Proactive adaptation to climate change in landscape configuration and agricultural management optimization: A case study of agro-pastoral transitional zone in northern China

Jianmin Qiao , Yuhang Gao , Ziyan Lv , Zidong Tang , Shike Xie , Qian Cao , Xiao Sun

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) : 100373

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) :100373 DOI: 10.1016/j.geosus.2025.100373
Research Article
review-article

Proactive adaptation to climate change in landscape configuration and agricultural management optimization: A case study of agro-pastoral transitional zone in northern China

Author information +
History +
PDF

Abstract

Optimizing landscape patterns and management measures would be an effective strategy for the agro-pastoral transitional zone in northern China (ATNC) to adapt to future climate change. Existing studies generally focus on cropland or pasture, and thus there is a lack of comprehensive understanding of the landscape composition and configuration in complex agro-pastoral transitional zone. In this study, Ansai County in the ATNC was chosen as an experimental area. Four typical agroecosystem services (AESs), food provision (FP), soil carbon (SC), soil retention (SR) and water yield (WY) from 1980 to 2020, were simulated by spatially integrating a model of the agricultural system using the Environmental Policy Integrated Climate (EPIC) combined with geographic information systems technology. The impacts of different crop types, pasture configurations, and tillage practices on AESs under future climate scenarios were assessed in the context of agro-pastoral transition. Finally, the optimal landscape pattern configuration and management measures were identified through single-objective and multi-objective optimization models. The results showed that under historical scenarios, implementing policies such as converting cropland to pastureland improved SC and SR but reduced FP and WY. Compared to traditional and reduced tillage, no-till practices benefited the enlargement of AESs and the agricultural ecosystem. Notably, future climate change generally negatively affected AESs, especially under the Shared Socioeconomic Pathway (SSP5–8.5) climate scenario. The combination of planting corn and no-till measures would be ideal for optimizing the agricultural ecosystem in Ansai County. For the fragile ATNC, we should advocate conservation agriculture and policies converting cropland to pastureland to mitigate the adverse impacts of climate changes. This study establishes a replicable framework to address landscape management in complex agropastoral systems and offers solutions for climate-resilient land management in global dryland transitional zones, contributing to the realization of regional ecosystem sustainability.

Keywords

GEO_EPIC model / Agroecosystem services / Scenario simulation / Landscape optimization / Agro-pastoral transitional zone

Cite this article

Download citation ▾
Jianmin Qiao, Yuhang Gao, Ziyan Lv, Zidong Tang, Shike Xie, Qian Cao, Xiao Sun. Proactive adaptation to climate change in landscape configuration and agricultural management optimization: A case study of agro-pastoral transitional zone in northern China. Geography and Sustainability, 2025, 6(6): 100373 DOI:10.1016/j.geosus.2025.100373

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

CRediT authorship contribution statement

Jianmin Qiao: Writing – review & editing, Funding acquisition. Yuhang Gao: Writing – original draft. Ziyan Lv: Visualization. Zidong Tang: Software, Methodology. Shike Xie: Software, Methodology. Qian Cao: Supervision. Xiao Sun: Writing – review & editing.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grants No. 42471325, 42101299 and 42271113), the “Youth Innovation Team Program” of Colleges and Universities in Shandong Province (Grant No. 2022KJ248), the Key Project of Teaching Reform of Shandong Normal University (Grant No. 2024ZJ37) and the Natural Science Foundation of Gansu Province (Grant No. 23JRRG0015).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100373.

References

[1]

Achankeng, E., Cornelis, W., 2023. Conservation tillage effects on European crop yields: a meta-analysis. Field Crops Res. 298, 108967.

[2]

Alcon, F., Zabala, J. A., Martínez-García, V., Albaladejo, J. A., López-Becerra, E. I., de-Miguel, M. D., Martínez-Paz, J. M., 2022. The social wellbeing of irrigation water. A demand-side integrated valuation in a Mediterranean agroecosystem. Agric. Water Manage. 262, 107400.

[3]

Angstrom, A., 1924. Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Q. J. R. Meteorol. Soc. 50(210), 121-126.

[4]

Briner, S., Elkin, C., Huber, R., 2013. Evaluating the relative impact of climate and economic changes on forest and agricultural ecosystem services in mountain regions. J. Environ. Manage. 129, 414-422.

[5]

Cord, A. F., Bartkowski, B., Beckmann, M., Dittrich, A., Hermans-Neumann, K., Kaim, A., Lienhoop, N., Locher-Krause, K., Priess, J., Schröter-Schlaack, C., 2017. Towards systematic analyses of ecosystem service trade-offs and synergies: main concepts, methods and the road ahead. Ecosyst. Serv. 28, 264-272.

[6]

Cai, Y., Zhang, P., Wang, Q., Wu, Y., Ding, Y., Nabi, M., Fu, C., Wang, H., wang, Q., 2023. How does water diversion affect land use change and ecosystem service: a case study of Baiyangdian wetland, China. J. Environ. Manage. 344, 118558.

[7]

Capó-Bauçà, S., Marqués, A., Llopis-Vidal, N., Bota, J., Baraza, E., 2019. Long-term establishment of natural green cover provides agroecosystem services by improving soil quality in a Mediterranean vineyard. Ecol. Eng. 127, 285-291.

[8]

Chatanga, P., Kotze, D. C., Okello, T. W., Sieben, E. J. J., 2020. Ecosystem services of high-altitude Afromontane palustrine wetlands in Lesotho. Ecosyst. Serv. 45, 101185.

[9]

Chen, W., Wang, G., Gu, T., Fang, C., Pan, S., Zeng, J., Wu, J., 2023. Simulating the impact of urban expansion on ecosystem services in Chinese urban agglomerations: a multi-scenario perspective. Environ. Impact Assess. Rev. 103, 107275.

[10]

Chen, Y., Li, X., Su, W., Li, Y., 2008. Simulating the optimal land-use pattern in the farming-pastoral transitional zone of Northern China. Comput. Environ. Urban Syst. 32(5), 407-414.

[11]

Cheng, J., Xu, Z., Liang, Z., Li, F, W-Cong, F., Zhang, C., Song, L., Wang, C., Zhang, F., Richter, A., van der Werf, W., Groot, J. C. J., 2023. Farmers perceive diminishing ecosystem services, but overlook dis-services in intensively used agricultural landscapes in the North China Plain. J. Environ. Manage. 347, 119060.

[12]

Daily, G., 1997. Nature’s Services: Societal Dependence on Natural Ecosystems. Island Press, Washington, D.C.

[13]

De Vreese, R., Leys, M., Fontaine, C. M., Dendoncker, N., 2016. Social mapping of perceived ecosystem services supply – the role of social landscape metrics and social hotspots for integrated ecosystem services assessment, landscape planning and management. Ecol. Indic. 66, 517-533.

[14]

Ditzler, L., Rossing, W. A. H., Schulte, R. P. O., Hageman, J., van Apeldoorn, D. F., 2023. Prospects for increasing the resolution of crop diversity for agroecosystem service delivery in a Dutch arable system. Agric. Ecosyst. Environ. 351, 108472.

[15]

Dong, W., Wu, X., Zhang, J., Zhang, Y., Dang, H., , Y., Wang, C., Guo, J., 2023. Spatiotemporal heterogeneity and driving factors of ecosystem service relationships and bundles in a typical agropastoral ecotone. Ecol. Indic. 156, 111074.

[16]

Fan, L., Lv, C., Chen, Z., 2012. A review of EPIC model and its applications. Prog. Geogr. 31(5), 584-592.

[17]

Gebhardt, S., van Dijk, J., Wassen, M. J., Bakker, M., 2023. Agricultural intensity interacts with landscape arrangement in driving ecosystem services. Agric. Ecosyst. Environ. 357, 108692.

[18]

Geijzendorffer, I. R., Cohen-Shacham, E., Cord, A. F., Cramer, W., Guerra, C., Martín-López, B., 2017. Ecosystem services in global sustainability policies. Environ. Sci. Policy 74, 40-48.

[19]

Guo, H., Wang, R., Garfin, G. M., Zhang, A., Lin, D., Liang, Q. O., Wang, J. A., 2021. Rice drought risk assessment under climate change: based on physical vulnerability a quantitative assessment method. Sci. Total Environ. 751, 141481.

[20]

Hao, R., Yu, D., Wu, J., 2017. Relationship between paired ecosystem services in the grassland and agro-pastoral transitional zone of China using the constraint line method. Agric. Ecosyst. Environ. 240, 171-181.

[21]

Hou, W., Hu, T., Yang, L., Liu, X., Zheng, X., Pan, H., Zhang, X., Xiao, S., Deng, S., 2023. Matching ecosystem services supply and demand in China’s urban agglomerations for multiple-scale management. J. Clean. Prod. 420, 138351.

[22]

Jo, J-H., Choi, M., Kweon, D, Y-Son, G., Lim, E. M., 2024. Regulating ecosystem services in a local forest: navigating supply, trade-offs, and synergies. Trees For. People 15, 100466.

[23]

Kamali, B., Abbaspour, K. C., Lehmann, A., Wehrli, B., Yang, H., 2018. Uncertainty-based auto-calibration for crop yield – the EPIC+ procedure for a case study in Sub-Saharan Africa. Eur. J. Agron. 93, 57-72.

[24]

Klein, T., Holzkämper, A., Calanca, P., Seppelt, R., Fuhrer, J., 2013. Adapting agricultural land management to climate change: a regional multi-objective optimization approach. Landsc. Ecol. 28(10), 2029-2047.

[25]

Klik, A., Rosner, J., 2020. Long-term experience with conservation tillage practices in Austria: impacts on soil erosion processes. Soil Tillage Res. 203, 104669.

[26]

Komissarov, M., Klik, A., 2020. The impact of no-till, conservation, and conventional tillage systems on erosion and soil properties in Lower Austria. Eurasian Soil Sci. 53, 503-511.

[27]

Lal, R., 2012. Climate change and soil degradation mitigation by sustainable management of soils and other natural resources. Agric. Res. 1, 199-212.

[28]

Lautenbach, S., Volk, M., Strauch, M., Whittaker, G., Seppelt, R., 2013. Optimization-based trade-off analysis of biodiesel crop production for managing an agricultural catchment. Environ. Model. Softw. 48, 98-112.

[29]

Liu, C., Jia, X., Ren, L., Zhao, C., Yao, Y., Zhang, Y., Shao, M. A., 2023. Cropland-to-shrubland conversion reduces soil water storage and contributes little to soil carbon sequestration in a dryland area. Agric. Ecosyst. Environ. 354, 108572.

[30]

Liu, M., Jia, Y., Zhao, J., Shen, Y., Pei, H., Zhang, H., Li, Y., 2021. Revegetation projects significantly improved ecosystem service values in the agro-pastoral ecotone of northern China in recent 20 years. Sci. Total Environ. 788, 147756.

[31]

Liu, Q., Sun, X., Wu, W., Liu, Z., Fang, G., Yang, P., 2022. Agroecosystem services: a review of concepts, indicators, assessment methods and future research perspectives. Ecol. Indic. 142, 109218.

[32]

Liu, Q., Sun, X., Huang, Q., Qiao, J., Fang, G., Ren, Y., Wang, C., Sun, J., Yang, P., 2025. Optimizing the landscape in grain production and identifying trade-offs between ecological benefits based on production possibility frontiers: a case study of Beijing–Tianjin–Hebei region. J. Environ. Manage. 377, 124583.

[33]

Luan, C., Liu, R., Zhang, Q., Sun, J., Liu, J., 2024. Multi-objective land use optimization based on integrated NSGA–II–PLUS model: comprehensive consideration of economic development and ecosystem services value enhancement. J. Clean. Prod. 434, 140306.

[34]

Luo, M., Hu, G., Chen, G., Liu, X., Hou, H., Li, X., 2022. 1 km land use/land cover change of China under comprehensive socioeconomic and climate scenarios for 2020–2100. Sci. Data 9(1), 110.

[35]

Lv, L., Gao, Z., Liao, K., Zhu, Q., Zhu, J., 2023. Impact of conservation tillage on the distribution of soil nutrients with depth. Soil Tillage Res. 225, 105527.

[36]

Mazziotta, A., Podkopaev, D., Triviño, M., Miettinen, K., Pohjanmies, T., Mönkkönen, M., 2017. Quantifying and resolving conservation conflicts in forest landscapes via multiobjective optimization. Silva Fenn. 51(1), 1778.

[37]

Metzger, M. J., Rounsevell, M. D. A., Acosta-Michlik, L., Leemans, R., Schröter, D., 2006. The vulnerability of ecosystem services to land use change. Agric. Ecosyst. Environ. 114(1), 69-85.

[38]

Miralles-Wilhelm, F., 2021. Nature-based solutions in agriculture: sustainable management and conservation of land, water and biodiversity. Food Agriculture Organization of the United Nations and The Nature Conservancy.

[39]

Mujtaba, G., Shah, M. U. H., Hai, A., Daud, M., Hayat, M., 2024. A holistic approach to embracing the United Nation’s Sustainable Development Goal (SDG-6) towards water security in Pakistan. J. Water Process Eng. 57, 104691.

[40]

Nazir, M. J., Li, G., Nazir, M. M., Zulfiqar, F., Siddique, K. H. M., Iqbal, B., Du, D., 2024. Harnessing soil carbon sequestration to address climate change challenges in agriculture. Soil Tillage Res. 237, 105959.

[41]

Novikova, A., Rocchi, L., Vitunskienė, V., 2017. Assessing the benefit of the agroecosystem services: Lithuanian preferences using a latent class approach. Land Use Policy 68, 277-286.

[42]

Osewe, M., Aijun, L., Jiqin, H., 2023. Sustainable intensification and food security: a panel data assessment of the smallholder maize farmers in Uganda. Glob. Food Secur. 39, 100724.

[43]

Pan, Q., Wen, Z., Wu, T., Zheng, T., Yang, Y., Li, R., Zheng, H., 2022. Trade-offs and synergies of forest ecosystem services from the perspective of plant functional traits: a systematic review. Ecosyst. Serv. 58, 101484.

[44]

Peng, J., Hu, X., Wang, X., Meersmans, J., Liu, Y., Qiu, S., 2019. Simulating the impact of Grain-for-Green Programme on ecosystem services trade-offs in Northwestern Yunnan, China. Ecosyst. Serv. 39, 100998.

[45]

Peng, Q., Liu, B., Hu, Y., Wang, A., Guo, Q., Yin, B., Cao, Q., He, L., 2023. The role of conventional tillage in agricultural soil erosion. Agric. Ecosyst. Environ. 348, 108407.

[46]

Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Zhou, L., Liu, H., Ma, Y., Ding, Y., Friedlingstein, P., Liu, C., Tan, K., Yu, Y., Zhang, T., Fang, J., 2010. The impacts of climate change on water resources and agriculture in China. Nature 467(7311), 43-51.

[47]

Power, A. G., 2010. Ecosystem services and agriculture: tradeoffs and synergies. Philos. Trans. R. Soc. B: Biol. Sci. 365(1554), 2959-2971.

[48]

Qiao, J., Cao, Q., Liu, Y., Wu, Q., 2018. Scale dependence and parameter sensitivity of the EPIC model in the agro-pastoral transitional zone of north China. Ecol. Modell. 390, 51-61.

[49]

Qiao, J., Deng, L., Liu, H., Wang, Z., 2024. Spatiotemporal heterogeneity in ecosystem service trade-offs and their drivers in the Huang-Huai-Hai Plain, China. Landsc. Ecol. 39(3), 42.

[50]

Qiao, J., Yu, D., Cao, Q., Hao, R., 2019. Identifying the relationships and drivers of agro-ecosystem services using a constraint line approach in the agro-pastoral transitional zone of China. Ecol. Indic. 106, 105439.

[51]

Qiao, J., Yu, D., Wu, J., 2018. How do climatic and management factors affect agricultural ecosystem services? A case study in the agro-pastoral transitional zone of northern China. Sci. Total Environ. 613, 314-323.

[52]

Qiu, G. Y., Xie, F., Feng, Y. C., Tian, F., 2011. Experimental studies on the effects of the “Conversion of Cropland to Grassland Program” on the water budget and evapotranspiration in a semi-arid steppe in Inner Mongolia, China. J. Hydrol. 411(1), 120-129.

[53]

Ramankutty, N., Evan, A. T., Monfreda, C., Foley, J. A., 2008. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycle. 22(1), GB1003.

[54]

Rezaei, E. E., Webber, H., Asseng, S., Boote, K., Durand, J. L., Ewert, F., Martre, P., MacCarthy, D. S., 2023. Climate change impacts on crop yields. Nat. Rev. Earth Environ. 4(12), 831-846.

[55]

Riggers, C., Poeplau, C., Don, A., Frühauf, C., Dechow, R., 2021. How much carbon input is required to preserve or increase projected soil organic carbon stocks in German croplands under climate change?. Plant Soil 460, 417-433.

[56]

Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth, A., Boote, K. J., Folberth, C., Glotter, M., Khabarov, N., 2014. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. U.S.A. 111(9), 3268-3273.

[57]

Runting, R. K., Bryan, B. A., Dee, L. E., Maseyk, F. J. F., Mandle, L., Hamel, P., Wilson, K. A., Yetka, K., Possingham, H. P., Rhodes, J. R., 2017. Incorporating climate change into ecosystem service assessments and decisions: a review. Glob. Change Biol. 23(1), 28-41.

[58]

Sharpley, A.N., Williams, J.R., 1990. EPIC-erosion/productivity impact calculator: 1. Model documentation. Tech. Bull.-U. S. Dept. Agric. 1768 (Pt 1).

[59]

Shen, J., Zhu, Q., Jiao, X., Ying, H., Wang, H., Wen, X., Xu, W., Li, T., Cong, W., Liu, X., Hou, Y., Cui, Z., Oenema, O., Davies, W. J., Zhang, F., 2020. Agriculture Green Development: a model for China and the world. Front. Agric. Sci. Eng. 7(1), 5-13.

[60]

Sonneveld, B.G., Merbis, M., Alfarra, A., Ünver, O., Arnal, M.F., 2018. Nature-based solutions for agricultural water management and food security. FAO Land and Water Discussion Paper(12).

[61]

Tang, H-J, W-Wu, B., Yang, P, Z-Li, G., 2014. Systematic synthesis of impacts of climate change on China’s crop production system. J. Integr. Agric. 13(7), 1413-1417.

[62]

Tao, F., Yokozawa, M., Liu, J., Zhang, Z., 2008. Climate–crop yield relationships at provincial scales in China and the impacts of recent climate trends. Clim. Res. 38, 83-94.

[63]

Tao, J., Lu, Y., Ge, D., Dong, P., Gong, X., Ma, X., 2022. The spatial pattern of agricultural ecosystem services from the production-living-ecology perspective: a case study of the Huaihai Economic Zone, China. Land Use Policy 122, 106355.

[64]

Tornquist, C. G., Gassman, P. W., Mielniczuk, J., Giasson, E., Campbell, T., 2009. Spatially explicit simulations of soil C dynamics in Southern Brazil: integrating century and GIS with i_century. Geoderma 150(3), 404-414.

[65]

Untied Nations, 2015. Transforming our world: the 2030 agenda for sustainable development. United Nations, New York.

[66]

Wang, J., Qu, L., Li, Y., Feng, W., 2023. Identifying the structure of rural regional system and implications for rural revitalization: a case study of Yanchi County in northern China. Land Use Policy 124, 106436.

[67]

Wang, R., Zhang, Y., Zou, C., 2022. How does agricultural specialization affect carbon emissions in China?. J. Clean. Prod. 370, 133463.

[68]

Wang, Y., Liu, S., Shi, H., 2023. Comparison of climate change impacts on the growth of C3 and C4 crops in China. Ecol. Inf. 74, 101968.

[69]

Wiesmeier, M., Poeplau, C., Sierra, C. A., Maier, H., Frühauf, C., Hübner, R., Kühnel, A., Spörlein, P., Geuß, U., Hangen, E., Schilling, B., von Lützow, M., Kögel-Knabner, I., 2016. Projected loss of soil organic carbon in temperate agricultural soils in the 21st century: effects of climate change and carbon input trends. Sci. Rep. 6(1), 32525.

[70]

Williams, J. R., Jones, C. A., Dyke, P. T., 1984. A modelling approach to determining the relationship between erosion and soil productivity. Trans. ASAE 27(1), 129-144.

[71]

Wu, G. L., Cheng, Z., Alatalo, J. M., Zhao, J., Liu, Y., 2021. Climate warming consistently reduces grassland ecosystem productivity. Earths Future 9(6), e2020EF001837.

[72]

Wu, J., 2013. Landscape sustainability science: ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 28(6), 999-1023.

[73]

Wu, X., Wang, S., Fu, B., Liu, Y., Zhu, Y., 2018. Land use optimization based on ecosystem service assessment: a case study in the Yanhe watershed. Land Use Policy 72, 303-312.

[74]

Xiao, C., Zhang, F., Li, Y., Fan, J., Ji, Q., Jiang, F., He, Z., 2024. Optimizing drip irrigation and nitrogen fertilization regimes to reduce greenhouse gas emissions, increase net ecosystem carbon budget and reduce carbon footprint in saline cotton fields. Agric. Ecosyst. Environ. 366, 108912.

[75]

Xiong, C., Wang, G., Su, W., Gao, Q., 2021. Selecting low-carbon technologies and measures for high agricultural carbon productivity in Taihu Lake Basin, China. Pollut. Res. 28(36), 49913-49920.

[76]

Xu, X., Liu, J., Tan, Y., Yang, G., 2021. Quantifying and optimizing agroecosystem services in China’s Taihu Lake Basin. J. Environ. Manage. 277, 111440.

[77]

Xu, X., Liu, W., Kiely, G., 2011. Modeling the change in soil organic carbon of grassland in response to climate change: effects of measured versus modelled carbon pools for initializing the Rothamsted Carbon model. Agric. Ecosyst. Environ. 140(3–4), 372-381.

[78]

Yan, R., Zhang, X., Yan, S., Chen, H., 2018. Estimating soil erosion response to land use/cover change in a catchment of the Loess Plateau, China. Int. Soil Water Conserv. Res. 6(1), 13-22.

[79]

Yang, Y, Y-Tong, A, G-Liu, Y, W-Han, S, H-Li, C., 2022. Conservation tillage methods affect soil water use and spring maize yield in a semi-humid drought-prone area of China. Acta Ecol. Sin. 42(5), 453-460.

[80]

Yin, B., Hu, Z., Wang, Y., Zhao, J., Pan, Z., Zhen, W., 2021. Effects of optimized subsoiling tillage on field water conservation and summer maize (Zea mays L.) yield in the North China Plain. Agric. Water Manage. 247, 106732.

[81]

Yu, D., Qiao, J., Shi, P., 2018. Spatiotemporal patterns, relationships, and drivers of China’s agricultural ecosystem services from 1980 to 2010: a multiscale analysis. Landsc. Ecol. 33(4), 575-595.

[82]

Zhang, B., Shao, R., Zhao, X., Wu, P., 2020. Effects of large-scale vegetation restoration on eco-hydrological processes over the Loess Plateau, China. J. Basic Sci. Eng. 28(3), 594-606.

[83]

Zhang, H., Fan, J., Cao, W., Harris, W., Li, Y., Chi, W., Wang, S., 2018. Response of wind erosion dynamics to climate change and human activity in Inner Mongolia, China during 1990 to 2015. Sci. Total Environ. 639, 1038-1050.

[84]

Zhang, J., Hu, K., Li, K., Zheng, C., Li, B., 2017. Simulating the effects of long-term discontinuous and continuous fertilization with straw return on crop yields and soil organic carbon dynamics using the DNDC model. Soil Tillage Res. 165, 302-314.

[85]

Zhang, Q., Wang, S., Sun, Y., Zhang, Y., Li, H., Liu, P., Wang, X., Wang, R., Li, J., 2022. Conservation tillage improves soil water storage, spring maize (Zea mays L.) yield and WUE in two types of seasonal rainfall distributions. Soil Tillage Res. 215, 105237.

[86]

Zhang, W., Ricketts, T. H., Kremen, C., Carney, K., Swinton, S. M., 2007. Ecosystem services and dis-services to agriculture. Ecol. Econ. 64(2), 253-260.

[87]

Zhang, Y., Li, X., Gregorich, E. G., McLaughlin, N. B., Zhang, X., Guo, Y., Gao, Y., Liang, A., 2019. Evaluating storage and pool size of soil organic carbon in degraded soils: tillage effects when crop residue is returned. Soil Tillage Res. 192, 215-221.

[88]

Zhang, Y., Li, X., Gregorich, E. G., McLaughlin, N. B., Zhang, X., Guo, Y., Liang, A., Fan, R., Sun, B., 2018. No-tillage with continuous maize cropping enhances soil aggregation and organic carbon storage in Northeast China. Geoderma 330, 204-211.

[89]

Zhang, Y., Wang, S., Wang, H., Ning, F., Zhang, Y., Dong, Z., Wen, P., Wang, R., Wang, X., Li, J., 2018. The effects of rotating conservation tillage with conventional tillage on soil properties and grain yields in winter wheat-spring maize rotations. Agric. For. Meteorol. 263, 107-117.

[90]

Zhu, K., Ran, H., Wang, F., Ye, X., Niu, L., Schulin, R., Wang, G., 2022. Conservation tillage facilitated soil carbon sequestration through diversified carbon conversions. Agric. Ecosyst. Environ. 337, 108080.

PDF

458

Accesses

0

Citation

Detail

Sections
Recommended

/