Response of Indonesian mineral supply to global renewable energy generation: Analysis based on gravity model approach
Md. Monirul Islam , Kazi Sohag , Suleiman O. Mamman , Heyvon Herdhayinta
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (4) : 101658
Response of Indonesian mineral supply to global renewable energy generation: Analysis based on gravity model approach
The captivating surge of energy transitions in the major industrialized nations has elevated the global demand for critical minerals. The demand pattern has enabled mineral-abundant emerging economies like Indonesia to enter the international market by exporting mineral goods. Accordingly, we investigate the Indonesian mineral export supply's response to the renewable energy production of the 18 clean energy-generating countries, considering crude oil and mineral prices, exchange rates, and economic growth of the resource and importer countries from 1990 to 2020. In doing so, we apply the Poisson Pseudo-maximum Likelihood (PPML) approach to measuring the panel gravity model for mineral exports in Indonesia. As a result, we observe a significant response of Indonesia's mineral export supply to the renewable energy generation of the 18 mineral importing countries. Besides, mineral and crude oil prices are insignificant, whereas the importer countries' exchange rates and income growth positively influence Indonesia's mineral export growth. However, Indonesia's income factor negatively affects its mineral export supply. Finally, we validate our results using an alternative estimator, the Driscoll-Kraay robust standard error estimation technique. Therefore, our findings suggest implementing Indonesia's existing mineral policy to produce finished mineral goods to materialize the worldwide vision of energy transitions toward a crossroad of net-zero emissions by the middle of the current century.
Mineral export supply / Energy transformation / Gravity model / PPML approach / Indonesia / Renewable energy-producing countries
| [1] |
D. Abbas Ali, F. Johari, M. Haji Alias. The effect of exchange rate movements on trade balance: A chronological theoretical review. Econ. Res. Int., 2014 (2014), Article 893170, |
| [2] |
P.C. Abbott. Export restrictions as stabilization responses to food crisis. Am. J. Agric. Econ., 94 (2) (2012), pp. 428-434 |
| [3] |
H.M.S. Al-Maamary, H.A. Kazem, M.T. Chaichan. The impact of oil price fluctuations on common renewable energies in GCC countries. Renew. Sustain. Energy Rev., 75 (2017), pp. 989-1007, |
| [4] |
J.E. Anderson, E. Van Wincoop. Gravity with gravitas: A solution to the border puzzle. Am. Econ. Rev., 93 (1) (2003), pp. 170-192, |
| [5] |
J.E. Anderson, E. Van Wincoop. Trade Costs. J. Econ. Lit., 42 (3) (2004), pp. 691-751, |
| [6] |
N. Bainton, D. Kemp, E. Lèbre, J.R. Owen, G. Marston. The energy-extractives nexus and the just transition. Sustain. Dev., 29 (4) (2021), pp. 624-634, |
| [7] |
B. Ballinger, M. Stringer, D.R. Schmeda-Lopez, B. Kefford, B. Parkinson, C. Greig, S. Smart. The vulnerability of electric vehicle deployment to critical mineral supply. Appl. Energy, 255 (2019), Article 113844, |
| [8] |
Y. Bayraktutan, M. Yılgör, S. UÇak. Renewable electricity generation and economic growth: Panel-data analysis for OECD members. Int. Res. J. Fin. and Econ., 66 (2011), pp. 23-37 |
| [9] |
M.D. Bazilian. The mineral foundation of the energy transition. Extr. Ind. Soc., 5 (1) (2018), pp. 93-97, |
| [10] |
S. Bedir, V.M. Yilmaz. CO2 emissions and human development in OECD countries: granger causality analysis with a panel data approach. Eurasian Econ. Rev., 6 (1) (2016), pp. 97-110, |
| [11] |
A. Beylot, D. Guyonnet, S. Muller, S. Vaxelaire, J. Villeneuve. Mineral raw material requirements and associated climate-change impacts of the French energy transition by 2050. J. Clean. Prod., 208 (2019), pp. 1198-1205, |
| [12] |
J. Bhagwati. Protectionism. MIT Press, Cambridge, MA (1988) |
| [13] |
J. Blomquist, J. Westerlund. Testing slope homogeneity in large panels with serial correlation. Econ. Lett., 121 (3) (2013), pp. 374-378, |
| [14] |
A. Boubault, N. Maïzi. Devising mineral resource supply pathways to a low-carbon electricity generation by 2100. Resources, 8 (1) (2019), p. 33, |
| [15] |
British Geological Survey (BGS), 2022. Minerals UK. British Geological Survey (BGS), Center for Sustainable Mineral Development. https://www2.bgs.ac.uk/mineralsuk/statistics/UKStatistics.html. |
| [16] |
P. Buchholz, T. Brandenburg. Demand, supply, and price trends for mineral raw materials relevant to the renewable energy transition wind energy, solar photovoltaic energy, and energy storage. Chemie Ing. Tech., 90 (1–2) (2018), pp. 141-153, |
| [17] |
CA, 2022. Think Copper [WWW Document]. Copp. Alliance. URL https://copperalliance.org/ (accessed 3.13.22). |
| [18] |
G. Calvo, A. Valero. Strategic mineral resources: Availability and future estimations for the renewable energy sector. Environ. Dev., 41 (2021), Article 100640, |
| [19] |
C. Church, A. Crawford. Minerals and the metals for the energy transition: Exploring the conflict implications for mineral-rich, fragile states. M. Hafner, S. Tagliapietra (Eds.), The Geopolitics of the Global Energy Transition. Lecture Notes in Energy, Springer, Cham (2020), pp. 279-304, |
| [20] |
T.G. Conley, E. Ligon. Economic distance and cross-country spillovers. J. Econ. Growth, 7 (2) (2002), pp. 157-187, |
| [21] |
V. Coudert, C. Couharde. Real equilibrium exchange rate in China is the renminbi undervalued?. J. Asian Econ., 18 (4) (2007), pp. 568-594, |
| [22] |
Coulomb, R., Dietz, S., Godunova, M., Nielsen, T.B., 2015. Critical minerals today and in 2030: an analysis for OECD countries. OECD working paper, ENV/WKP(2015)12. www.oecd.org/environment/workingpapers.htm. |
| [23] |
D.A. Dickey, W.A. Fuller. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Statistical Assoc., 74 (366a) (1979), pp. 427-431 |
| [24] |
N. Dincer, M. Kandil. The effects of exchange rate fluctuations on exports: A sectoral analysis for Turkey. J. Int. Trade Econ. Dev., 20 (6) (2011), pp. 809-837, |
| [25] |
G. Du, C. Sun. Determinants of electricity demand in nonmetallic mineral products industry: evidence from a comparative study of Japan and China. Sustainability, 7 (6) (2015), pp. 7112-7136, |
| [26] |
P. Egger. On the role of distance for bilateral trade. World Econ., 31 (5) (2008), pp. 653-662, |
| [27] |
A. Elshkaki. Materials, energy, water, and emissions nexus impacts on the future contribution of PV solar technologies to global energy scenarios. Sci. Rep., 9 (1) (2019), p. 19238, |
| [28] |
Gielen, D., 2021. Critical minerals for the energy transition. IRENA, Technical paper 5/2021. https://www.irena.org/Technical-Papers/Critical-Materials-For-The-Energy-Transition. |
| [29] |
K. Hanai. Conflict minerals regulation and mechanism changes in the DR Congo. Resour. Policy, 74 (2021), Article 102394, |
| [30] |
J.H.M. Harmsen, A.L. Roes, M.K. Patel. The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios. Energy, 50 (2013), pp. 62-73, |
| [31] |
Y. He. The trade-security nexus and US policy making in critical minerals. Resour. Policy, 59 (2018), pp. 238-249, |
| [32] |
R.J. Heffron. The role of justice in developing critical minerals. Extr. Ind. Soc., 7 (3) (2020), pp. 855-863, |
| [33] |
M. Henckens, E.C. Van Ierland, P.P.J. Driessen, E. Worrell. Mineral resources: Geological scarcity, market price trends, and future generations. Resour. Policy, 49 (2016), pp. 102-111, |
| [34] |
R.R. Huang. Distance and trade: Disentangling unfamiliarity effects and transport cost effects. Eur. Econ. Rev., 51 (1) (2007), pp. 161-181, |
| [35] |
M.T. Hussain, N.B. Sulaiman, M.S. Hussain, M. Jabir. Optimal Management strategies to solve issues of grid having Electric Vehicles (EV): A review. J. Energy Storage, 33 (2021), Article 102114, |
| [36] |
S. Ibarra-Gutiérrez, J. Bouchard, M. Laflamme, K. Fytas. Assessing the potential of quebec lithium industry: Mineral reserves, lithium-ion batteries production and greenhouse gas emissions. Resour. Policy, 74 (2021), Article 102371, |
| [37] |
International Energy Agency (IEA), 2021. The Role of Critical Minerals in Clean Energy Transitions. Paris. https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions. |
| [38] |
M.M. Islam, K. Sohag, S. Hammoudeh, O. Mariev, N. Samargandi. Minerals import demands and clean energy transitions: A disaggregated analysis. Energy Econ., 113 (2022), Article 106205, |
| [39] |
M.M. Islam, K. Sohag, F. Rehman, ur,. Do geopolitical tensions and economic policy uncertainties reorient mineral imports in the USA? A fat-tailed data analysis using novel quantile approaches. Mathematics, 11 (1) (2023), p. 180, |
| [40] |
G.A. Jehle. A note on some theorems in the theory of international trade. East. Econ. J., 15 (1989), pp. 141-145 |
| [41] |
J. Korinek, J. Kim. Export restrictions on strategic raw materials and their impact on trade and global supply. J. World Trade, 45 (2) (2011), pp. 255-281, 10.54648/trad2011009 |
| [42] |
A. Leader, G. Gaustad, C. Babbitt. The effect of critical material prices on the competitiveness of clean energy technologies. Mater. Renew. Sustain. Energy, 8 (2) (2019), pp. 1-17, |
| [43] |
T.H. Lee. Does economic distance affect the flows of trade and foreign direct investment? Evidence from Vietnam. Cog. Econ. Fin., 5 (1) (2017), p. 1403108, |
| [44] |
J. Lee, M. Bazilian, B. Sovacool, K. Hund, S.M. Jowitt, T.P. Nguyen, A. Månberger, M. Kah, S. Greene, C. Galeazzi. Reviewing the material and metal security of low-carbon energy transitions. Renew. Sustain. Energy Rev., 124 (2020), Article 109789, |
| [45] |
S.B. Linder. An essay on trade and transformation. Almqvist & Wiksell, Stockholm (1961) |
| [46] |
H. Linnemann, C. Van Beers. Measures of export-import similarity, and the Linder hypothesis once again. Weltwirtsch. Arch., 124 (1988), pp. 445-457, |
| [47] |
V. Lugovskyy, A. Skiba. How geography affects quality. J. Dev. Econ., 115 (2015), pp. 156-180, |
| [48] |
Macrotrends, 2022. Macrotrends. Macrotrends LLC. https://www.macrotrends.net/charts/precious-metals. |
| [49] |
A. Månberger, B. Stenqvist. Global metal flows in the renewable energy transition: exploring the effects of substitutes, technological mix and development. Energy Policy, 119 (2018), pp. 226-241, |
| [50] |
N.A. Mancheri. World trade in rare earths, Chinese export restrictions, and implications. Resour. Policy, 46 (2015), pp. 262-271, |
| [51] |
D.A. McDonald. Electricity and the minerals-energy complex in South Africa. Africa Rev., 3 (1) (2011), p. 65 |
| [52] |
G. Millo. Maximum likelihood estimation of spatially and serially correlated panels with random effects. Comput. Stat. Data Anal., 71 (2014), pp. 914-933, |
| [53] |
Moss, R.L., Tzimas, E., Willis, P., Arendorf, J., Thompson, P., Chapman, A., Morley, N., Sims, E., Bryson, R., Peason, J., 2013. Critical Metals in the Path towards the Decarbonisation of the EU Energy Sector. Assess. rare Met. as supply-chain bottlenecks low-carbon energy. Technol. JRC Rep. EUR 25994. http://www.jrc.ec.europa.eu/. |
| [54] |
Nickel Institute, 2022. Nickel alloys in energy and power [WWW Document]. Nickel Inst. URL https://nickelinstitute.org/about-nickel-and-its-applications/nickel-alloys-in-energy-and-power/ (accessed 3.19.2022). |
| [55] |
I. Öhrlund. Future metal demand from photovoltaic cells and wind turbines-investigating the potential risk of disabling a shift to renewable energy systems. Sci. Technol. Options Assess. (STOA), Eur. Parliam. (2011) |
| [56] |
E.A. Olivetti, G. Ceder, G.G. Gaustad, X. Fu. Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule, 1 (2) (2017), pp. 229-243, |
| [57] |
S. Olivia, J. Gibson, R. Nasrudin. Indonesia in the time of Covid-19. Bull. Indones. Econ. Stud., 56 (2020), pp. 143-174, |
| [58] |
T. Paas. The gravity approach for modeling international trade patterns for economies in transition. Int. Adv. Econ. Res., 6 (2000), pp. 633-648, |
| [59] |
N.L. Panwar, S.C. Kaushik, S. Kothari. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev., 15 (2011), pp. 1513-1524, |
| [60] |
M.M. Parra, S.R. Schubert, E. Brutschin. Export taxes and other restrictions on raw materials and their limitation through free trade agreements: Impact on developing countries. Policy. Com., 25 (2016), pp. 1-13 |
| [61] |
M.H. Pesaran. General diagnostic test for cross-sectional dependence in Panel. Empir Econ, 60 (2004), pp. 13-50, |
| [62] |
M.H. Pesaran. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econom., 22 (2) (2007), pp. 265-312, |
| [63] |
M.H. Pesaran, A. Ullah, T. Yamagata. A bias-adjusted LM test of error cross-section independence. Econ. J., 11 (1) (2008), pp. 105-127, |
| [64] |
M.H. Pesaran, T. Yamagata. Testing slope homogeneity in large panels. J. Econom., 142 (2008), pp. 50-93, |
| [65] |
I.D. Qurbani, R.J. Heffron, A.T.S. Rifano. Justice and critical mineral development in Indonesia and across ASEAN. Extr. Ind. Soc., 8 (1) (2021), pp. 355-362, |
| [66] |
Resosudarmo, B.P., Resosudarmo, I.A.P., Sarosa, W., Subiman, N.L., 2009. Socioeconomic conflicts in Indonesia’s mining industry. Exploit. Nat. Resour. Growth, Instab. Confl. Middle East Asia, Washington, DC Henry L. Stimson Cent. 33–48. http://www.jstor.com/stable/resrep10917.8. |
| [67] |
J.M.C. Santos Silva, S. Tenreyro. The log of gravity. Rev. Econ. Stat., 88 (4) (2006), pp. 641-658, |
| [68] |
J.M.C. Santos Silva, S. Tenreyro. On the existence of the maximum likelihood estimates in Poisson regression. Econ. Lett., 107 (2) (2010), pp. 310-312, |
| [69] |
J.M.C. Santos Silva, S. Tenreyro. PPML: Stata module to perform Poisson pseudo-maximum likelihood estimation. STATA Journal, 11 (2) (2011), pp. 207-212 |
| [70] |
M. Solomon. The rise of resource nationalism: a resurgence of state control in an era of free markets or the legitimate search for a new equilibrium?. South. African Inst. Min. Metall. (2012) |
| [71] |
B.K. Sovacool, S.H. Ali, M. Bazilian, B. Radley, B. Nemery, J. Okatz, D. Mulvaney. Sustainable minerals and metals for a low-carbon future. Science, 367 (6473) (2020), pp. 30-33, |
| [72] |
B. Sprecher, R. Kleijn. Tackling material constraints on the exponential growth of the energy transition. One Earth, 4 (3) (2021), pp. 335-338, |
| [73] |
P.A.V.B. Swamy. Efficient inference in a random coefficient regression model. Econom. J. Econom. Soc., 45 (1970), pp. 311-323, |
| [74] |
Tani, S., 2022. Indonesia’s drive to lift resource curse shakes global producers. NIKKEI Asia. |
| [75] |
S. Teske, S. Sawyer, O. Schäfer. Energy [r] Evolution: A Sustainable World Energy Outlook 2015: 100% Renewable Energy for All. Greenpeace International (2015) |
| [76] |
The Government of Indonesia. Law of the Republic of Indonesia: Number 4 of 2009 concerning mineral and coal mining. Jakarta. (2009) |
| [77] |
V.N.T. Thuy, D.T.T. Thuy. The impact of exchange rate volatility on exports in Vietnam: A bounds testing approach. J. Risk Financ. Manag., 12 (1) (2019), p. 6, |
| [78] |
J. Tinbergen. Shaping the World Economy; Suggestions for an International Economic Policy. Twentieth Century Fund, New York (1962) |
| [79] |
K. Tokimatsu, H. Wachtmeister, B. McLellan, S. Davidsson, S. Murakami, M. Höök, R. Yasuoka, M. Nishio. Energy modeling approach to the global energy-mineral nexus: A first look at metal requirements and the 2 C target. Appl. Energy, 207 (2017), pp. 494-509, |
| [80] |
K. Tokimatsu, M. Höök, B. McLellan, H. Wachtmeister, S. Murakami, R. Yasuoka, M. Nishio. Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 C target with 100 percent renewable energy. Appl. Energy, 225 (2018), pp. 1158-1175, |
| [81] |
O. Torres-Reyna. Panel data analysis fixed and random effects using Stata (v. 4.2). Data Stat. Serv. Pricet. Univ., 112 (2007) |
| [82] |
R.N.S. Tui, T. Adachi. An input-output approach in analyzing Indonesia’s mineral export policy. Miner. Econ., 34 (1) (2021), pp. 105-112, |
| [83] |
A. Valero, A. Valero, G. Calvo, A. Ortego, S. Ascaso, J.L. Palacios. Global material requirements for the energy transition. An exergy flow analysis of decarbonisation pathways. Energy, 159 (2018), pp. 1175-1184, |
| [84] |
P.H. Vaz, W. Baer. Real exchange rate and manufacturing growth in Latin America. Lat. Am. Econ. Rev., 23 (1) (2014), pp. 1-17, |
| [85] |
O. Vidal, B. Goffé, N. Arndt. Metals for a low-carbon society. Nat. Geosci., 6 (11) (2013), pp. 894-896, |
| [86] |
P. Viebahn, O. Soukup, S. Samadi, J. Teubler, K. Wiesen, M. Ritthoff. Assessing the need for critical minerals to shift the German energy system towards a high proportion of renewables. Renew. Sustain. Energy Rev., 49 (2015), pp. 655-671, |
| [87] |
Y. Wang, C. Guo, S. Zhuang, X. Chen, L. Jia, Z. Chen, Z. Xia, Z. Wu. Major contribution to carbon neutrality by China’s geosciences and geological technologies. China Geol., 4 (2021), pp. 329-352, 10.31035/cg2021037 |
| [88] |
Warburton, E., 2017. Resource nationalism in post-boom Indonesia: The new normal? https://www.lowyinstitute.org/publications/resource-nationalism-post-boom-indonesia-new-normal. |
| [89] |
H. Ward. Resource nationalism and sustainable development: a primer and key issues. Int. Inst. Environ. Dev., 7 (2009), pp. 1-58 |
| [90] |
T. Watari, B.C. McLellan, D. Giurco, E. Dominish, E. Yamasue, K. Nansai. Total material requirement for the global energy transition to 2050: A focus on transport and electricity. Resour. Conserv. Recycl., 148 (2019), pp. 91-103, |
| [91] |
WDI., 2023. The World Bank. https://databank.worldbankS.org/source/world-development-indicators. |
| [92] |
I.G.N.P. Widiatedja. Indonesia’s export ban on nickel ore: does it violate the world trade organization (WTO) rules?. J. World Trade, 55 (4) (2021), pp. 667-696, 10.54648/trad2021028 |
| [93] |
WITS. World Integrated Trade Solution. World Bank (2022) |
| [94] |
World Bank, 2020. Mineral Production to Soar as Demand for Clean Energy Increases [WWW Document]. World Bank. URL https://www.worldbank.org/en/news/press-release/2020/05/11/mineral-production-to-soar-as-demand-for-clean-energy-increases (accessed 3.18.2022). |
| [95] |
J. Xu, C. Lu, S. Ruan, N.N. Xiong. Estimating the efficiency and potential of China’s steel products export to countries along the “Belt and Road” under interconnection: An application of extended stochastic frontier gravity model. Resour. Policy, 75 (2022), Article 102513, |
| [96] |
A. Zafar. The growing relationship between China and Sub-Saharan Africa: Macroeconomic, trade, investment, and aid links. World Bank Res. Obs., 22 (1) (2007), pp. 103-130, |
| [97] |
X.F. Zheng, C.X. Liu, Y.Y. Yan, Q. Wang. A review of thermoelectrics research–Recent developments and potentials for sustainable and renewable energy applications. Renew. Sustain. Energy Rev., 32 (2014), pp. 486-503, |
| [98] |
W. Zhu, F. Ahmad, M.U. Draz, I. Ozturk, A. Rehman. Revisiting the nexus between exchange rate, exports and economic growth: further evidence from Asia. Econ. Res. Istraživanja., 35 (2022), pp. 7128-7146, |
| [99] |
T. Zimmermann, M. Rehberger, S. Gößling-Reisemann. Material flows resulting from large scale deployment of wind energy in Germany. Resources, 2 (3) (2013), pp. 303-334, |
/
| 〈 |
|
〉 |