-term memory neural network to predict landslide displacement. Landslides, 16 (2019), pp. 677-694, |
| [48] |
Ye, X., Zhu, H. H., Wang, J., Zhang, Q., Shi, B., Schenato, L., Pasuto, A, 2022. Subsurface multi-physical monitoring of a reservoir landslide with the fiber-optic nerve system. Geophys. Res. Lett. 49, e2022GL098211. doi: |
| [49] |
X. Ye, H.H. Zhu, G. Cheng, H.F. Pei, B. Shi, L. Schenato, A. Pasuto. Thermo-hydro-poro-mechanical responses of a reservoir-induced landslide tracked by high-resolution fiber optic sensing nerves. J. Rock Mech. Geotech. Eng. (2023), |
| [50] |
Y.P. Yin, B.L. Huang, W.P. Wang, Y.J. Wei, X.H. Ma, F. Ma, C. Zhao. Reservoir-induced landslides and risk control in three Gorges Project on Yangtze River, China. J. Rock Mech. Geotech. Eng., 8 (2016), pp. 577-595, |
| [51] |
K.L. Yin, G.R. Zhang, L.F. Zhu. Overview landslide hazard assessment of China. J. Earth Sci., 15 (3) (2004), pp. 306-311 |
| [52] |
H.B. Yu, C.D. Li, J.Q. Zhou, X.P. Gu, Y. Duan, L.F. Liao, W.Q. Chen, J.J. Long. A large-scale obliquely inclined bedding rockslide triggered by heavy rainstorm on the 8th of July 2020 in Shiban Village, Guizhou, China. Landslides, 19 (2022), pp. 1119-1130, |
| [53] |
W.G. Zhang, J.Y. Ching, A.T.C. Goh, A.Y.F. Leung. Big data and machine learning in geoscience and geoengineering: Introduction. Geosci. Front., 12 (1) (2021), pp. 327-329, |
| [54] |
C.C. Zhang, H.H. Zhu, S.P. Liu, B. Shi, D. Zhang. A kinematic method for calculating shear displacements of landslides using distributed fiber optic strain measurements. Eng. Geol., 234 (2018), pp. 83-96, |
| [55] |
Zheng, W.J, Hu, J., Lu, Z., Hu, X., Sun, Q., Liu, J.H., Zhu, J.J., Li, Z.W., 2023. Enhanced kinematic inversion of 3-D displacements, geometry, and hydraulic properties of a north-south slow-moving landslide in Three Gorges Reservoir. J. Geophys. Res. Solid Earth 128, e2022JB026232. doi: |
| [56] |
H.H. Zhu. Engineering geological interface: From multivariate characterization to evolution mechanism. Bull. Geol. Sci. Technol., 42 (1) (2023), pp. 1-20, 10.19509/j.cnki.dzkq.tb20220661 |
| [57] |
H.H. Zhu, J.C. Wang, N.G. Reddy, A. Garg, D.F. Cao, X.F. Liu, B. Shi. Monitoring infiltration of capillary barrier with actively heated fiber Bragg gratings. Environ. Geotech., 40 (2022), pp. 1-16, |
/
| 〈 |
|
〉 |