Escalating socioeconomic exposure to extreme heat in China: A CMIP6-based analysis of future heatwaves across regions and scenarios

Shan Zou , Fubao Sun , Philippe De Maeyer , Tim Van De Voorde , Weili Duan

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) : 100374

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) :100374 DOI: 10.1016/j.geosus.2025.100374
Research Article
review-article

Escalating socioeconomic exposure to extreme heat in China: A CMIP6-based analysis of future heatwaves across regions and scenarios

Author information +
History +
PDF

Abstract

The future increased frequency and intensity of heat waves (HWs) across China will exacerbate adverse effects on society and the environment. However, changes in socioeconomic exposure remain underexplored. In this study, climate model outputs from the Coupled Model Intercomparison Project Phase 6 (CMIP6), together with population and gross domestic product (GDP) projections were used to investigate projected heat stress and socioeconomic exposure across China and its eight subregions under four shared socioeconomic pathway (SSP) scenarios (SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5) over three periods (2021–2040, 2051–2070, and 2081–2100). Our results indicate a consistent upward trend in the Universal Thermal Climate Index (UTCI) across all scenarios, with intensifying increases over time, peaking at > 6 °C. This suggests a continuous increase in the number of extreme heat events (EHEs) in China. Population exposure to EHEs across the four UTCI thresholds (> 26 °C, > 32 °C, > 38 °C, and > 46 °C) shows an increasing trend. Projections indicate a ∼14-fold increase nationwide, 500-fold increase in Northwest China (NWC), and a 1000-fold in Southwest China (SWC2) under SSP5–8.5 by 2081–2100 compared with current levels. The eastern and southeastern regions, especially the Yangtze River and Pearl River Delta, show significant GDP exposure increases under SSP3–7.0 and SSP5–8.5. Population exposure is mainly driven by climatic effects under severe scenarios, whereas GDP exposure is influenced by interaction effects, particularly under SSP5–8.5 and during the 2090s. This study’s findings offer actionable insights for targeted adaptation in China’s diverse geographies.

Keywords

Heat wave / Universal thermal climate index / Climate change / Population exposure / Gross domestic product exposure

Cite this article

Download citation ▾
Shan Zou, Fubao Sun, Philippe De Maeyer, Tim Van De Voorde, Weili Duan. Escalating socioeconomic exposure to extreme heat in China: A CMIP6-based analysis of future heatwaves across regions and scenarios. Geography and Sustainability, 2025, 6(6): 100374 DOI:10.1016/j.geosus.2025.100374

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Shan Zou: Writing – review & editing, Writing – original draft, Methodology, Investigation, Formal analysis, Funding acquisition, Conceptualization. Fubao Sun: Writing – review & editing, Supervision, Conceptualization. Philippe De Maeyer: Writing – review & editing. Tim Van De Voorde: Writing – review & editing. Weili Duan: Writing – review & editing.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study was supported by the Third Xinjiang Scientific Expedition Program (Grant No. 2023xjkk0101), and the National Youth Talent Project (Grant No. E4150103). We would like to express our gratitude to all of the authors who freely and publicly released the data used in this study. The base map used in this study is the standard map (No. GS(2025)0904) downloaded from the Standard Map Service website of the National Administration of Surveying, Mapping and Geographic Information of China.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100374.

References

[1]

An, N., Zuo, Z., 2021. Changing structures of summertime heatwaves over China during 1961–2017. Sci. China Earth Sci. 64, 1242-1253.

[2]

Bai, C., Lei, X., 2020. New trends in population aging and challenges for China’s sustainable development. China Econ. J. 13, 3-23.

[3]

Blazejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H., Tinz, B., 2012. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 56, 515-535.

[4]

Błażejczyk, K., Jendritzky, G., Bröde, P., Fiala, D., Havenith, G., Epstein, Y., Psikuta, A., Kampmann, B., 2013. An introduction to the universal thermal climate index (UTCI). Geogr. Pol. 86, 5-10.

[5]

Brás, T. A., Seixas, J., Carvalhais, N., Jägermeyr, J., 2021. Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environ. Res. Lett. 16, 65012.

[6]

Brimicombe, C., Lo, C. H. B., Pappenberger, F., Di Napoli, C., Maciel, P., Quintino, T., Cornforth, R., Cloke, H. L., 2023. Wet bulb globe temperature: indicating extreme heat risk on a global grid. Geohealth 7, e2022GH000701.

[7]

Bröde, P., Fiala, D., Błażejczyk, K., Holmér, I., Jendritzky, G., Kampmann, B., Tinz, B., Havenith, G., 2012. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 56, 481-494.

[8]

Budd, G. M., 2008. Wet-bulb globe temperature (WBGT)—its history and its limitations. J. Sci. Med. Sport 11, 20-32.

[9]

Chen, H., Zhao, L., Cheng, L., Zhang, Y., Wang, H., Gu, K., Bao, J., Yang, J., Liu, Z., Huang, J., 2022. Projections of heatwave-attributable mortality under climate change and future population scenarios in China. Lancet Reg. Health-W. Pac. 28, 100582.

[10]

Chen, J., Liu, Y., Pan, T., Ciais, P., Ma, T., Liu, Y., Yamazaki, D., Ge, Q., Penuelas, J., 2020. Global socioeconomic exposure of heat extremes under climate change. J. Clean. Prod. 277, 123275.

[11]

Chen, Y., Guo, F., Wang, J., Cai, W., Wang, C., Wang, K., 2020. Provincial and gridded population projection for China under shared socioeconomic pathways from 2010 to 2100. Sci. Data 7, 83.

[12]

Cheng, S., Wang, S., Li, M., He, Y., 2024. Summer heatwaves in China during 1961–2021: the impact of humidity. Atmos. Res. 304, 107366.

[13]

Cheng, Y., Niu, J., Gao, N., 2012. Thermal comfort models: a review and numerical investigation. Build. Environ. 47, 13-22.

[14]

Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058), 529-533.

[15]

de Freitas, C. R., Grigorieva, E. A., 2017. A comparison and appraisal of a comprehensive range of human thermal climate indices. Int. J. Biometeorol. 61, 487-512.

[16]

Di Napoli, C., Pappenberger, F., Cloke, H. L., 2019. Verification of heat stress thresholds for a health-based heat-wave definition. J. Appl. Meteorol. Climatol. 58, 1177-1194.

[17]

Diffenbaugh, N. S., Swain, D. L., Touma, D., 2015. Anthropogenic warming has increased drought risk in California. Proc. Natl. Acad. Sci. U.S.A. 112, 3931-3936.

[18]

Domeisen, D. I., Eltahir, E. A., Fischer, E. M., Knutti, R., Perkins-Kirkpatrick, S. E., Schär, C., Seneviratne, S. I., Weisheimer, A., Wernli, H., 2022. Prediction and projection of heatwaves. Nat. Rev. Earth Environ. 4(1), 36-50.

[19]

Ebi, K. L., Capon, A., Berry, P., Broderick, C., de Dear, R., Havenith, G., Honda, Y., Kovats, R. S., Ma, W., Malik, A., 2021. Hot weather and heat extremes: health risks. Lancet 398, 698-708.

[20]

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., Taylor, K. E., 2016. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937-1958.

[21]

Fiala, D., Havenith, G., Bröde, P., Kampmann, B., Jendritzky, G., 2012. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int. J. Biometeorol. 56, 429-441.

[22]

Frölicher, T. L., Laufkötter, C., 2018. Emerging risks from marine heat waves. Nat. Commun. 9, 650.

[23]

García-León, D., Casanueva, A., Standardi, G., Burgstall, A., Flouris, A. D., Nybo, L., 2021. Current and projected regional economic impacts of heatwaves in Europe. Nat. Commun. 12, 5807.

[24]

Ha, K., Seo, Y., Yeo, J., Timmermann, A., Chung, E., Franzke, C. L., Chan, J. C., Yeh, S., Ting, M., 2022. Dynamics and characteristics of dry and moist heatwaves over East Asia. NPJ Clim. Atmos. Sci. 5, 49.

[25]

Havenith, G., Fiala, D., Błazejczyk, K., Richards, M., Bröde, P., Holmér, I., Rintamaki, H., Benshabat, Y., Jendritzky, G., 2012. The UTCI-clothing model. Int. J. Biometeorol. 56, 461-470.

[26]

He, B., Wang, J., Zhu, J., Qi, J., 2022. Beating the urban heat: situation, background, impacts and the way forward in China. Renew. Sust. Energ. Rev. 161, 112350.

[27]

Hsu, A., Sheriff, G., Chakraborty, T., Manya, D., 2021. Disproportionate exposure to urban heat island intensity across major US cities. Nat. Commun. 12, 2721.

[28]

Hu, X., Cao, J., Qian, Y., Zhou, W., Zheng, Z., 2024. Extreme heat events in mainland of China from 1981 to 2015: spatial patterns, temporal trends, and urbanization impacts. Sust. Cities Soc. 100, 104999.

[29]

Huang, J., Shen, S., Zhao, M., Cheng, C., 2023. Assessment of summer regional outdoor heat stress and regional comfort in the Beijing–Tianjin–Hebei agglomeration over the last 40 years. Geohealth 7(1), e2022GH000725.

[30]

Jendritzky, G., de Dear, R., Havenith, G., 2012. UTCI—why another thermal index?. Int. J. Biometeorol. 56, 421-428.

[31]

Jiang, T., Su, B., Wang, Y., Wang, G., Luo, Y., Zhai, J., Huang, J., Jing, C., Gao, M., Lin, Q., 2022. Gridded datasets for population and economy under Shared Socioeconomic Pathways for 2020–2100. Clim. Chang. Res. 18, 381-383.

[32]

Jones, B., O’Neill, B. C., McDaniel, L., McGinnis, S., Mearns, L. O., Tebaldi, C., 2015. Future population exposure to US heat extremes. Nat. Clim. Chang. 5, 652-655.

[33]

Jones, P. W., 1999. First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon. Weather Rev. 127, 2204-2210.

[34]

Keellings, D., Moradkhani, H., 2020. Spatiotemporal evolution of heat wave severity and coverage across the United States. Geophys. Res. Lett. 47, e2020GL087097.

[35]

Kharin, V. V., Zwiers, F. W., Zhang, X., Wehner, M., 2013. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Change 119, 345-357.

[36]

Klein, T., Anderegg, W. R., 2021. A vast increase in heat exposure in the 21st century is driven by global warming and urban population growth. Sust. Cities Soc. 73, 103098.

[37]

Kotlarski, S., Gobiet, A., Morin, S., Olefs, M., Rajczak, J., Samacoïts, R., 2023. 21st Century alpine climate change. Clim. Dyn. 60, 65-86.

[38]

Kumar, P., Rai, A., Upadhyaya, A., Chakraborty, A., 2022. Analysis of heat stress and heat wave in the four metropolitan cities of India in recent period. Sci. Total Environ. 818, 151788.

[39]

Lange, S., Büchner, M., 2021. ISIMIP3b bias-adjusted atmospheric climate input data (v1.1). ISIMIP Repository doi:10.48364/ISIMIP.842396.1.

[40]

Liang, L., Deng, X., Wang, P., Wang, Z., Wang, L., 2020. Assessment of the impact of climate change on cities livability in China. Sci. Total Environ. 726, 138339.

[41]

Liljegren, J. C., Carhart, R. A., Lawday, P., Tschopp, S., Sharp, R., 2008. Modeling the wet bulb globe temperature using standard meteorological measurements. J. Occup. Environ. Hyg. 5, 645-655.

[42]

Lissner, T. K., Holsten, A., Walther, C., Kropp, J. P., 2012. Towards sectoral and standardised vulnerability assessments: the example of heatwave impacts on human health. Clim. Change 112, 687-708.

[43]

Liu, D., Zhou, R., Ma, Q., He, T., Fang, X., Xiao, L., Hu, Y., Li, J., Shao, L., Gao, J., 2024. Spatio-temporal patterns and population exposure risks of urban heat island in megacity Shanghai, China. Sust. Cities Soc. 108, 105500.

[44]

Mahowald, N., Ward, D. S., Kloster, S., Flanner, M. G., Heald, C. L., Heavens, N. G., Hess, P. G., Lamarque, J-.F., Chuang, P. Y., 2011. Aerosol impacts on climate and biogeochemistry. Annu. Rev. Environ. Resour. 36, 45-74.

[45]

Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I. 2021. Climate Change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA

[46]

Matzarakis, A., Rutz, F., Mayer, H., 2010. Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int. J. Biometeorol. 54, 131-139.

[47]

National Report Committee, 2007. China’s National Assessment Report on Climate Change. Science Press, Beijing (in Chinese).

[48]

Ng, E., Ren, C., 2018. China’s adaptation to climate & urban climatic changes: a critical review. Urban Clim. 23, 352-372.

[49]

Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Zhou, L., Liu, H., Ma, Y., Ding, Y., Friedlingstein, P., Liu, C., Tan, K., Yu, Y., Zhang, T., Fang, J., 2010. The impacts of climate change on water resources and agriculture in China. Nature 467(7311), 43-51.

[50]

Qian, J., Zhang, L., Schlink, U., Hu, X., Meng, Q., Gao, J., 2025. Impact of urban land use and anthropogenic heat on winter and summer outdoor thermal comfort in Beijing. Urban Clim. 59, 102306.

[51]

Ran, Y., Li, X., Cheng, G., 2018. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau. Cryosphere 12, 595-608.

[52]

Riahi, K., Van Vuuren, D. P., Kriegler, E., Edmonds, J., O Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., 2017. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153-168.

[53]

Roffe, S. J., van der Walt, A. J., Fitchett, J. M., 2023. Spatiotemporal characteristics of human thermal comfort across southern Africa: an analysis of the Universal Thermal Climate Index (UTCI) for 1971–2021. Int. J. Climatol. 43(6), 2930-2952.

[54]

Solomon, S., Qin, D., Manning, M., Averyt, K., Marquis, M., 2007. Climate Change 2007: The Physical Science Basis: Working Group I Gontribution to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge, UK and New York, NY, USA.

[55]

Suarez-Gutierrez, L., Müller, W. A., Li, C., Marotzke, J., 2020. Dynamical and thermodynamical drivers of variability in European summer heat extremes. Clim. Dyn. 54, 4351-4366.

[56]

Su, H., Qi, Z., Wang, Q., 2025. Impacts of land use characteristics on extreme heat events: insights from explainable machine learning model. Sust. Cities Soc. 120, 106139.

[57]

Sun, X., Sun, Q., Zhou, X., Li, X., Yang, M., Yu, A., Geng, F., 2014. Heat wave impact on mortality in Pudong New Area, China in 2013. Sci. Total Environ. 493, 789-794.

[58]

Sun, Y., Zhang, X., Zwiers, F. W., Song, L., Wan, H., Hu, T., Yin, H., Ren, G., 2014. Rapid increase in the risk of extreme summer heat in Eastern China. Nat. Clim. Chang. 4, 1082-1085.

[59]

Swain, D. L., Prein, A. F., Abatzoglou, J. T., Albano, C. M., Brunner, M., Diffenbaugh, N. S., Singh, D., Skinner, C. B., Touma, D., 2025. Hydroclimate volatility on a warming Earth. Nat. Rev. Earth Environ. 6(1), 35-50.

[60]

Swain, D. L., Singh, D., Touma, D., Diffenbaugh, N. S., 2020. Attributing extreme events to climate change: a new frontier in a warming world. One Earth 2, 522-527.

[61]

Trancoso, R., Syktus, J., Toombs, N., Ahrens, D., Wong, K. K., Dalla Pozza, R., 2020. Heatwaves intensification in Australia: a consistent trajectory across past, present and future. Sci. Total Environ. 742, 140521.

[62]

Ullah, S., Aldossary, A., Ullah, W., Al-Ghamdi, S. G., 2024. Augmented human thermal discomfort in urban centers of the Arabian Peninsula. Sci. Rep. 14(1), 3974.

[63]

Ullah, I., Saleem, F., Iyakaremye, V., Yin, J., Ma, X., Syed, S., Hina, S., Asfaw, T. G., Omer, A., 2022. Projected changes in socioeconomic exposure to heatwaves in South Asia under changing climate. Earths Future 10, e2021EF002240.

[64]

Ullah, S., You, Q., Ullah, W., Hagan, D. F. T., Ali, A., Ali, G., Zhang, Y., Jan, M. A., Bhatti, A. S., Xie, W., 2019. Daytime and nighttime heat wave characteristics based on multiple indices over the China–Pakistan economic corridor. Clim. Dyn. 53, 6329-6349.

[65]

Ullah, S., You, Q., Ullah, W., Sachindra, D. A., Ali, A., Bhatti, A. S., Ali, G., 2023. Climate change will exacerbate population exposure to future heat waves in the China–Pakistan economic corridor. Weather Clim. Extremes 40, 100570.

[66]

Urban, A., Di Napoli, C., Aquaotta, F., Cloke, H., Kyselý, J., Pappenberger, F., 2019. Evaluation of the ERA5-based UTCI on mortality data in Europe. Environ. Epidemiol. 3, 403.

[67]

Wang, J., Yan, Z., 2021. Rapid rises in the magnitude and risk of extreme regional heat wave events in China. Weather Clim. Extremes 34, 100379.

[68]

Wang, Q., Fan, X., Wang, M., 2014. Recent warming amplification over high elevation regions across the globe. Clim. Dyn. 43, 87-101.

[69]

White, R. H., Anderson, S., Booth, J. F., Braich, G., Draeger, C., Fei, C., Harley, C. D., Henderson, S. B., Jakob, M., Lau, C., 2023. The unprecedented Pacific Northwest Heatwave of June 2021. Nat. Commun. 14, 727.

[70]

Woolway, R. I., Jennings, E., Shatwell, T., Golub, M., Pierson, D. C., Maberly, S. C., 2021. Lake heatwaves under climate change. Nature 589, 402-407.

[71]

Wu, F., You, Q., Pepin, N., Zhai, P., Kang, S., 2025. Quantifying processes of winter daytime and nighttime warming over the Tibetan Plateau. Clim. Dyn. 63 (1), 9. doi: 10.1007/s00382-024-07506-6.

[72]

Xie, W., Zhou, B., Han, Z., Xu, Y., 2022. Substantial increase in daytime-nighttime compound heat waves and associated population exposure in China projected by the CMIP6 multimodel ensemble. Environ. Res. Lett. 17, 45007.

[73]

Xie, W., Zhou, B., You, Q., Zhang, Y., Ullah, S., 2020. Observed changes in heat waves with different severities in China during 1961–2015. Theor. Appl. Climatol. 141, 1529-1540.

[74]

Xu, Z., FitzGerald, G., Guo, Y., Jalaludin, B., Tong, S., 2016. Impact of heatwave on mortality under different heatwave definitions: a systematic review and meta-analysis. Environ. Int. 89, 193-203.

[75]

Yang, J., Zhou, M., Ren, Z., Li, M., Wang, B., Liu, D. L., Ou, C., Yin, P., Sun, J., Tong, S., 2021. Projecting heat-related excess mortality under climate change scenarios in China. Nat. Commun. 12, 1039.

[76]

Yin, J., Gentine, P., Slater, L., Gu, L., Pokhrel, Y., Hanasaki, N., Guo, S., Xiong, L., Schlenker, W., 2023. Future socio-ecosystem productivity threatened by compound drought–heatwave events. Nat. Sustain. 6(3), 259-272.

[77]

Yin, Z., Zhang, X., Liu, X., Colella, M., Chen, X., 2008. An assessment of the biases of satellite rainfall estimates over the Tibetan Plateau and correction methods based on topographic analysis. J. Hydrometeorol. 9, 301-326.

[78]

Yin, Z., Zhou, B., Duan, M., Chen, H., Wang, H., 2023. Climate extremes become increasingly fierce in China. Innovation 4(2), 100406.

[79]

You, H., Yang, J., Xue, B., Xiao, X., Xia, J., Jin, C., Li, X., 2021. Spatial evolution of population change in Northeast China during 1992–2018. Sci. Total Environ. 776, 146023.

[80]

Yu, R., Zhai, P., Chen, Y., 2018. Facing climate change-related extreme events in megacities of China in the context of 1.5 °C global warming. Curr. Opin. Environ. Sustain. 30, 75-81.

[81]

Yu, Y., You, Q., Zhang, Y., Jin, Z., Kang, S., Zhai, P., 2024. Integrated warm-wet trends over the Tibetan Plateau in recent decades. J. Hydrol. 639, 131599.

[82]

Zare, S., Hasheminejad, N., Shirvan, H. E., Hemmatjo, R., Sarebanzadeh, K., Ahmadi, S., 2018. Comparing Universal Thermal Climate Index (UTCI) with selected thermal indices/environmental parameters during 12 months of the year. Weather Clim. Extremes 19, 49-57.

[83]

Zhang, G., Nan, Z., Zhao, L., Liang, Y., Cheng, G., 2021. Qinghai-Tibet Plateau wetting reduces permafrost thermal responses to climate warming. Earth Planet Sci. Lett. 562, 116858.

[84]

Zhang, J., You, Q., Ren, G., Ullah, S., 2023. Substantial increase in human-perceived heatwaves in eastern China in a warmer future. Atmos. Res. 283, 106554.

[85]

Zhang, R., Sun, C., Zhu, J., Zhang, R., Li, W., 2020. Increased European heat waves in recent decades in response to shrinking Arctic sea ice and Eurasian snow cover. NPJ Clim. Atmos. Sci. 3, 7.

[86]

Zhang, Y., Hajat, S., Zhao, L., Chen, H., Cheng, L., Ren, M., Gu, K., Ji, J. S., Liang, W., Huang, C., 2022. The burden of heatwave-related preterm births and associated human capital losses in China. Nat. Commun. 13, 7565.

PDF

928

Accesses

0

Citation

Detail

Sections
Recommended

/