Biophysical and socioeconomic drivers of livestock management in high-altitude Xizang, China

Yu Zhang , Ben Niu , Zhipeng Wang , Meng Li , Jianshuang Wu , Xianzhou Zhang

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) : 100377

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) :100377 DOI: 10.1016/j.geosus.2025.100377
Research Article
review-article

Biophysical and socioeconomic drivers of livestock management in high-altitude Xizang, China

Author information +
History +
PDF

Abstract

Livestock management plays a crucial role in environmental protection, food security, and sustainable livelihoods worldwide. However, comprehensive research on its microeconomic dimensions remains limited. Here, we used piecewise structural equation modeling to identify key drivers of livestock management among rural smallholders, focusing on livestock stocking rates (LSR) and livestock offtake rates (LOR). Data were collected via semi-structured questionnaires and household head interviews in 54 villages in northern Xizang between 2018 and 2020 (n = 549). Our findings revealed pronounced spatial heterogeneity in livestock management, with households in alpine meadows showing the highest LSR (2.14 standardized sheep units per hectare, SSU· ha−1) and the lowest LOR (9 %), in contrast to households in desert steppe areas (0.27 SSU· ha−1 and 15 %, respectively). Across northern Xizang, five grouped environmental factors—climatic conditions, natural resource endowment, market conditions, demographics, and household income—jointly explained 66 % and 20 % of the variance in LSR and LOR, respectively. Biophysical factors had a greater influence than socioeconomic ones, though demographic variables and market conditions were also positively correlated with LSR and LOR, respectively. Given the consistently low LOR among species (9 %–15 %), with marked differences between yaks and sheep (5 %) and goats (2 %), targeted policies are needed to encourage herders to adopt circular economy practices to balance ecological conservation with economic growth. This study highlights an underutilized livestock economy in high-altitude pastoral communities and clarifies the interplay of biophysical and socioeconomic factors in herders’ decision-making. The findings offer valuable insights for refining policy frameworks related to livestock and environmental management in rural China and beyond.

Keywords

Smallholder / Pastoral communities / Livestock management / Sustainable development / Qinghai-Xizang Plateau

Cite this article

Download citation ▾
Yu Zhang, Ben Niu, Zhipeng Wang, Meng Li, Jianshuang Wu, Xianzhou Zhang. Biophysical and socioeconomic drivers of livestock management in high-altitude Xizang, China. Geography and Sustainability, 2025, 6(6): 100377 DOI:10.1016/j.geosus.2025.100377

登录浏览全文

4963

注册一个新账户 忘记密码

Ethical statement

This study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Institutional Review Board (IRB) of the Institute of Geographic Sciences and Natural Resources Research (date of approval: 2019.7, 2020.7). Informed consent was obtained from all subjects involved in the study.

Data availability

Data are available upon request from the authors.

CRediT authorship contribution statement

Yu Zhang: Data curation, Investigation, Methodology, Visualization, Writing – original draft, Writing – review & editing. Ben Niu: Writing – review & editing, Investigation. Zhipeng Wang: Writing – review & editing. Meng Li: Writing – review & editing. Jianshuang Wu: Writing – review & editing, Investigation, Funding acquisition, Conceptualization. Xianzhou Zhang: Writing – review & editing, Supervision, Funding acquisition, Conceptualization.

Declaration of competing interests

No conflict of interests exits in the submission of this manuscript, and manuscript is approved by all authors for publication. I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed.

Acknowledgements

This study was supported by the Second Tibetan Plateau Scientific Expedition and Research (Grant No. 2019QZKK1002) and the Innovation Talent Exchange of Foreign Expert Program under the Belt and Road Initiative (Grant No. DL2021056001L).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100377.

References

[1]

Abay, K. A., Jensen, N. D., 2020. Access to markets, weather risk, and livestock production decisions: evidence from Ethiopia. Agric. Econ. 51, 577-593.

[2]

Abdalla, K., Mutema, M., Chivenge, P., Everson, C., Chaplot, V., 2018. Grassland degradation significantly enhances soil CO2 emission. Catena 167, 284-292.

[3]

Ahmed, M. T., Bhandari, H., Gordoncillo, P. U., Quicoy, C. B., Carnaje, G. P., 2018. Factors affecting extent of rural livelihood diversification in selected areas of Bangladesh. SAARC J. Agric. 16, 7-21.

[4]

Ali, A., Sanaei, A., Li, M., Nalivan, O. A., Ahmadaali, K., Pour, M. J., Valipour, A., Karami, J., Aminpour, M., Kaboli, H., Askari, Y., 2020. Impacts of climatic and edaphic factors on the diversity, structure and biomass of species-poor and structurally-complex forests. Sci. Total Environ. 706, 135719.

[5]

Boone, R. B., Conant, R. T., Sircely, J., Thornton, P. K., Herrero, M., 2018. Climate change impacts on selected global rangeland ecosystem services. Glob. Change Biol. 24, 1382-1393.

[6]

Bouwman, A. F., Van der Hoek, K. W., Eickhout, B., Soenario, I., 2005. Exploring changes in world ruminant production systems. Agric. Syst. 84, 121-153.

[7]

Campbell, B. M., Gordon, I. J., Luckert, M. K., Petheram, L., Vetter, S., 2006. In search of optimal stocking regimes in semi-arid grazing lands: one size does not fit all. Ecol. Econ. 60, 75-85.

[8]

Cao, Y., Wu, J., Zhang, X., Niu, B., Li, M., Zhang, Y., Wang, X., Wang, Z., 2019. Dynamic forage-livestock balance analysis in alpine grasslands on the northern Tibetan Plateau. J. Environ. Manage. 238, 352-359.

[9]

Chen, B., Zhang, X., Tao, J., Wu, J., Wang, J., Shi, P., Zhang, Y., Yu, C., 2014. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 189, 11-18.

[10]

Dong, S., Shang, Z., Gao, J., Boone, R. B., 2020. Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 287, 106684.

[11]

Engler, J. O., von Wehrden, H., Baumgärtner, S., 2019. Determinants of farm size and stocking rate in Namibian commercial cattle farming. Land Use Policy 81, 232-246.

[12]

Engler, J. O., Wesche, K., Kaczensky, P., Dhakal, P., Chuluunkhuyag, O., von Wehrden, H., 2021. Biophysical variability and politico-economic singularity: responses of livestock numbers in South Mongolian nomadic pastoralism. Ecol. Econ. 187, 107073.

[13]

Escobal, J., 2001. The determinants of nonfarm income diversification in rural Peru. World Dev. 29, 497-508.

[14]

Fang, Y., Fan, J., Shen, M., Song, M., 2014. Sensitivity of livelihood strategy to livelihood capital in mountain areas: empirical analysis based on different settlements in the upper reaches of the Minjiang River, China. Ecol. Indic. 38, 225-235.

[15]

Feng, X., Qiu, H., Pan, J., Tang, J., 2021. The impact of climate change on livestock production in pastoral areas of China. Sci. Total Environ. 770, 144838.

[16]

Feng, Y., Wu, J., Zhang, J., Zhang, X., Song, C., 2017. Identifying the relative contributions of climate and grazing to both direction and magnitude of alpine grassland productivity dynamics from 1993 to 2011 on the northern Tibetan Plateau. Remote Sen. 9, 136.

[17]

Fu, B., Ouyang, Z., Shi, P., Fan, J., Wang, X., Zheng, H., Zhao, W., Wu, F., 2021. Current condition and protection strategies of Qinghai-Tibet Plateau ecological security barrier. Bull. Chin. Acad. Sci. 36, 1298-1306.

[18]

Fu, G., Shen, Z., Zhang, X., 2018. Increased precipitation has stronger effects on plant production of an alpine meadow than does experimental warming in the northern Tibetan Plateau. Agric. For. Meteorol. 249, 11-21.

[19]

Fynn, R. W. S., O'Connor, T. G., 2000. Effect of stocking rate and rainfall on rangeland dynamics and cattle performance in a semi-arid savanna, South Africa. J. Appl. Ecol. 37, 491-507.

[20]

Gang, C., Zhou, W., Chen, Y., Wang, Z., Sun, Z., Li, J., Qi, J., Odeh, I., 2014. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environ. Earth Sci. 72, 4273-4282.

[21]

Gao, L., Kinnucan, H. W., Zhang, Y., Qiao, G., 2016. The effects of a subsidy for grassland protection on livestock numbers, grazing intensity, and herders’ income in inner Mongolia. Land Use Policy 54, 302-312.

[22]

Gillson, L., Hoffman, M. T., 2007. Rangeland ecology in a changing world. Science 315(5808), 53-54.

[23]

Grace, J. B., 2002. Shipley, B. Cause and correlation in biology. Ann. Bot. 90(6), 777-778.

[24]

Gwiriri, L. C., Bennett, J., Mapiye, C., Marandure, T., Burbi, S., 2019. Constraints to the sustainability of a ‘systematised’ approach to livestock marketing amongst smallholder cattle producers in South Africa. Int. J. Agric. Sustain. 17(2), 189-204.

[25]

Harris, R. B., 2010. Rangeland degradation on the Qinghai-Tibetan Plateau: a review of the evidence of its magnitude and causes. J. Arid. Environ. 74, 1-12.

[26]

Herrero, M., Mason-D’Croz, D., Thornton, P. K., Fanzo, J., Rushton, J., Godde, C., Bellows, A., de Groot, A., Palmer, J., Chang, J., van Zanten, H., Wieland, B., DeClerck, F., Nordhagen, S., Beal, T., Gonzalez, C., Gill, M. 2023. Livestock and sustainable food systems: status, trends, and priority actions. J. von Braun, K. Afsana, L.O. Fresco, M.H.A. Hassan (Eds.), Science and Innovations for Food Systems Transformation, Springer, pp.375-400.

[27]

Herrero, M., Thornton, P. K., 2013. Livestock and global change: emerging issues for sustainable food systems. Proc. Natl. Acad. Sci. U.S.A. 110, 20878-20881.

[28]

Herrero, M., Thornton, P. K., Gerber, P., Reid, R. S., 2009. Livestock, livelihoods and the environment: understanding the trade-offs. Curr. Opin. Environ. Sustain. 1, 111-120.

[29]

Hou, L., Xia, F., Chen, Q., Huang, J., He, Y., Rose, N., Rozelle, S., 2021. Grassland ecological compensation policy in China improves grassland quality and increases herders’ income. Nat. Commun. 12, 4683.

[30]

Hu, Y., Huang, J., Hou, L., 2019. Impacts of the grassland ecological compensation policy on household livestock production in China: an empirical study in Inner Mongolia. Ecol. Econ. 161, 248-256.

[31]

Huang, L., Shao, Q. Q., Liu, J. Y., Lu, Q. S., 2018. Improving ecological conservation and restoration through payment for ecosystem services in Northeastern Tibetan Plateau, China. Ecosyst. Serv. 31, 181-193.

[32]

Hutchinson, M., 2004. Anusplin Version 4.3. Centre for Resource and Environmental Studies. Australian National University, Canberra

[33]

Kemp, D. R., Hou, G., Hou, X., Michalk, D. L., Hou, F., Wang, J., Zhang, Y., 2013. Innovative grassland management systems for environmental and livelihood benefits. Proc. Natl. Acad. Sci. U.S.A. 110, 8369-8374.

[34]

Lai, J., Zou, Y., Zhang, J., Peres-Neto, P. R., 2022. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.Hp R package. Methods Ecol. Evol. 13, 782-788.

[35]

Leal Filho, W., Matandirotya, N. R., Lutz, J. M., Alemu, E. A., Brearley, F. Q., Baidoo, A. A., Kateka, A., Ogendi, G. M., Adane, G. B., Emiru, N., Mbih, R. A., 2021. Impacts of climate change to African indigenous communities and examples of adaptation responses. Nat. Commun. 12, 6224.

[36]

Lefcheck, J. S., 2015. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573-579.

[37]

Li, M., Wu, J. S., Feng, Y. F., Niu, B., He, Y. T., Zhang, X. Z., 2021. Climate variability rather than livestock grazing dominates changes in alpine grassland productivity across Tibet. Front. Ecol. Evol. 9, 631024.

[38]

Li, M. P., Huo, X. X., Peng, C. H., Qiu, H. G., Shangguan, Z. P., Chang, C., Huai, J. J., 2017. Complementary livelihood capital as a means to enhance adaptive capacity: a case of the Loess Plateau, China. Glob. Environ. Change 47, 143-152.

[39]

Li, P., Bennett, J., 2019. Understanding herders’ stocking rate decisions in response to policy initiatives. Sci. Total Environ. 672, 141-149.

[40]

Li, Y., Ye, T., Liu, W., Gao, Y., 2018. Linking livestock snow disaster mortality and environmental stressors in the Qinghai-Tibetan Plateau: quantification based on generalized additive models. Sci. Total Environ. 625, 87-95.

[41]

Megersa, B., Markemann, A., Angassa, A., Ogutu, J. O., Piepho, H. P., Zarate, A. V., 2014. Impacts of climate change and variability on cattle production in southern Ethiopia: perceptions and empirical evidence. Agric. Syst. 130, 23-34.

[42]

Miller, D. J., 2005. Grassland of the World. Food and Agriculture Organization of the United Nations (FAO)

[43]

O'Mara, F. P., 2012. The role of grasslands in food security and climate change. Ann. Bot. 110, 1263-1270.

[44]

Olugbire, O. O., Obafunsho, O. E., Olarewaju, T. O., Kolade, R. I., Odedira, F. A., Orumwense, L. A., 2020. Composition and determinants of rural non-farm income diversification in Nigeria. J. Agribus. Rural Dev. 3, 279-288.

[45]

Piipponen, J., Jalava, M., de Leeuw, J., 2022. Global trends in grassland carrying capacity and relative stocking density of livestock. Glob. Change Biol. 28(12), 3902-3919.

[46]

Qin, Z., Huang, Y., Li, X., 2016. Grassland management of herdsmen’s decision-making—a case of Tibetan Plateau. Pratac. Sci. 33, 313-321.

[47]

Quaas, M. F., Baumgärtner, S., 2012. Optimal grazing management rules in semi-arid rangelands with uncertain rainfall. Nat. Resour. Model. 25, 364-387.

[48]

Core Team, R. 2020 R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

[49]

Reid, R. S., Galvin, K. A., Kruska, R. S. 2008. Global significance of extensive grazing lands and pastoral societies: an introduction. K.A. Galvin, R.S. Reid, R.H. Behnke Jr., N.T. Hobbs (Eds.), Fragmentation in Semi-Arid and Arid Landscapes: Consequences for Human and Natural Systems, Springer Netherlands, Dordrecht, pp.1-24.

[50]

Ren, Y., Zhu, Y., Baldan, D., Fu, M., Wang, B., Li, J., Chen, A., 2021. Optimizing livestock carrying capacity for wild ungulate-livestock coexistence in a Qinghai-Tibet Plateau grassland. Sci. Rep. 11, 3635.

[51]

Robinson, T. P., Thornton, P. K., Franceschini, G., Kruska, R., Chiozza, F., Notenbaert, A., Cecchi, G., Herrero, M., Epprecht, M., Fritz, S., You, L., Conchedda, G., See, L., 2011. Global Livestock Production Systems. Food and Agriculture Organization of the United Nations (FAO) and International Livestock Research Institute (ILRI), Rome, Italy and Nairobi, Kenya

[52]

Seo, S. N., McCarl, B. A., Mendelsohn, R., 2010. From beef cattle to sheep under global warming? An analysis of adaptation by livestock species choice in South America. Ecol. Econ. 69, 2486-2494.

[53]

Soltani, A., Angelsen, A., Eid, T., Naieni, M. S. N., Shamekhi, T., 2012. Poverty, sustainability, and household livelihood strategies in Zagros, Iran. Ecol. Econ. 79, 60-70.

[54]

Steinfeld, H., 2006. Livestock’s Long Shadow: Environmental Issues and Options. Food and Agriculture Organization of the United Nations (FAO), Rome

[55]

Sun, J., Liu, M., Fu, B., Kemp, D., Zhao, W., Liu, G., Han, G., Wilkes, A., Lu, X., Chen, Y., Cheng, G., Zhou, T., Hou, G., Zhan, T., Peng, F., Shang, H., Xu, M., Shi, P., He, Y., Li, M., Wang, J., Tsunekawa, A., Zhou, H., Liu, Y., Li, Y., Liu, S., 2020. Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau. Sci. Bull. 65, 1405-1414.

[56]

Thornton, P. K., 2010. Livestock production: recent trends, future prospects. Phil. Trans. R. Soc. B. 365(1554), 2853-2867.

[57]

Vetter, S., 2005. Rangelands at equilibrium and non-equilibrium: recent developments in the debate. J. Arid. Environ. 62, 321-341.

[58]

von Wehrden, H., Hanspach, J., Kaczensky, P., Fischer, J., Wesche, K., 2012. Global assessment of the non-equilibrium concept in rangelands. Ecol. Appl. 22, 393-399.

[59]

Wang, B., Yan, H., Liu, H., Pan, L., Feng, Z., 2023. Keep sustainable livestock production without grassland degradation: future cultivated pasture development simulation based on agent-based model. J. Clean Prod. 417, 138072.

[60]

Wang, J., Li, M., Yu, C., Fu, G., 2021. The change in environmental variables linked to climate change has a stronger effect on aboveground net primary productivity than does phenological change in alpine grasslands. Front. Plant Sci. 12, 798633.

[61]

Wang, Y., Lv, W., Xue, K., Wang, S., Zhang, L., Hu, R., Zeng, H., Xu, X., Li, Y., Jiang, L., Hao, Y., Du, J., Sun, J., Dorji, T., Piao, S., Wang, C., Luo, C., Zhang, Z., Chang, X., Zhang, M., Hu, Y., Wu, T., Wang, J., Li, B., Liu, P., Zhou, Y., Wang, A., Dong, S., Zhang, X., Gao, Q., Zhou, H., Shen, M., Wilkes, A., Miehe, G., Zhao, X., Niu, H., 2022. Grassland changes and adaptive management on the Qinghai–Tibetan Plateau. Nat. Rev. Earth Environ. 3, 668-683.

[62]

Weindl, I., Lotze-Campen, H., Popp, A., Müller, C., Havlík, P., Herrero, M., Schmitz, C., Rolinski, S., 2015. Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture. Environ. Res. Lett. 10(9), 094021.

[63]

Wu, J., Li, M., Fiedler, S., Ma, W., Wang, X., Zhang, X., Tietjen, B., 2019. Impacts of grazing exclusion on productivity partitioning along regional plant diversity and climatic gradients in Tibetan alpine grasslands. J. Environ. Manage. 231, 635-645.

[64]

Wu, J., Li, M., Zhang, X., Fiedler, S., Gao, Q., Zhou, Y., Cao, W., Hassan, W., Margarint, M. C., Tarolli, P., Tietjen, B., 2021. Disentangling climatic and anthropogenic contributions to nonlinear dynamics of alpine grassland productivity on the Qinghai-Tibetan Plateau. J. Environ. Manage. 281, 111875.

[65]

Xu, Y., Zhang, Y., Chen, J., John, R., 2019. Livestock dynamics under changing economy and climate in Mongolia. Land Use Policy 88, 104120.

[66]

Yeh, E., Samberg, L. H., Volkmar, E., Harris, R. B., 2017. Pastoralist decision-making on the Tibetan Plateau. Hum. Ecol. 45, 333-343.

[67]

Yin, Y., Hou, Y., Langford, C., Bai, H., Hou, X., 2019. Herder stocking rate and household income under the Grassland Ecological Protection Award Policy in northern China. Land Use Policy 82, 120-129.

[68]

Yu, C., Zhang, X., Zhang, J., Li, S., Song, C., Fang, Y., Wurst, S., Wu, J., 2016. Grazing exclusion to recover degraded alpine pastures needs scientific assessments across the northern Tibetan Plateau. Sustainability 8, 1162.

[69]

Yu, C., Zhang, Y., Claus, H., Zeng, R., Zhang, X., Wang, J., 2012. Ecological and environmental issues faced by a developing Tibet. Environ. Sci. Technol. 46, 1979-1980.

[70]

Yu, H., Wang, G., Yang, Y., Bai, Z., Liu, B., Zhang, T., Xu, Y., Lu, Y., 2020. Enhancing ecological value through sustainable food supply of grasslands in the Three-River-Source National Park, Tibet Plateau, China. Ecosyst. Serv. 46, 101218.

[71]

Yu, Y., Wu, Y., Wang, P., Zhang, Y., Yang, L. E., Cheng, X., Yan, J., 2021. Grassland subsidies increase the number of livestock on the Tibetan Plateau: why does the “Payment for Ecosystem Services” policy have the opposite outcome?. Sustainability 13, 6208.

[72]

Zhang, J., Zhang, L., Liu, X., Qiao, Q., 2019. Research on sustainable development in an alpine pastoral area based on equilibrium analysis between the grassland yield, livestock carrying capacity, and animal husbandry population. Sustainability 11, 4659.

[73]

Zhang, X., He, Y., Shen, Z., Wang, J., Yu, C., Zhang, Y., Shi, P., Fu, G., Zhu, J., 2015. Frontier of the ecological construction support the sustainable development in Tibet Autonomous Region. Bull. Chin. Acad. Sci. 30, 306-312.

[74]

Zhang, Y., Niu, B., Zhang, X., 2024. Subsidy-dominated non-farm income improves herder household livelihoods and promotes income equality in North Tibet, China. Sustainability 16(9), 3681.

[75]

Zhang, Y., Zhao, R., Liu, Y., Huang, K., Zhu, J., 2021. Sustainable wildlife protection on the Qingzang Plateau. Geogr. Sustain. 2(1), 40-47.

[76]

Zhao, W., Shen, W., Lin, N., Liu, B., Wang, T., 2015. Carrying capacity of grasslands and its spatiotemporal change in Tibet, China. Chin. Sci. Bull. 60, 2014-2028.

[77]

Zhao, Y., Chen, D., Fan, J., 2020. Sustainable development problems and countermeasures: a case study of the Qinghai-Tibet Plateau. Geogr. Sustain. 1(4), 275-283.

PDF

212

Accesses

0

Citation

Detail

Sections
Recommended

/