Current status and medium- and long-term variation of soil erosion by water in China

Huiyun Xu , Xuchao Zhu , Pasquale Borrelli , Longxi Cao , Mingan Shao

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) : 100372

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) :100372 DOI: 10.1016/j.geosus.2025.100372
Research Article
review-article

Current status and medium- and long-term variation of soil erosion by water in China

Author information +
History +
PDF

Abstract

Soil erosion is the primary factor causing the loss of soil resources and land degradation. Clarifying the current status of soil erosion in China and the characteristics of future changes under different pathways of development is important to the global management of soil resources, food security, and ecosystem services. We used the revised universal soil loss equation and the most recent and reliable soil and environmental data to characterize soil erosion in China at present and under typical Shared Socioeconomic Pathways and Representative Concentration Pathways (i.e., SSP1–2.6 and SSP5–8.5) in the medium- and long-term future (2050 and 2100). The current average rate of soil erosion in China was 14.78 t ha-1 yr-1, with a total amount of about 14.0 Pg yr-1. The amount of total erosion increased by 5.0 %, 10.8 %, 9.9 %, and 25.9 % for scenarios 2050_SSP1–2.6, 2050_SSP5–8.5, 2100_SSP1–2.6, and 2100_SSP5–8.5, respectively, compared to the baseline amount in 2010. The contribution of climate change and land use to the increase in erosion ranged from 9.5 % to 31.5 % and -6.95 % to -1.78 %, respectively, with the contribution of climate change about 2.36- to 7.54-fold larger than the contribution of land use. Converting arable barren land into forest and grassland or adopting conservation tillage practices for farmland, could nevertheless effectively offset the increase in erosion under the four future scenarios. This study provides data and a scientific basis for managing soil erosion in China and provides a useful reference for conserving global land resources and formulating policies to cope with climatic and environmental changes.

Keywords

Soil erosion mapping / Future erosion projections / Erosion offset measures / Climate change / Land use / RUSLE

Cite this article

Download citation ▾
Huiyun Xu, Xuchao Zhu, Pasquale Borrelli, Longxi Cao, Mingan Shao. Current status and medium- and long-term variation of soil erosion by water in China. Geography and Sustainability, 2025, 6(6): 100372 DOI:10.1016/j.geosus.2025.100372

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Huiyun Xu: Writing – original draft, Formal analysis, Data curation. Xuchao Zhu: Writing – original draft, Methodology, Funding acquisition, Conceptualization. Pasquale Borrelli: Writing – review & editing, Methodology. Longxi Cao: Methodology, Data curation. Mingan Shao: Writing – review & editing, Supervision, Resources, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2024YFD1501102), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20220163), the Jiangxi Province Natural Science Foundation (Grant No. 20224BAB203031), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA0440202), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2023327).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100372.

References

[1]

Alewell, C., Borrelli, P., Meusburger, K., Panagos, P., 2019. Using the USLE: chances, challenges and limitations of soil erosion modelling. Int. Soil Water Conserv. Res., 7 (3), pp. 203-225. doi: 10.1016/j.iswcr.2019.05.004.

[2]

Allan, R. P., Soden, B. J., 2008. Atmospheric warming and the amplification of precipitation extremes. Science, 321 (2008), pp. 1481-1484. doi: 10.1126/science.1160787.

[3]

Arnoldus, H. M. J., 1977. FAO Soil Bulletin 34: Assessing Soil Degradation: Methodology Used to Determine the Maximum Average Soil Loss Due to Sheet and Rill Erosion in Morocco. FAO, Rome

[4]

Borrelli, P., Alewell, C., Alvarez, P., Anache, J. A. A., Baartman, J., Ballabio, C., Bezak, N., Biddoccu, M., Cerdà, A., Chalise, D., Chen, S., Chen, W., Girolamo, A. M. D., Gessesse, G. D., Deumlich, D., Diodato, N., Efthimiou, N., Erpul, G., Fiener, P., Freppaz, M., Gentile, F., Gericke, A., Haregeweyn, N., Hu, B., Jeanneau, A., Kaffas, K., Kiani-Harchegani, M., Villuendas, I. L., Li, C., Lombardo, L., López-Vicente, M., Lucas-Borja, M. E., Märker, M., Matthews, F., Miao, C., Mikoš, M., Modugno, S., Möller, M., Naipal, V., Nearing, M., Owusu, S., Panday, D., Patault, E., Patriche, C. V., Poggio, L., Portes, R., Quijano, L., Rahdari, M. R., Renima, M., Ricci, G. F., Rodrigo-Comino, J., Saia, S., Samani, A. N., Schillaci, C., Syrris, V., Kim, H. S., Spinola, D. N., Oliveira, P. T., Teng, H., Thapa, R., Vantas, K., Vieira, D., Yang, J. E., Yin, S., Zema, D. A., Zhao, G., Panagos, P., 2021. Soil erosion modelling: a global review and statistical analysis. Sci. Total Environ., 780, Article 146494. doi: 10.1016/j.scitotenv.2021.146494.

[5]

Borrelli, P., Robinson, D., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., van Oost, K., Montanarella, L., Panagos, P., 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun., 8, p. 2013. doi: 10.1038/s41467-017-02142-7.

[6]

Borrelli, P., Robinson, D. A., Panagos, P., Lugato, E., Yang, J. E., Alewell, C., Wuepper, D., Montanarella, L., Ballabio, C., 2020. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. U.S.A., 117 (36), pp. 21994-22001. doi: 10.1073/pnas.2001403117.

[7]

Cai, C., Ding, S., Shi, Z., Huang, L., Zhang, G., 2000. Application of the USLE model and the GIS IDRISI to predict soil erosion in small watersheds. J. Soil Water Conserv. 2000; (2), 19-24.

[8]

Cai, S., Zhao, X., Pittelkow, C. M., Fan, M., Zhang, X., Yan, X., 2023. Optimal nitrogen rate strategy for sustainable rice production in China. Nature, 615 (2023), pp. 73-79. doi: 10.1038/s41586-022-05678-x.

[9]

Cao, X. F., Sun, B., Chen, H., Zhou, J., Song, X., Liu, X., Deng, X., Liu, X., Zhao, Y., Zhang, J., Li, J., 2021. Pathways and research progress of marginal land capacity expansion and ecological benefit enhancement in China. Proc. Chin. Acad. Sci. 36(3), 336-348.

[10]

Chen, G., Li, X., Liu, X., 2022. Global land projection based on plant functional types with a 1-km resolution under socio-climatic scenarios. Sci. Data 9 (1), 125. doi: 10.1038/s41597-022-01208-6.

[11]

Chinese Academy of Sciences 2022 Chinese Academy of Sciences. Report on the Protection and Utilization of Black Soil in Northeast China. Chinese Academy of Sciences, Beijing

[12]

de Vente, J., Poesen, J., Verstraeten, G., Govers, G., Vanmaercke, M., Rompaey, A. V., Arabkhedri, M., Boix-Fayos, C., 2013. Predicting soil erosion and sediment yield at regional scales: where do we stand?. Earth-Sci. Rev., 127, pp. 16-29. doi: 10.1016/j.earscirev.2013.08.014.

[13]

Felipe-Lucia, M. R., Soliveres, S., Penone, C., Fischer, M., Ammer, C., Boch, S., Boeddinghaus, R. S., Bonkowski, M., Buscot, F., Fiore-Donno, A. M., Frank, K., Goldmann, K., Gossner, M. M., Hölzel, N., Jochum, M., Kandeler, E., Klaus, V. H., Kleinebecker, T., Leimer, S., Manning, P., Oelmann, Y., Saiz, H., Schall, P., Schloter, M., Schöning, I., Schrumpf, M., Solly, E. F., Stempfhuber, B., Weisser, W. W., Wilcke, W., Wubet, T., Allan, E., 2020. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc. Natl. Acad. Sci. U.S.A., 117 (45), pp. 28140-28149. doi: 10.1073/pnas.2016210117.

[14]

Fowler, H. J., Lenderink, G., Prein, A. F., Westra, S., Allan, R. P., Ban, N., Barbero, R., Berg, P., Blenkinsop, S., Do, H. X., Guerreiro, S., Haerter, J. O., Kendon, E. J., Lewis, E., Schaer, C., Sharma, A., Villarini, G., Wasko, C., Zhang, X., 2021. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ., 2, pp. 107-122. doi: 10.1038/s43017-020-00128-6.

[15]

Gao, J., Wang, H., Zuo, L., 2018. Spatial gradient and quantitative attribution of karst soil erosion in Southwest China. Environ. Monit. Assess. 190 (12), 730. doi: 10.1007/s10661-018-7116-2.

[16]

Ge, S., Wang, J., Jiang, C., 2024. 19 (2), Article 024048. doi: 10.1088/1748-9326/ad2435.

[17]

Guo, Y., Peng, C., Zhu, Q., Wang, M., Wang, H., Peng, S., He, H., 2019. Modelling the impacts of climate and land use changes on soil water erosion: model applications, limitations and future challenges. J. Environ. Manage. 250, 109403. doi: 10.1016/j.jenvman.2019.109403.

[18]

Hirmas, D. R., Giménez, D., Nemes, A., Kerry, R., Brunsell, N. A., Wilson, C. J., 2018. Climate-induced changes in continental-scale soil macroporosity may intensify water cycle. Nature, 561 (2018), pp. 100-103. doi: 10.1038/s41586-018-0463-x.

[19]

Ito, A., 2007. Simulated impacts of climate and land-cover change on soil erosion and implication for the carbon cycle, 1901 to 2100. Geophys. Res. Lett., 34 (9), Article L09403. doi: 10.1029/2007gl029342.

[20]

Konecky, B. L., Mckay, N. P., Falster, G. M., Stevenson, S., Fischer, M. J., Atwood, A. R., Thompson, D. M., Jones, M. D., Tyler, J. J., Delong, K. L., Martrat, B., Thomas, E. K., Conroy, J. L., Dee, S. G., Jonker, L., Churakove, O. V., Kern, Z., Opel, T., Porter, T. J., Sayani, H. R., Skrzypek, G., Members, I. P., 2023. Globally coherent water cycle response to temperature change during the past two millennia. Nat. Geosci., 16 (11), pp. 997-1004. doi: 10.1038/s41561-023-01291-3.

[21]

Lal, R., Pimentel, D., 2008. Soil erosion: a carbon sink or source?. Science, 319 (2008), pp. 1040-1042. doi: 10.1126/science.319.5866.1040.

[22]

Li, J., He, H., Zeng, Q., Chen, L., Sun, R., 2023. A Chinese soil conservation dataset preventing soil water erosion from 1992 to 2019. Sci. Data, 10, p. 319. doi: 10.1038/s41597-023-02246-4.

[23]

Li, J., Wang, G., Song, C., Sun, S., Ma, J., Wang, Y., Guo, L., Li, D., 2024b. Recent intensified erosion and massive sediment deposition in Tibetan Plateau rivers. Nat. Commun. 15 (1), 722. doi: 10.1038/s41467-024-44982-0.

[24]

Li, K., Yang, J., Wang, J., Wang, Z., Zheng, Y., Borrelli, P., Hubacek, K., Hu, Y., Xu, B., Fang, N., Zheng, C., Zhou, Z., Shi, Z., 2024a. Human-altered soil loss dominates nearly half of water erosion in China but surges in agriculture-intensive areas. One Earth 7 (11), 2008–2018. doi: 10.1016/j.oneear.2024.09.001.

[25]

Li, P., Mu, X., Holden, J., Wu, Y., Irvine, B., Wang, F., Gao, P., Zhao, G., Sun, W., 2017. Comparison of soil erosion models used to study the Chinese Loess Plateau. Earth-Sci. Rev., 170, pp. 17-30. doi: 10.1016/j.earscirev.2017.05.005.

[26]

Liu, B., Xie, Y., Li, Z., Liang, Y., Zhang, W., Fu, S., Yin, S., Wei, X., Zhang, K., Wang, Z., Liu, Y., Zhao, Y., Guo, Q., 2020. The assessment of soil loss by water erosion in China. Int. Soil Water Conserv. Res., 8 (4), pp. 430-439. doi: 10.1016/j.iswcr.2020.07.002.

[27]

Liu, F., Wu, H., Zhao, Y., Li, D., Yang, J., Song, X., Shi, Z., Zhu, A., Zhang, G., 2022. Mapping high resolution National Soil Information Grids of China. Sci. Bull., 67, pp. 328-340. doi: 10.1016/j.scib.2021.10.013.

[28]

Liu, G., Shangguan, Z., Yao, W., Yang, Q., Zhao, M., Dang, X., Guo, M., Wang, G., Wang, B., 2017. Ecological effects of soil conservation in Loess Plateau. Proc. Chin. Acad. Sci. 32(1), 11-19.

[29]

Liu, Z., Deng, Z., Davis, S. J., Ciais, P., 2024. Global carbon emissions in 2023. Nat. Rev. Earth Environ., 5 (4), pp. 253-254. doi: 10.1038/s43017-024-00532-2.

[30]

Ma, S., Wang, L., Wang, H., Zhao, Y., Jiang, J., 2023. Impacts of land use/land cover and soil property changes on soil erosion in the black soil region, China. J. Environ. Manage., 328, Article 117024. doi: 10.1016/j.jenvman.2022.117024.

[31]

Ministry of Water Resources, 2008. Standards for Classification and Gradation of Soil Erosion (SL 190 —2007). Ministry of Water Resources (in Chinese).

[32]

Ministry of Water Resources, 2011. The Bulletin on the Soil and Water Conservation of the First National Water Resources Census. Ministry of Water Resources (in Chinese).

[33]

Ministry of Water Resources, National Development and Reform Commission, Ministry of Finance, Ministry of Land and Resources, Ministry of Environmental Protection, Ministry of Agriculture, State Forestry Bureau, 2012. National Soil and Water Conservation Zoning (Trial). Ministry of Water Resources (in Chinese).

[34]

Peng, Z., Qian, X., LIu, Y., Li, X., Gao, H., An, Y., Qi, J., Jiang, L., Zhang, Y., Chen, S., Pan, H., Chen, B., Liang, C., van der Herijden, M. G. A., Wei, G., Jiao, S., 2024. Land conversion to agriculture induces taxonomic homogenization of soil microbial communities globally. Nat. Commun., 15 (1), p. 3624. doi: 10.1038/s41467-024-47348-8.

[35]

Qiu, L., Zhang, Q., Zhu, H., Reich, P. B., Banerjee, S., van der Herijden, M. G. A., Sadowsky, M. J., Ishii, S., Jia, X., Shao, M., Liu, B., Jiao, H., Li, H., Wei, X., 2021. Erosion reduces soil microbial diversity, network complexity and multifunctionality. ISME J., 15 (8), pp. 2474-2489. doi: 10.1038/s41396-021-00913-1.

[36]

Qu, X., Li, X., Bardgett, R. D., Kuzyakov, Y., Revillini, D., Sonne, C., Xia, C., Ruan, H., Liu, Y., Cao, F., Reich, P. B., Delgado-Baquerizo, M., 2024. Deforestation impacts soil biodiversity and ecosystem services worldwide. Proc. Natl. Acad. Sci. U.S.A., 121 (13), Article e2318475121. doi: 10.1073/pnas.2318475121.

[37]

Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., Yoder, D. C., 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loess Equation (RUSLE). United States Department of Agriculture, Washington, D.C

[38]

Sharpley, A. N., Williams, J. R., 1990. EPIC-Erosion/Productivity Impact Calculator. U.S. Department of Agriculture, U.S. Government Printing Office, Washington, D.C

[39]

Shi, X., Yu, D., Lv, X.Study of erodibility of subtropical soils in China by artificial rainfall simulator. J. Soil Water Conserv. 1995; (3), 38-42.

[40]

Sun, B., Liang, Y., Xu, R., Peng, X., Wang, X., Zhou, J., Li, Z., Zhao, X., 2018. Long-term research on red soil degradation and restoration for ecological recycling agriculture development in southeastern hilly areas. Proc. Chin. Acad. Sci. 33(7), 746-757.

[41]

Sun, L., Liu, F., Zhu, X., Zhang, G., 2024. High-resolution digital mapping of soil erodibility in China. Geoderma, 444, Article 116853. doi: 10.1016/j.geoderma.2024.116853.

[42]

Sun, W., Shao, Q., Liu, J., Zhai, J., 2014. Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. Catena, 121, pp. 151-163. doi: 10.1016/j.catena.2014.05.009.

[43]

Teng, H., Liang, Z., Chen, S., Liu, Y., Rossel, R. A. V., Chappell, A., Yu, W., Shi, Z., 2018. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models. Sci. Total Environ., 635, pp. 673-686. doi: 10.1016/j.scitotenv.2018.04.146.

[44]

Wang, F., Li, B. Y., Tian, S. Y., Zheng, D., Ge, Q. S., 2024. Updating and optimization of eco-geographic zoning in China. J. Geogr. 79(1), 3-16.

[45]

Wang, Y., Hu, W., Sun, H., Zhao, Y., Zhang, P., Li, Z., Zhou, Z., Tong, Y., Liu, S., Zhou, J., Huang, M., Jia, X., Clothier, B., Shao, M., Zhou, W., An, Z., 2024b. Soil moisture decline in China’s monsoon loess critical zone: more a result of land-use conversion than climate change. Proc. Natl. Acad. Sci. U.S.A. 121 (15), e2322127121. doi: 10.1073/pnas.2322127121.

[46]

Wen, Y., Kasielke, T., Li, H., Zhang, B., Zepp, H., 2021. May agricultural terraces induce gully erosion? A case study from the Black Soil Region of Northeast China. Sci. Total Environ., 750, Article 141715. doi: 10.1016/j.scitotenv.2020.141715.

[47]

Xia, L., Cao, L., Yang, Y., Ti, C., Liu, Y., Smith, P., van Groenigen, K. J., Lehmann, J., Lal, R., Butterbach-Bahl, K., Kiese, R., Zhuang, M., Lu, X., Yan, X., 2023. Integrated biochar solutions can achieve carbon-neutral staple crop production. Nat. Food, 4 (3), pp. 236-246. doi: 10.1038/s43016-023-00694-0.

[48]

Xia, L., Yan, X., 2023. How to feed the world with less nitrogen pollution. Nature 613, 34-35.

[49]

Xiong, M., Sun, R., Chen, L., 2019. Global analysis of support practices in USLE-based soil erosion modeling. Prog. Phys. Geogr. 43 (3), 391–409. doi: 10.1177/0309133319832016.

[50]

Xu, Y., Luo, L., Guo, W., Jin, Z., Tian, P., Wang, W., 2024. Revegetation changes main erosion type on the gully–slope on the Chinese Loess Plateau under extreme rainfall: reducing gully erosion and promoting shallow landslides. Water Resour. Res., 60 (3), Article e2023WR036307. doi: 10.1029/2023wr036307.

[51]

Yang, D. W., Kanae, S., Oki, T., Koike, T., Musiake, K., 2003. Global potential soil erosion with reference to land use and climate changes. Hydrol. Process., 17 (14), pp. 2913-2928. doi: 10.1002/hyp.1441.

[52]

Yang, L., Zhao, G., Tian, P., Mu, X., Tian, X., Feng, J., Bai, Y., 2022. Runoff changes in the major river basins of China and their responses to potential driving forces. J. Hydrol., 607, Article 127536. doi: 10.1016/j.jhydrol.2022.127536.

[53]

Yin, C., Bai, C., Zhu, Y., Shao, M., Han, X., Qiao, J., 2025. Future soil erosion risk in China: differences in erosion driven by general and extreme precipitation under climate change. Earths Future, 13 (3), Article e2024EF005390. doi: 10.1029/2024EF005390.

[54]

Yuan, G., Zhang, P., Shao, M., Luo, Y., Zhu, X., 2014. Energy and water exchanges over a riparian Tamarix spp. stand in the lower Tarim River basin under a hyper-arid climate. Agric. For. Meteorol., 194, pp. 144-154. doi: 10.1016/j.agrformet.2014.04.004.

[55]

Yue, T., Yin, S., Xie, Y., Yu, B., Liu, B., 2022. Rainfall erosivity mapping over mainland of China based on high-density hourly rainfall records. Earth Syst. Sci. Data, 14 (2), pp. 665-682. doi: 10.5194/essd-14-665-2022.

[56]

Zhang, F., Zeng, C., Zhang, Q., Yao, T., 2022. Securing water quality of the Asian Water Tower. Nat. Rev. Earth Environ., 3 (10), pp. 611-612. doi: 10.1038/s43017-022-00347-z.

[57]

Zhang, H., Wei, J., Yang, Q., Baartman, J. E. M., Cai, L., Yang, X., Li, S., Yu, J., Ritsema, C. J., Geissen, V., 2017. An improved method for calculating slope length (λ) and the LS parameters of the Revised Universal Soil Loss Equation for large watersheds. Geoderma, 308, pp. 36-45. doi: 10.1016/j.geoderma.2017.08.006.

[58]

Zhang, T., Cheng, C., Wu, X., 2023. Mapping the spatial heterogeneity of global land use and land cover from 2020 to 2100 at a 1 km resolution. Sci. Data 10, 748. doi: 10.1038/s41597-023-02637-7.

[59]

Zhao, Y., Wang, M., Hu, S., Zhang, X., Ouyang, Z., Zhang, G., Huang, B., Zhao, S., Wu, J., Xie, D., Zhu, B., Yu, D., Pan, X., Xu, S., Shi, X., 2018. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl. Acad. Sci. U.S.A., 115 (16), pp. 4045-4050. doi: 10.1073/pnas.1700292114.

[60]

Zhu, X., Gao, L., Wei, X., Li, T., Shao, M., 2023. Progress and prospect of studies of Benggang erosion in southern China. Geoderma, 438, Article 116656. doi: 10.1016/j.geoderma.2023.116656.

[61]

Zhu, X., Liang, Y., Tian, Z., Wang, X., 2021. Analysis of scale-specific factors controlling soil erodibility in southeastern China using multivariate empirical mode decomposition. Catena, 199, Article 105131. doi: 10.1016/j.catena.2020.105131.

PDF

506

Accesses

0

Citation

Detail

Sections
Recommended

/