Advancing intelligent geography: Current status, innovations, and future prospects

Fenzhen Su , Fengqin Yan , Wenzhou Wu , Dongjie Fu , Yinxia Cao , Vincent Lyne , Michael Meadows , Ling Yao , Jianghao Wang , Yuanyuan Huang , Chong Huang , Jun Qin , Shifeng Fang , An Zhang

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) : 100375

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) :100375 DOI: 10.1016/j.geosus.2025.100375
Review Article
review-article

Advancing intelligent geography: Current status, innovations, and future prospects

Author information +
History +
PDF

Abstract

Geography is shifting from static description to a feedback-driven, adaptive discipline integrating sensing, prediction, comparison, and continuous self-improvement. This transformation underlies Intelligent Geography (IG), where artificial intelligence (AI), big data analytics, and high-performance computing (HPC) converge to enhance spatial understanding and guide intelligent decisions in complex systems. The discipline’s historical stages—descriptive, experimental, theoretical, quantitative, GIScience, and information geography—form the foundation for an overarching adaptive framework. In this framework, diverse geospatial data streams seamlessly feed real-time models whose predicted outputs are compared with observed conditions to iteratively refine predictions. A hallmark of IG is embedding domain theory into AI workflows, producing predictive models that self-adjust to new data or control system behavior. Applications such as smart traffic management, climate-responsive urban planning, and disaster-resilient digital twins illustrate the sensing–prediction–adaptation/learning cycle in practice for complex changing systems. We examine the enabling roles of HPC, deep learning, and geographic large models in implementing feedback loops, and address persistent challenges in data integration, interpretability, and governance. We conclude with a vision of IG as an evolving socio-technical ecosystem that through adaptation and self-learning turns spatial data into adaptive, actionable knowledge that assists in intelligent decision-making, whether it is for AI systems or human ones.

Keywords

Traditional geography / High-performance computing / Big data analytics / Artificial intelligence (AI) / Digital twin / Geospatial modelling / Intelligent geography

Cite this article

Download citation ▾
Fenzhen Su, Fengqin Yan, Wenzhou Wu, Dongjie Fu, Yinxia Cao, Vincent Lyne, Michael Meadows, Ling Yao, Jianghao Wang, Yuanyuan Huang, Chong Huang, Jun Qin, Shifeng Fang, An Zhang. Advancing intelligent geography: Current status, innovations, and future prospects. Geography and Sustainability, 2025, 6(6): 100375 DOI:10.1016/j.geosus.2025.100375

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Fenzhen Su: Writing – original draft, Funding acquisition, Conceptualization. Fengqin Yan: Writing – original draft, Visualization, Funding acquisition, Data curation. Wenzhou Wu: Writing – original draft, Data curation. Dongjie Fu: Writing – original draft, Data curation. Yinxia Cao: Writing – original draft. Vincent Lyne: Writing – review & editing. Michael Meadows: Writing – review & editing. Ling Yao: Writing – review & editing. Jianghao Wang: Writing – review & editing. Yuanyuan Huang: Writing – review & editing. Chong Huang: Writing – review & editing. Jun Qin: Writing – review & editing. Shifeng Fang: Writing – review & editing. An Zhang: Writing – review & editing.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB0740300), the National Natural Science Foundation of China (Grant No. 42476195) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2023060).

References

[1]

Adrienko, N., Adrienko, G., 2011. Spatial generalization and aggregation of massive movement data. IEEE Trans. Vis. Comput. Graph. 17(2), 205-219.

[2]

Akyildiz, I., Jornet, J., 2010. The internet of nano-things. IEEE Wirel. Commun. 17(6), 58-63.

[3]

Ali, M. E., Cheema, M. A., Hashem, T., Ulhaq, A., Babar, M. A., 2024. Enabling spatial digital twins: technologies, challenges, and future research directions. PFG 92(6), 761-778.

[4]

Ang, Y. Q., Berzolla, Z. M., Reinhart, C. F., 2020. From concept to application: a review of use cases in urban building energy modeling. Appl. Energy 279, 115738.

[5]

Annoni, A., Nativi, S., Desha, C., Eremchenko, E., Gevaert, C. M., Giuliani, G., Chen, M., Perez-Mora, L., Strobl, J., Tumampos, S., 2023. Digital earth: yesterday, today, and tomorrow. Int. J. Digit. Earth 16(1), 1022-1072.

[6]

Bastounis, A., Campodonico, P., Schaar, M., Adcock, B., Hansen 2024, A., 2024. On the consistent reasoning paradox of intelligence and optimal trust in AI: the power of ‘I don’t know’. https://doi.org/doi: 10.48550/arXiv.2408.02357.

[7]

Bauer, P., Thorpe, A., Brunet, G., 2015. The quiet revolution of numerical weather prediction. Nature 525(7567), 47-55.

[8]

Bender, E. M., Gebru, T., McMillan-Major, A., Shmitchell, S. 2021. On the dangers of stochastic parrots: can language models be too big?. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, Association for Computing Machinery, Virtual Event, Canada, pp.610-623.

[9]

Benedictis, A. D., Mazzocca, N., Somma, A., Strigaro, C., 2023. Digital twins in healthcare: an architectural proposal and its application in a social distancing case study. IEEE J. Biomed. Health Inform. 27(10), 5143-5154.

[10]

Berrone, P., Rousseau, H. E., Ricart, J. E., Brito, E., Giuliodori, A., 2023. How can research contribute to the implementation of sustainable development goals? An interpretive review of SDG literature in management. Int. J. Manag. Rev. 25(2), 318-339.

[11]

Bhuiyan, M.M., 2024. The illusion of boundless AI: analyzing limitations and ethical concerns. doi: 10.36227/techrxiv.171742375.53309794/v1.

[12]

Biswas, R. R., Rahman, A., 2023. Adaptation to climate change: a study on regional climate change adaptation policy and practice framework. J. Environ. Manage. 336, 117666.

[13]

Blumenthal, D., 2024. The US president’s executive order on artificial intelligence. Massachusetts Medical Society, Article AIpc2300296

[14]

Botín-Sanabria, D. M., Mihaita, A-.S., Peimbert-García, R. E., Ramírez-Moreno, M. A., Ramírez-Mendoza, R. A., Lozoya-Santos, Jd.J., 2022. Digital twin technology challenges and applications: a comprehensive review. Remote Sens. 14(6), 1335.

[15]

Bourechak, A., Zedadra, O., Kouahla, M. N., Guerrieri, A., Seridi, H., Fortino, G., 2023. At the confluence of artificial intelligence and edge computing in IoT-based applications: a review and new perspectives. Sensors 23(3), 1639.

[16]

Bramorska, B., Komar, E., Maugeri, L., Ruczyński, I., 2024. Socio-economic variables improve accuracy and change spatial predictions in species distribution models. Sci. Total Environ. 924, 171588.

[17]

Burks, A. W., Burks, A. R., 1981. First general-purpose electronic computer. IEEE Ann. Hist. Comput. 3(4), 310-389.

[18]

Cai, J. N., Kwan, M. P., 2022. Detecting spatial flow outliers in the presence of spatial autocorrelation. Comput. Environ. Urban Syst. 96, 101833.

[19]

Carter, A., 2022. The moral dimension of AI-assisted decision-making: some practical perspectives from the front lines. Daedalus 151(2), 299-308.

[20]

Chen, H., Chen, W., Mei, H., Liu, Z., Zhou, K., Chen, W., Gu, W, K-Ma, L., 2014. Visual abstraction and exploration of multi-class scatterplots. IEEE Trans. Vis. Compu. Graph. 20(12), 1683-1692.

[21]

Chen, L., Msigwa, G., Yang, M., Osman, A. I., Fawzy, S., Rooney, D. W., Yap, P-.S., 2022. Strategies to achieve a carbon neutral society: a review. Environ. Chem. Lett. 20(4), 2277-2310.

[22]

Chen, M., Qian, Z., Boers, N., Creutzig, F., Camps-Valls, G., Hubacek, K., Claramunt, C., Wilson, J. P., Nativi, S., Jakeman, A. J., Müller, R. D., Batty, M., Zhou, C., Chen, F., Wang, Q., Zhang, F., Barton, C. M., Strobl, J., Meadows, M., Ratti, C., Hess, P., Xu, Q., Zhang, Z., Gu, Q, A-Zhu, X., Lin, H., Yuan, L., , G., 2024. Collaboration between artificial intelligence and earth science communities for mutual benefit. Nat. Geosci. 17(10), 949-952.

[23]

Chen, X., Hui, T., Li, Y., Yang, H., 2025. Discussion on Artificial intelligence safety and Ethical issues. ITM Web Conf. 70, 04031.

[24]

Chen, Z. Y., Deng, L. I., Luo, Y. H., Li, D. L., Junior, J. M., Gonsalves, W. N., Nurunnabi, A. A. M., Li, J. A. T., Wang, C., Li, D. R., 2022. Road extraction in remote sensing data: a survey. Int. J. Appl. Earth Obs. Geoinf. 112, 102833.

[25]

Cheng, S. K., Shen, L., Feng, Z. M., Zhong, S., 2020. The development history and prospect of natural resources research in China. J. Nat. Resour. 35(8), 1757-1772.

[26]

Cho, J., Kim, C., Lim, K. J., Kim, J., Ji, B., Yeon, J., 2023. Web-based agricultural infrastructure digital twin system integrated with GIS and BIM concepts. Comput. Electron. Agric. 215, 108441.

[27]

Chorley, R., Peter, H. 2013 Integrated Models in Geography (Routledge Revivals), Routledge, London

[28]

Corrêa, N. K., Galvão, C., Santos, J. W., Del Pino, C., Pinto, E. P., Barbosa, C., Massmann, D., Mambrini, R., Galvão, L., Terem, E., de Oliveira, N., 2023. Worldwide AI ethics: a review of 200 guidelines and recommendations for AI governance. Patterns 4(10), 100857.

[29]

Crocetti, L., Forkel, M., Fischer, M., Jurečka, F., Grlj, A., Salentinig, A., Trnka, M., Anderson, M, W-Ng, T, Kokalj, Ž., Bucur, A., Dorigo, W., 2020. Earth observation for agricultural drought monitoring in the Pannonian Basin (southeastern Europe): current state and future directions. Reg. Envir. Chang. 20(4), 123.

[30]

Dai, K. R., Li, Z. H., Xu, Q., Bürgmann, R., Milledge, D. G., Tomás, R., Fan, X. M., Zhao, C. Y., Liu, X. J., Peng, J. B., Zhang, Q., Wang, Z., Qu, T. T., He, C. Y., Li, D. R., Liu, J. N., 2020. Entering the era of Earth observation-based landslide warning systems: a novel and exciting framework. IEEE Geosci. Remote Sens. Mag. 8(1), 136-153.

[31]

Dardel, C., Kergoat, L., Hiernaux, P., Mougin, E., Grippa, M., Tucker, C. J., 2014. Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger). Remote Sens. Environ. 140, 350-364.

[32]

Deng, M., Cai, J., Yang, W., Tang, J., Yang, X., Liu, Q., Shi, Y., 2020. Spatio-temporal analysis methods for multi-modal geographic big data. J. Geo-Inf. Sci. 22, 41-56.

[33]

Dhingra, B., Cole, J. R., Eisenschlos, J. M., Gillick, D., Eisenstein, J., Cohen, W. W., 2022. Time-aware language models as temporal knowledge bases. Trans. Assoc. Comput. Linguist. 10, 257-273.

[34]

Ding, C., Feng, G. C., Li, Z. W., Shan, X. J., Du, Y., Wang, H. Q., 2016. Spatio-temporal error sources analysis and accuracy improvement in Landsat 8 image ground displacement measurements. Remote Sens. 8(11), 937.

[35]

Döllner, J., 2020. Geospatial artificial intelligence: potentials of machine learning for 3D point clouds and geospatial digital twins. J. Photogramm. Remote Sens. Geoinf. Sci. 88(1), 15-24.

[36]

Dramsch, J. S., Kuglitsch, M. M., Fernández-Torres, M-Á., Toreti, A., Albayrak, R. A., Nava, L., Ghaffarian, S., Cheng, X., Ma, J., Samek, W., Venguswamy, R., Koul, A., Muthuregunathan, R., Hrast Essenfelder, A., 2025. Explainability can foster trust in artificial intelligence in geoscience. Nat. Geosci. 18(2), 112-114.

[37]

Du, S. H., Zhang, X. Y., Lei, Y. C., Huang, X., Tu, W., Liu, B., Meng, Q. Y., Du, S. H., 2024. Mapping urban functional zones with remote sensing and geospatial big data: a systematic review. GISci. Remote Sens. 61(1), 2404900.

[38]

Faak, M., 1986. Alexander von Humboldt. Springer

[39]

Fan, C., Zhang, C., Yahja, A., Mostafavi, A., 2021. Disaster city digital twin: a vision for integrating artificial and human intelligence for disaster management. Int. J. Inf. Manage. 56, 102049.

[40]

Felker, J. 1954. Performance of TRADIC transistor digital computer. Proceedings of the December 8-10, 1954, Eastern Joint Computer Conference: Design and Application of Small Digital Computers, New York, NY, United States, Association for Computing Machinery, pp.46-49.

[41]

Fu, B., 2017. Geography: from knowledge, science to decision making support. Acta Geogr. Sin. 72(11), 1923-1932.

[42]

Gahegan, M. N., Roberts, S. A., 1988. An intelligent, object-oriented geographical information system. Int. J. Geogr. Inf. Syst. 2(2), 101-110.

[43]

Gao, S., 2020. A review of recent researches and reflections on geospatial artificial intelligence. Geomat. Inf. Sci. Wuhan Univ. 45(12), 1865-1874.

[44]

Gatti, D., Marelli, M., Vecchi, T., Rinaldi, L., 2022. Spatial representations without spatial computations. Psychol. Sci. 33(11), 1947-1958.

[45]

Gelfand, A. E., Schliep, E. M., 2016. Spatial statistics and Gaussian processes: a beautiful marriage. Spat. Stat. 18, 86-104.

[46]

Gobeawan, L., Lin, E., Tandon, A., Yee, A., Khoo, V., Teo, S., Su, Y., Lim, C., Wong, S., Wise, D., Cheng, P., Liew, S. C., Huang, X., Li, Q., Teo, L., Fekete, G. S., Poto, M. 2018. Modeling trees for virtual Singapore: from data acquisition to citygml models. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W10, pp.55-62.

[47]

Gonzales-Inca, C., Calle, M., Croghan, D., Torabi Haghighi, A., Marttila, H., Silander, J., Alho, P., 2022. Geospatial artificial intelligence (GeoAI) in the integrated hydrological and fluvial systems modeling: review of current applications and trends. Water 14(14), 2211.

[48]

Goodchild, M. F., 1992. Geographical information science. Int. J. Geogr. Inf. Syst. 6(1), 31-45.

[49]

Goodchild, M. F., Li, W., 2021. Replication across space and time must be weak in the social and environmental sciences. Proc. Natl. Acad. Sci. U.S.A. 118(35), e2015759118.

[50]

Gounand, I., Harvey, E., Little, C. J., Altermatt, F., 2018. Meta-ecosystems 2.0: rooting the theory into the field. Trends Ecol. Evol. 33(1), 36-46.

[51]

Howe, D., Costanzo, M., Fey, P., Gojobori, T., Hannick, L., Hide, W., Hill, D. P., Kania, R., Schaeffer, M., St Pierre, S., Twigger, S., White, O., Rhee, S. Y., 2008. The future of biocuration. Nature 455, 47-50.

[52]

Gu, A., Dao, T., 2024. Mamba: linear-time sequence modeling with selective state spaces. arXiv:2312.00752.

[53]

Guo, X., 2023. Risks of generative artificial intelligence and its inclusive legal governance. J. Beijing Inst. Technol. 25(6), 93-105.

[54]

Gyongyosi, L., Imre, S., 2019. A survey on quantum computing technology. Comput. Sci. Rev. 31, 51-71.

[55]

Haddad, S., Zhang, W., Paolini, R., Gao, K., Altheeb, M., Al Mogirah, A., Bin Moammar, A., Hong, T., Khan, A., Cartalis, C., Polydoros, A., Santamouris, M., 2024. Quantifying the energy impact of heat mitigation technologies at the urban scale. Nat. Cities 1(1), 62-72.

[56]

Hägerstrand, T.The computer and the geographer. Trans. Inst. Br. Geogr. 1967; (42), 1-19.

[57]

Hägerstrand, T., 1974. On socio-technical ecology and the study of innovations. Ethnol. Eur. 7(1), 17-34.

[58]

Hartshorne, R., 1993. Perspective on the Nature of Geography. [Li Qiao, trans]. The Commercial Press, Beijing

[59]

Hazeleger, W., Aerts, J. P. M., Bauer, P., Bierkens, M. F. P., Camps-Valls, G., Dekker, M. M., Doblas-Reyes, F. J., Eyring, V., Finkenauer, C., Grundner, A., Hachinger, S., Hall, D. M., Hartmann, T., Iglesias-Suarez, F., Janssens, M., Jones, E. R., Kölling, T., Lees, M., Lhermitte, S., van Nieuwpoort, R. V., Pahker, A. K., Pellicer-Valero, O. J., Pijpers, F. P., Siibak, A., Spitzer, J., Stevens, B., Vasconcelos, V. V., Vossepoel, F. C., 2024. Digital twins of the Earth with and for humans. Commun. Earth Environ. 5(1), 463.

[60]

Hinton, G. E., Salakhutdinov, R. R., 2006. Reducing the dimensionality of data with neural networks. Science 313(5786), 504-507.

[61]

Holzwarth, S., Thonfeld, F., Abdullahi, S., Asam, S., Da Ponte Canova, E., Gessner, U., Huth, J., Kraus, T., Leutner, B., Kuenzer, C., 2020. Earth observation based monitoring of forests in Germany: a review. Remote Sens. 12(21), 3570.

[62]

Horner, M. W., Zhao, T., Chapin, T. S., 2011. Toward an integrated GIScience and energy research agenda. Ann. Assoc. Am. Geogr. 101(4), 764-774.

[63]

Hsu, C-Y., Li, W., 2023. Explainable GeoAI: can saliency maps help interpret artificial intelligence’s learning process? An empirical study on natural feature detection. Int. J. Geogr. Inf. Sci. 37(5), 963-987.

[64]

Ibrahim, A. S., Youssef, K. Y., Kamel, H., Abouelatta, M., 2020. Traffic modelling of smart city internet of things architecture. IET Commun. 14(8), 1275-1284.

[65]

Inoubli, R., Ben Abbes, A., Farah, I. R., Singh, V., Tadesse, T., Sattari, M. T., 2020. A review of drought monitoring using remote sensing and data mining methods. 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sfax, TUNISIA

[66]

Inyang, S., Taghikhah, F. R., 2025. Digital twin-based decision support systems for natural disaster management: a systematic review of current trends and approaches. Sci. Talks 13, 100406.

[67]

Janowicz, K., Gao, S., McKenzie, G., Hu, Y., Bhaduri, B., 2020. GeoAI: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond. Int. J. Geogr. Inf. Sci. 34(4), 625-636.

[68]

Janowicz, K., Haller, A., Cox, J. S., Phuoc, D. L., Lefrançois, M., 2019. SOSA: A lightweight ontology for sensors, observations, samples, and actuators. J. Web Semant.

[69]

Jeong, H-Y., Xiao, Y, Y-Chen, S., Peng, X., 2014. Ubiquitous context-awareness and wireless sensor networks. Int. J. Distrib. Sens. Netw. 10(7), 614023.

[70]

Jing, L., Tian, Y., 2020. Self-supervised visual feature learning with deep neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(11), 4037-4058.

[71]

Kai, L. I. U., Maolin, T., Rongzeng, L. I. U., Yaochen, Q. I. N., 2017. Geography’s “World view”: the ontological issues of geography. J. Geogr. Sci. 27(12), 1541-1555.

[72]

Kang-tsung, C., 2016. Introduction to Geographic Information Systems. McGraw-Hill Education, New York, USA

[73]

Karan, S. K., Borchsenius, B. T., Debella-Gilo, M., Rizzi, J., 2025. Mapping urban green structures using object-based analysis of satellite imagery: a review. Ecol. Indic. 170, 113027.

[74]

Kilby, J. S., 1976. Invention of the integrated circuit. IEEE Trans. Electron Devices 23(7), 648-654.

[75]

Kim, E. J., 2021. Analysis of travel mode choice in Seoul using an interpretable machine learning approach. J. Adv. Transp. 2021(1), 6685004.

[76]

Koldasbayeva, D., Tregubova, P., Gasanov, M., Zaytsev, A., Petrovskaia, A., Burnaev, E., 2024. Challenges in data-driven geospatial modeling for environmental research and practice. Nat. Commun. 15(1), 10700.

[77]

Kong, L., Liu, Z., Wu, J., 2020. A systematic review of big data-based urban sustainability research: state-of-the-science and future directions. J. Clean. Prod. 273, 123142.

[78]

Kong, X. J., Wu, Y. H., Wang, H., Feng, X., 2022. Edge computing for internet of everything: a survey. IEEE Internet Things J. 9(23), 23472-23485.

[79]

Koutsopoulos, K. C., 2011. Changing paradigms of geography. Eur. J. Geogr. 2(1), 54-75.

[80]

Krizhevsky, A., Sutskever, I., Hinton, G. E., 2017. ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84-90.

[81]

Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278-2324.

[82]

Lee, A, K-Lee, W, K-Kim, H, S-Shin, W., 2022. A geospatial platform to manage large-scale individual mobility for an urban digital twin platform. Remote Sens. 14(3), 723.

[83]

Lee, J-G., Kang, M., 2015. Geospatial big data: challenges and opportunities. Big Data Res. 2(2), 74-81.

[84]

Li, D. R., Cao, J. J., Yao, Y., 2015. Big data in smart cities. Sci. China-Inf. Sci. 58(10), 108101.

[85]

Li, D. R., Yu, W. B., Shao, Z. F., 2021. Smart city based on digital twins. Comput. Urban Sci. 1(1), 4.

[86]

Li, H., Zhu, Q., Zhang, L., Ding, Y., Guo, Y., Wu, H., Wang, Q., Zhou, R., Liu, M., Zhou, Y., 2022. Integrated representation of geospatial data, model, and knowledge for digital twin railway. Int. J. Digit. Earth 15, 1657-1675.

[87]

Li, W.GeoAI: where machine learning and big data converge in GIScience. J. Spat. Inf. Sci. 2020; (20), 71-77.

[88]

Li, W., Wang, S., Arundel, S. T., Hsu, C-.Y., 2023. GeoImageNet: a multi-source natural feature benchmark dataset for GeoAI and supervised machine learning. GeoInformatica 27(3), 619-640.

[89]

Li, X., Xue, F., Ding, J., Xu, T., Song, L., Pang, Z., Wang, J., Xu, Z., Ma, Y., Lu, Z., Wu, D., Wei, J., He, X., Zhang, Y., 2024. A hybrid model coupling physical constraints and machine learning to estimate daily evapotranspiration in the Heihe River basin. Remote Sens. 16(12), 2143.

[90]

Li, Z., Zhou, W, Y-Chiang, Y., Chen, M. 2023. GeoLM: empowering language models for geospatially grounded language understanding. Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp.5227-5240.

[91]

Liao, X. H., 2020. Advance of geographic sciences and new technology applications. Prog. Geogr. 39(5), 709-715.

[92]

Lin, J. W., Gui, D. W., Liu, Y. F., Liu, Q., Zhang, S. Y., Liu, C., 2024. A high-precision oasis dataset for China from remote sensing images. Sci. Data 11(1), 726.

[93]

Lin, Y., Zhang, H., Lin, H., Gamba, P. E., Liu, X., 2020. Incorporating synthetic aperture radar and optical images to investigate the annual dynamics of anthropogenic impervious surface at large scale. Remote Sens. Environ. 242, 111757.

[94]

Liu, Y., Guo, H., Li, H. F., Dong, W. H., Pei, T., 2022. A note on GeoAI from the perspective of geographical laws. Acta Geod. Cartogr. Sin. 51(6), 1062-1069.

[95]

Lu, D. D., Cai, Y. L., 2001. Geography in China: as sciences of changing direction. Adv. Earth Sci. 16(4), 467-472.

[96]

Lu, Y. X., 2010. From earth to space: in celebrating the 400th anniversary of the use of telescope by Galileo to study the universe. Prog. Astron. 28(1), 1-9.

[97]

, G., Batty, M., Strobl, J., Lin, H, A-Zhu, X., Chen, M., 2019. Reflections and speculations on the progress in geographic information systems (GIS): a geographic perspective. Int. J. Geogr. Inf. Sci. 33(2), 346-367.

[98]

, G., Yuan, L., Yu, Z., 2022. Information geography: a new fulcrum of geographic ternary world. Sci. China Earth Sci. 65, 383-386.

[99]

Maceachren, A. M., Wachowicz, M., Edsall, R., Haug, D., Masters, R., 1999. Constructing knowledge from multivariate spatiotemporal data: integrating geographical visualization with knowledge discovery in database methods. Int. J. Geogr. Inf. Sci. 13(4), 311-334.

[100]

Mahowald, K., Ivanova, A. A., Blank, I. A., Kanwisher, N., Tenenbaum, J. B., Fedorenko, E., 2024. Dissociating language and thought in large language models. Trends Cogn. Sci. 28(6), 517-540.

[101]

Mao, H., Hu, Y., Kar, B., Gao, S., McKenzie, G., 2018. GeoAI 2017 workshop report: the 1st ACM SIGSPATIAL international workshop on GeoAI: AI and deep learning for geographic knowledge discovery. SIGSPATIAL Spec. 9(3), 25.

[102]

Marjani, M., Nasaruddin, F., Gani, A., Karim, A., Hashem, I. A. T., Siddiqa, A., Yaqoob, I., 2017. Big IoT data analytics: architecture, opportunities, and open research challenges. IEEE Access 5, 5247-5261.

[103]

McDowell, N. G., Allen, C. D., Anderson-Teixeira, K., Aukema, B. H., Bond-Lamberty, B., Chini, L., Clark, J. S., Dietze, M., Grossiord, C., Hanbury-Brown, A., Hurtt, G. C., Jackson, R. B., Johnson, D. J., Kueppers, L., Lichstein, J. W., Ogle, K., Poulter, B., Pugh, A. M., Seidl, T., Turner, R., Uriarte, M., Walker, A. P., Xu, C., 2020. Pervasive shifts in forest dynamics in a changing world. Science 368(6494), eaaz9463.

[104]

McHale, T. C., Boulware, D. R., Searle, K., Kobziar, L., Lampman, P., Zuniga-Moya, J. C., Papadopoulos, B., Spec, A., Hauser, N. E., Thompson, G. R., 2025. Spatiotemporal association of coronavirus disease 2019 cases and deaths with exposure to wildfire particulate matter in 2020. Open Forum Infect. Dis. 12(6), ofaf262.

[105]

McMahon, F. H., 1986. The Livermore Fortran kernels: a computer test of the numerical performance range. Lawrence Livermore National Lab., CA (USA), United States

[106]

Melesse, T. Y., 2025. Digital twin-based applications in crop monitoring. Heliyon 11(2), e42137.

[107]

Menghani, G., 2023. Efficient deep learning: a survey on making deep learning models smaller, faster, and better. ACM Comput. Surv. 55(12), 259.

[108]

Messeri, L., Crockett, M. J., 2024. Artificial intelligence and illusions of understanding in scientific research. Nature 627(8002), 49-58.

[109]

Micheli, M., Gevaert, C. M., Carman, M., Craglia, M., Daemen, E., Ibrahim, R. E., Kotsev, A., Mohamed-Ghouse, Z., Schade, S., Schneider, I., Shanley, L. A., Tartaro, A., Vespe, M., 2022. AI ethics and data governance in the geospatial domain of Digital Earth. Big Data Soc. 9, 20539517221138767.

[110]

Mienye, I. D., Sun, Y. X., Ileberi, E., 2024. Artificial intelligence and sustainable development in Africa: a comprehensive review. Mach. Learn. Appl. 18, 100591.

[111]

Miller, H. J., 2005. A measurement theory for time geography. Geogr. Anal. 37(1), 17-45.

[112]

Milossi, M., Alexandropoulou-Egyptiadou, E., Psannis, K. E., 2021. AI Ethics: algorithmic determinism or self-determination? The GPDR approach. IEEE Access 9, 58455-58466.

[113]

Mitchell, M., Krakauer, D. C., 2023. The debate over understanding in AI’s large language models. Proc. Natl. Acad. Sci. U.S.A. 120(13), e2215907120.

[114]

Molaeinasab, A., Bashari, H., Esfahani, M. T., Pourmanafi, S., Toomanian, N., Aghasi, B., Jalalian, A., 2025. Predicting soil chemical characteristics in the arid region of central Iran using remote sensing and machine learning models. Sci. Rep. 15(1), 22809.

[115]

Mustak, S., Baghmar, N. K., Singh, S. K., Srivastava, P. K., 2022. Multi-scenario based urban growth modeling and prediction using earth observation datasets towards urban policy improvement. Geocarto Int. 37(27), 18275-18303.

[116]

Nica, E., Popescu, G. H., Poliak, M., Kliestik, T, O-Sabie, M., 2023. Digital twin simulation tools, spatial cognition algorithms, and multi-sensor fusion technology in sustainable urban governance networks. Mathematics 11(9), 1981.

[117]

Nickolls, J., Dally, W. J., 2010. The GPU computing era. IEEE Micro 30(2), 56-69.

[118]

Oluoch, I., 2024. Crossing boundaries: the ethics of AI and geographic information technologies. ISPRS Int. J. Geo-Inf. 13(3), 87.

[119]

Orme, A. R., 2007. The rise and fall of the Davisian cycle of erosion: prelude, fugue, coda, and sequel. Phys. Geogr. 28(6), 474-506.

[120]

Paul, K., Jha, V. C., 2021. Paradigm shifts in geographical research and geospatial applications. Soc. Nat. 33, e59651.

[121]

Pekel, J. F., Cottam, A., Gorelick, N., Belward, A. S., 2016. High-resolution mapping of global surface water and its long-term changes. Nature 540(7633), 418-422.

[122]

Peng, D. H., Gui, Z. P., Wang, D. H., Ma, Y. C., Huang, Z. C., Zhou, Y., Wu, H. Y., 2022. Clustering by measuring local direction centrality for data with heterogeneous density and weak connectivity. Nat. Commun. 13(1), 5455.

[123]

Phillips, C., Jiao, J. 2023. Artificial intelligence & smart city ethics: a systematic review. 2023 IEEE International Symposium on Ethics in Engineering, Science, and Technology (ETHICS), West Lafayette, IN, USA, pp.01-05.

[124]

Qian, X. S., 1994. On the Science of Geography. Zhejiang Education Press, Hangzhou, China

[125]

Raes, L., Michiels, P., Adolphi, T., Tampere, C., Dalianis, A., McAleer, S., 2021. DUET: a framework for building interoperable and trusted digital twins of smart cities. IEEE Internet Comput. 26(3), 43-50.

[126]

Reichman, O. J., Jones, M. B., Schildhauer, M. P., 2011. Challenges and opportunities of open data in ecology. Science 331(6018), 703-705.

[127]

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., 2019. Deep learning and process understanding for data-driven Earth system science. Nature 566(7743), 195-204.

[128]

Riemenschnitter, A. 2005. Traveler’s vocation: Xu Xiake and his excursion to the southwestern frontier. N. Di Cosmo, D.J. Wyatt (Eds.), Political Frontiers, Ethnic Boundaries and Human Geographies in Chinese History, Routledge, London, pp.306-343.

[129]

Roberts, J., Lüddecke, T., Das, S., Han, K., Albanie, S., 2023. GPT4GEO: how a language model sees the world’s geography. https://doi.org/10.48550/arXiv.2306.00020.

[130]

Rumelhart, D. E., Hinton, G. E., Williams, R. J., 1986. Learning representations by back-propagating errors. Nature 323(6088), 533-536.

[131]

Schmidhuber, J., 2015. Deep learning in neural networks: an overview. Neural Netw. 61, 85-117.

[132]

Schreck, T., Keim, D., 2012. Visual analysis of social media data. Computer 46(5), 68-75.

[133]

Shekhar, S., Jiang, Z., Ali, R. Y., Eftelioglu, E., Tang, X., Gunturi, V. M. V., Zhou, X., 2015. Spatiotemporal data mining: a computational perspective. ISPRS Int. J. Geo-Inf. 4(4), 2306-2338.

[134]

Sheppard, E., 2001. Quantitative geography: representations, practices, and possibilities. Environ. Plan. D Soc. Space 19(5), 535-554.

[135]

Shi, J., Pan, Z., Jiang, L., Zhai, X., 2023. An ontology-based methodology to establish city information model of digital twin city by merging BIM, GIS and IoT. Adv. Eng. Inform. 57, 102114.

[136]

Strang, A., 1998. The analysis of Ptolemy’s geography. Cartogr. J. 35(1), 27-47.

[137]

Sun, H., Shi, Y., Li, W., 2020. Integrated survey of natural resources and comprehensive research of resources science. Acta Geogr. Sin. 75(12), 2610-2619.

[138]

Therias, A., Rafiee, A., 2023. City digital twins for urban resilience. Int. J. Digi. Earth 16(2), 4164-4190.

[139]

Upreti, R., Lind, P. G., Elmokashfi, A., Yazidi, A., 2024. Trustworthy machine learning in the context of security and privacy. Int. J. Inf. Secur. 23(3), 2287-2314.

[140]

Vahidnia, M. H., Vahidi, H., 2021. Open community-based crowdsourcing geoportal for Earth observation products: a model design and prototype implementation. ISPRS Int. J. Geo-Inf. 10(1), 24.

[141]

Van Meeteren, M., Poorthuis, A., 2018. Christaller and “big data”: recalibrating central place theory via the geoweb. Urban Geogr. 39(1), 122-148.

[142]

Venema, L., 2021. Defining a role for AI ethics in national security. Nat. Mach. Intell. 3(5), 370-371.

[143]

Wang, J., Bretz, M., Dewan, M. A. A., Delavar, M. A., 2022. Machine learning in modelling land-use and land cover-change (LULCC): current status, challenges and prospects. Sci. Total Environ. 822, 153559.

[144]

Wang, L., Yang, J., Wu, S., Hu, L., Ge, Y., Du, Z., 2024. Enhancing mineral prospectivity mapping with geospatial artificial intelligence: a geographically neural network-weighted logistic regression approach. Int. J. Appl. Earth Obs. Geoinf. 128, 103746.

[145]

Wang, Y., 2021. Survey on deep multi-modal data analytics: collaboration, rivalry, and fusion. ACM Trans. Multimed. Comput. Commun. Appl. 17(1s), 1-25.

[146]

Wang, Y. X., Zhang, B., Zhang, W. J., Hong, D. F., Zhao, B., Li, Z., 2024. Cloud removal with SAR-optical data fusion using a unified spatial-spectral residual network. IEEE Trans. Geosci. Remote Sens. 62, 5600820.

[147]

Wei, J. S., Wang, X. Z., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E. H., Le, Q. V., Zhou, D. N. 2022. Chain-of-thought prompting elicits reasoning in large language models. S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh (Eds.), NIPS’22: Proceedings of the 36th International Conference on Neural Information Processing Systems, pp.24824-24837.

[148]

Wen, Y. N., Chen, M., Yue, S. S., Zheng, P. B., Peng, G. Q., Lu, G. N., 2017. A model-service deployment strategy for collaboratively sharing geo-analysis models in an open web environment. Int. J. Digit. Earth 10(4), 405-425.

[149]

West, H., Quinn, N., Horswell, M., 2019. Remote sensing for drought monitoring & impact assessment: progress, past challenges and future opportunities. Remote Sens. Environ. 232, 111291.

[150]

Wicaksono, P., Lazuardi, W., 2018. Assessment of PlanetScope images for benthic habitat and seagrass species mapping in a complex optically shallow water environment. Int. J. Remote Sens. 39(17), 5739-5765.

[151]

Wu, C. J., Zhang, J. Z., 1999. Review the development of geography in the 20th century and prospect for geography in the 21st century: congratulation on the 90th anniversary of the founding of the Geographical Society of China. Acta Geogr. Sin. 54(5), 385-390.

[152]

Wu, H., Li, Y., Lin, A., Fan, H., Fan, K., Xie, J., Luo, W., 2024. A review of crowdsourced geographic information for land-use and land-cover mapping: current progress and challenges. Int. J. Geogr. Inf. Sci. 38(11), 2183-2215.

[153]

Xia, H., Liu, Z., Efremochkina, M., Liu, X., Lin, C., 2022. Study on city digital twin technologies for sustainable smart city design: a review and bibliometric analysis of geographic information system and building information modeling integration. Sust. Cities Soc. 84, 104009.

[154]

Xiao, B., Wu, F., Chiti, F., Manshaei, M. H., Ateniese, G., 2022. Guest editorial: introduction to the special section on security and privacy for AI models and applications. IEEE Trans. Netw. Sci. Eng. 9(1), 171-172.

[155]

Xiao, G., Chen, L., Chen, X., Jiang, C., Ni, A., Zhang, C., Zong, F., 2024. A hybrid visualization model for knowledge mapping: scientometrics, SAOM, and SAO. IEEE Trans. Intell. Transp. Syst. 25(3), 2208-2221.

[156]

Xiao, W., Li, P., Tang, M., Song, C., Yu, D., Liu, H., Chen, D., Chen, N., 2024. Real-time roadside 3D spatial perception with LiDAR AIoT: an edge-cloud-terminal collaborative sensing prototype. IEEE Internet Things J. 12(9), 12624-12639.

[157]

Xu, H., Xu, F., Lin, T., Xu, Q., Yu, P., Wang, C., Aili, A., Zhao, X., Zhao, W., Zhang, P., Yang, Y., Yuan, K., 2023. A systematic review and comprehensive analysis on ecological restoration of mining areas in the arid region of China: challenge, capability and reconsideration. Ecol. Indic. 154, 110630.

[158]

Xu, L., Ye, Z. N., Dai, J., Li, Q., Hong, Y. T., Tao, Y., Yu, H. C., Zhang, C., Chen, Z. Q., Chen, N. C., 2025. Spatiotemporal seamless estimation of global surface soil moisture using triple collocation, machine learning, and data assimilation. IEEE Trans. Geosci. Remote Sens. 63, 4505216.

[159]

Yang, L., Driscol, J., Sarigai, S., Wu, Q., Chen, H., Lippitt, C. D., 2022. Google Earth Engine and artificial intelligence (AI): a comprehensive review. Remote Sens. 14(14), 3253.

[160]

Yang, R., Wang, R., Deng, Y. K., Jia, X. X., Zhang, H., 2021. Rethinking the random cropping data augmentation method used in the training of CNN-based SAR image ship detector. Remote Sens. 13(1), 34.

[161]

Yang, Y., Wang, J., 2023. Ubiquitous perception and space mapping. Acta Geod. Cartogr. Sin. 52(1), 1-7.

[162]

Yin, S., Fu, C., Zhao, S., Li, K., Sun, X., Xu, T., Chen, E., 2024. A survey on multimodal large language models. Natl. Sci. Rev. 11(12), nwae403.

[163]

Yuan, X., Shi, J., Gu, L., 2021. A review of deep learning methods for semantic segmentation of remote sensing imagery. Expert Syst. Appl. 169, 114417.

[164]

Yue, P., Shangguan, B., Hu, L., Jiang, L., Zhang, C., Cao, Z., Pan, Y., 2022. Towards a training data model for artificial intelligence in earth observation. Int. J. Geogr. Inf. Sci. 36(11), 2113-2137.

[165]

Zamari, M., 2023. A proposal for a wildfire digital twin framework through automatic extraction of remotely sensed data. the Italian case study of the Susa Valley. M.S. thesis, Politecnico di Torino

[166]

Zhang, X., Xu, M., Wang, S., Huang, Y., Xie, Z., 2022. Mapping photovoltaic power plants in China using landsat, random forest, and google earth engine. Earth Syst. Sci. Data 14(8), 3743-3755.

[167]

Zhang, J., Zhu, J., Zhou, Y., Zhu, Q., Wu, J., Guo, Y., Dang, P., Li, W., Zhang, H., 2024. Exploring geospatial digital twins: a novel panorama-based method with enhanced representation of virtual geographic scenes in Virtual Reality (VR). Int. J. Geogr. Inf. Sci. 38(11), 2301-2324.

[168]

Zhang, S., Chen, L., Xu, L., Wang, Z., 2025. GeoBEM: a geospatial computing empowered framework for urban-scale building energy modeling. Sust. Cities Soc. 121, 106203.

[169]

Zhang, W., Cai, M., Zhang, T., Zhuang, Y., Mao, X., 2024. EarthGPT: a universal multi-modal large language model for multi-sensor image comprehension in remote sensing domain. IEEE Trans. Geosci. Remote Sens. 62, 5917820.

[170]

Zhao, C., Qin, C., 2020. 10-m-resolution mangrove maps of China derived from multi-source and multi-temporal satellite observations. ISPRS J. Photogramm. Remote Sens. 169, 389-405.

[171]

Zhao, Q., Yu, L., Du, Z., Peng, D., Hao, P., Zhang, Y., Gong, P., 2022. An overview of the applications of Earth observation satellite data: impacts and future trends. Remote Sens. 14(8), 1863.

[172]

Zhao, W. W., Yin, C., Zhang, J. Z., 2024. Progress and prospects of geography in promoting the United Nations Sustainable Development Goals: a discussion on the theoretical framework of Sustainable Geography. Acta Geogr. Sin. 79(11), 2699-2720 (in Chinese).

[173]

Zhao, Y., Li, S., Liu, C. H., Han, Y. Q., Shi, H., Li, W., 2023. Domain adaptive remote sensing scene recognition via semantic relationship knowledge transfer. IEEE Trans. Geosci. Remote Sens. 61, 1-13.

[174]

Zheng, D., Ou, Y., Zhou, C., 2008. Understanding of and thinking over geographical regionalization methodology. Acta Geogr. Sin. 63(6), 563-573.

[175]

Zhou, C., Su, F., Pei, T., Zhang, A., Du, Y., Luo, B., Cao, Z., Wang, J., Yuan, W., Zhu, Y., Song, C., Chen, J., Xu, J., Li, F., Ma, T., Jiang, L., Yan, F., Yi, J., Hu, Y., Liao, Y., Xiao, H., 2020. COVID-19: challenges to GIS with big data. Geogr. Sustain. 1(1), 77-87.

[176]

Zhu, L., Liu, J., Qin, C., Zhu, A., 2019. A modular and parallelized watershed modeling framework. Environ. Model. Softw. 122, 104526.

[177]

Zhu, Q. Q., Zhang, Y. N., Wang, L. Z., Zhong, Y. F., Guan, Q. F., Lu, X. Y., Zhang, L. P., Li, D. R., 2021. A global context-aware and batch-independent network for road extraction from VHR satellite imagery. ISPRS J. Photogramm. Remote Sens. 175, 353-365.

[178]

Zou, L., Song, Y., Cervone, G., 2024. Geospatial big data: theory, methods, and applications. Ann. GIS 30(4), 411-415.

PDF

426

Accesses

0

Citation

Detail

Sections
Recommended

/