Effects on heat mitigation, energy use, and carbon savings in urban-scale implementations of nature-based solutions

Jinwook Chung , Kijune Sung

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) : 100362

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) :100362 DOI: 10.1016/j.geosus.2025.100362
Research Article
review-article

Effects on heat mitigation, energy use, and carbon savings in urban-scale implementations of nature-based solutions

Author information +
History +
PDF

Abstract

Extensive changes in land cover and energy use resulting from urbanization lead to an imbalance in urban thermal conditions, making cities more susceptible to the impacts of climate change. Nature-based solutions (NbS) that leverage the cooling effect of green spaces to mitigate urban heat are gaining attention as a way to improve urban sustainability in the face of climate change. The study evaluated the urban-scale application of NbS’s impacts on heat mitigation capacity, air temperature, cooling energy, carbon emissions, and carbon sequestration, as well as the resulting economic benefits using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) Urban Cooling Model (UCM). Green roofs as building adaptations, land use adaptations such as the expansion of urban parks and roadside green space, forest restoration, and multiple adaptations, which are combinations of building and land use adaptations, were considered applicable NbS. Cool roofs were also studied to compare their effects with other urban green infrastructure. The results showed that simultaneously implementing the multiple adaptation methods is the most effective if the applicable areas are sufficient. Considering the implemented area ratio, urban parks are the most effective single adaptive measure, with energy savings of 14.75, 8.63, and 1.98 times higher than those of 100 % green roofs, cool roofs, and 20 % roadside green space expansions, respectively. Restoring forests (21.29 km2) can yield 4.7 times higher energy savings than installing 100 % green roofs (62 km2). In contrast, deforestation loses more energy and carbon than cool roofs can save. This study can help provide an appropriate strategy for achieving urban carbon neutrality by reducing carbon emissions and increasing carbon sequestration through NbS in addition to relieving urban temperatures.

Keywords

Carbon emission / Energy savings / Carbon sequestration / Urban parks / Multiple adaptations / InVEST UCM

Cite this article

Download citation ▾
Jinwook Chung, Kijune Sung. Effects on heat mitigation, energy use, and carbon savings in urban-scale implementations of nature-based solutions. Geography and Sustainability, 2025, 6(6): 100362 DOI:10.1016/j.geosus.2025.100362

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Jinwook Chung: Writing – original draft, Visualization, Formal analysis, Data curation. Kijune Sung: Writing – review & editing, Validation, Investigation, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by a Research Grant of Pukyong National University (2023).

References

[1]

Arnfield, A., 2003. Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Clim., 23, pp. 1-26. doi: 10.1002/joc.859.

[2]

Azeñas, V., Cuxart, J., Picos, R., Medrano, H., Simó, G., López-Grifol, A., Gulías, J., 2018. Thermal regulation capacity of a green roof system in the mediterranean region: the effects of vegetation and irrigation level. Energy Build., 164, pp. 226-238. doi: 10.1016/j.enbuild.2018.01.010.

[3]

Babí Almenar, J., Petucco, C., Sonnemann, G., Geneletti, D., Elliot, T., Rugani, B. 2023a. Modelling the net environmental and economic impacts of urban nature-based solutions by combining ecosystem services, system dynamics and life cycle thinking: an application to urban forests. Ecosyst. Serv., 60 (2023), Article 101506. doi: 10.1016/j.ecoser.2022.101506.

[4]

Babí Almenar, J., Petucco, C., Sonnemann, G., Gutierrez, T. N., Chion, L., Rugani, B., 2023b. Assessing net environmental and economic impacts of urban forests: an online decision support tool. Land 12, 70. doi: 10.3390/land12010070.

[5]

Biasin, A., Masiero, M., Amato, G., Pettenella, D., 2023. Nature-based solutions modeling and cost-benefit analysis to face climate change risks in an urban area: the case of Turin (Italy). Land, 12, p. 280. doi: 10.3390/land12020280.

[6]

Bosch, M., Locatelli, M., Hamel, P., Remme, R. P., Chenal, J., Joost, S., 2021. A spatially explicit approach to simulate urban heat mitigation with InVEST (v3. 8.0). Geosci. Model Dev., 14, pp. 3521-3537. doi: 10.5194/gmd-14-3521-2021.

[7]

Bowler, D. E., Buyung-Ali, L., Knight, T. M., Pullin, A. S., 2010. Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landsc. Urban Plan., 97 (3), pp. 147-155. doi: 10.1016/j.landurbplan.2010.05.006.

[8]

Busan. 2040 Busan Urban Basic Plan (accessed 10 November 2023, in Korean). https://www.busan.go.kr/depart/agora0703.

[9]

Busan Open Data Portal, 2022. Busan metropolitan city resident registration population statistics. https://data.busan.go.kr/dataSet/detail.nm?Publicdatapk = 3076607& contentId = 10 (accessed 2 May 2023).

[10]

Carrillo-Niquete, G. A., Andrade, J., Valdez-Lazalde, J., Reyes-Garcia, C., Stefanoni, J., 2022. Characterizing spatial and temporal deforestation and its effects on surface urban heat islands in a tropical city using Landsat time series. Landsc. Urban Plan., 217, Article 104280. doi: 10.1016/j.landurbplan.2021.104280.

[11]

Cheung, P., Livesley, S., Nice, K., 2021. Estimating the cooling potential of irrigating green spaces in 100 global cities with arid, temperate or continental climates. Sust. Cities Soc. 71, 102974. doi: 10.1016/j.scs.2021.102974.

[12]

Chung, J., Sung, K., 2022. Changes in land cover and landscape index in Busan metropolitan city. J. Korean Ecol. Eng. Soc., 9 (1), pp. 17-26. doi: 10.33214/kees.2022.9.1.17.

[13]

Chung, J., Kim, J., Sung, K., 2024. Analysis of heat mitigation capacity in a coastal city using InVEST Urban Cooling Model. Sust. Cities Soc. 113, 105669. doi: 10.1016/j.scs.2024.105669.

[14]

Cortinovis, C., Olsson, P., Boke-Olén, N., Hedlund, K., 2022. Scaling up nature-based solutions for climate-change adaptation: potential and benefits in three European cities. Urban For. Urban Green., 67, Article 127450. doi: 10.1016/j.ufug.2021.127450.

[15]

Costanzo, V., Evola, G., Marletta, L., 2016. Energy savings in buildings or UHI mitigation? Comparison between green roofs and cool roofs. Energy Build. 114, 247–255. doi: 10.1016/j.enbuild.2015.04.053.

[16]

Dong, Q., Xu, X., Zhen, M., 2023. Assessing the cooling and buildings’ energy-saving potential of urban trees in severe cold region of China during summer. Build. Environ. 244, 110818. doi: 10.1016/j.buildenv.2023.110818.

[17]

Elnabawi, M. H., Hamza, N., Raveendran, R., 2023. ‘Super cool roofs’: mitigating the UHI effect and enhancing urban thermal comfort with high albedo-coated roofs. Results. Eng., 19, Article 101269. doi: 10.1016/j.rineng.2023.101269.

[18]

Epelde, L., Mendizabal, M., Gutiérrez, L., Artetxe, A., Garbisu, C., Feliu, E., 2022. Quantification of the environmental effectiveness of nature-based solutions for increasing the resilience of cities under climate change. Urban For. Urban Green., 67, Article 127433. doi: 10.1016/j.ufug.2021.127433.

[19]

Ferrario, F., Mourato, J. M., Rodrigues, M. S., Dias, L. P., 2024. Evaluating nature-based solutions as urban resilience and climate adaptation tools: a meta-analysis of their benefits on heatwaves and floods. Sci. Total Environ., 950, Article 175179. doi: 10.1016/j.scitotenv.2024.175179.

[20]

Feyisa, G. L., Dons, K., Meilby, H., 2014. Efficiency of parks in mitigating urban heat island effect: an example from Addis Ababa. Landsc. Urban Plan., 123, pp. 87-95. doi: 10.1016/j.landurbplan.2013.12.008.

[21]

Gallay, I., Olah, B., Murtinová, V., Gallayová, Z., 2023. Quantification of the cooling effect and cooling distance of urban green spaces based on their vegetation structure and size as a basis for management tools for mitigating urban climate. Sustainability, 15, p. 3705. doi: 10.3390/su15043705.

[22]

Grimm, N., Foster, D., Groffman, P., Grove, J., Hopkinson, C., Nadelhoffer, K., Pataki, D., Peters, D., 2008. The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Front. Ecol. Environ., 6 (5), pp. 264-272. doi: 10.1890/070147.

[23]

Ferrario, F., Mourato, J.M., Rodrigues, M.S., Dias, L.P., 2024. Evaluating naturebased solutions as urban resilience and climate adaptation tools: a meta-analysis of their benefits on heatwaves and floods. Sci. Total Environ. 950, 175179. doi: 10.1016/j.scitotenv.2024.175179.

[24]

Guo, A., Yue, W., Yang, J., Li, M., Zhang, Z., Xie, P., Zhang, M., Lu, Y., He, T., 2024. Quantifying the cooling effect and benefits of urban parks: a case study of Hangzhou, China. Sust. Cities Soc., 113, Article 105706. doi: 10.1016/j.scs.2024.105706.

[25]

Hamel, P., Guerry, A., Polasky, S., Han, B., Douglass, J., Hamann, M., Janke, B., Kuiper, J., Levrel, H., Liu, H., 2021. Mapping the benefits of nature in cities with the InVEST software. Urban Sustain., 1, p. 25. doi: 10.1038/s42949-021-00027-9.

[26]

Imran, H. M., Kala, J., Ng, A. W. M., Muthukumaran, S., 2018. Effectiveness of green and cool roofs in mitigating urban heat island effects during heatwave event in the city of Melbourne in southeast Australia. J. Clean. Prod., 197, pp. 393-405. doi: 10.1016/j.jclepro.2018.06.179.

[27]

Jaganmohan, M., Knapp, S., Buchmann, C., Schwarz, N., 2016. The bigger, the better? The influence of urban green space design on cooling effects for residential areas. J. Environ. Qual. 45(1), 134-145.

[28]

Kabisch, N., Remanhne, F., IIsemann, C., Fricke, L., 2023. The urban heat island under extreme heat conditions: a case study of Hannover, Germany. Sci. Rep., 13, Article 23017. doi: 10.1038/s41598-023-49058-5.

[29]

Kadaverugu, R., Gurav, C., Rai, A., Sharma, A., Matli, C., Biniwale, R., 2021. Quantification of heat mitigation by urban green spaces using InVEST model—a scenario analysis of Nagpur City, India. Arab. J. Geosci., 14, p. 82. doi: 10.1007/s12517-020-06380-w.

[30]

Karimimoshaver, M., Khalvandi, R., Khalvandi, M., 2021. The effect of urban morphology on heat accumulation in urban street canyons and mitigation approach. Sust. Cities Soc. 73, 103127. doi: 10.1016/j.scs.2021.103127.

[31]

KE, A. 2023 Energy calorific conversion standard and greenhouse gas emission coefficients. https://min24.energy.or.kr/netis/CST/home.do (accessed 22 February 2024).

[32]

KE, I., 2023. Valuation of carbon absorption and storage services. http://evis.kei.re.kr/toolkit/carbon (accessed 22 February 2024).

[33]

KEPC, O., 2023. Electricity usage by industry classification. https://bigdata.kepco.co.kr/cmsmain.do?scode=S01&pcode=000167# (accessed 22 February 2024).

[34]

KM, A., 2023. Conditional statistics - atmospheric temperature and precipitation data. https://data.kma.go.kr/cmmn/main.do (accessed 28 March 2023).

[35]

Korea Land and Geospatial Informatix Corporation (KLX), 2021. Urban Planning Status – Spatial Facilities: Park (2005–2024), Small Park Area and Number. https://kosis.kr/statHtml/statHtml.do?sso = ok&returnurl = https%3A%2F%2Fkosis. kr%3A443%2FstatHtml%2FstatHtml.do%3Flist_id%3D315_31502_004%26obj_var_ id%3D%26seqNo%3D%26tblId%3DTX_315_2009_H1126%26vw_cd%3DMT_ ZTITLE%26orgId%3D460%26path%3D%252FstatisticsList%252FstatisticsListIndex. do%26conn_path%3DMT_ZTITLE%26itm_id%3D%26lang_mode%3Dko%26scrId% 3D%26 (accessed 10 November 2023, in Korean).

[36]

KOSIS, 2023. Urban Planning Status. https://kosis.kr/statHtml/statHtml.do?orgId = 460&tblId = TX_315_2009_H1015&conn_path = I2 (accessed 10 February 2024).

[37]

KRX, 2021. Price Inquiry. https://ets.krx.co.kr/contents/RGL/04/04030201/ RGL04030201.jsp (accessed 25 February 2024).

[38]

Lafortezza, R., Chen, J., Bosch, C., Randrup, T., 2018. Nature-based solutions for resilient landscapes and cities. Environ. Res., 165, pp. 431-441. doi: 10.1016/j.envres.2017.11.038.

[39]

Lam, C., Gallant, A., Tapper, N., 2020. Does irrigation cooling effect intensify during heatwaves? A case study in the Melbourne botanic gardens. Urban For. Urban Green. 55, 126815. doi: 10.1016/j.ufug.2020.126815.

[40]

Li, G., Zhang, X., Mirzaei, P., Zhang, J., Zhao, Z., 2018. Urban heat island effect of a typical valley city in China: responds to the global warming and rapid urbanization. Sust. Cities Soc., 38, pp. 736-745. doi: 10.1016/j.scs.2018.01.033.

[41]

Lipson, M. J., Thatcher, M., Hart, M. A., Pitman, A., 2019. Climate change impact on energy demand in building-urban-atmosphere simulations through the 21st century. Environ. Res. Lett., 14, Article 125014. doi: 10.1088/1748-9326/ab5aa5.

[42]

Livesley, S., McPherson, E., Calfapietra, C., 2016. The urban forest and ecosystem services: impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. J. Environ. Qual. 45 (1), 119–124. doi: 10.2134/jeq2015.11.0567.

[43]

Mathey, J., Rink, D., 2020. Greening brownfields in urban redevelopment. V. Loftness (Ed.), Sustainable Built Environments. Encyclopedia of Sustainability Science and Technology Series, Springer, New York. doi: 10.1007/978-1-0716-0684-1_211.

[44]

Mexia, T., Vieiraa, J., Príncipea, A., Anjosa, A., Silvab, P., Lopesb, N., Freitasb, C., Santos-Reisa, M., Correiaa, O., Branquinhoa, C., Pinhoa, P., 2018. Ecosystem services: urban parks under a magnifying glass. Environ. Res., 160, pp. 469-478. doi: 10.1016/j.envres.2017.10.023.

[45]

MLIT, 2021. Integrated Building Information in GIS. https://www.vworld.kr/dtna/ dtna_fileDataView_s001.do?dataSetSeq = 18 (accessed 22 December 2023).

[46]

Njungwi, N. W., Lee, D., Kim, M., Jin, C., Choi, C., 2021. Analyzing the evolution of summer thermal anomalies in Busan using remote sensing and spatial statistical tool. Korean J. Remote Sens., 37, pp. 665-685. doi: 10.7780/kjrs.2021.37.4.1.

[47]

Nor, A., Corstanje, R., Harris, J., Brewer, T., 2017. Impact of rapid urban expansion on green space structure. Ecol. Indic., 81, pp. 274-284. doi: 10.1016/j.ecolind.2017.05.031.

[48]

Ouyang, Z., Sciusco, P., Jiao, T., Feron, S., Lei, C., Li, F., Fan, P., Li, X., Williams, C., Chen, G., Wang, C., Chen, J., 2022. Albedo changes caused by future urbanization contribute to global warming. Nat. Commun., 13, p. 3800. doi: 10.1038/s41467-022-31558-z.

[49]

Phelan, P., Kaloush, K., Miner, M., Golden, J., Phelan, B., Silva, H., Taylor, R., 2015. Urban heat island: mechanisms, implications, and possible remedies. Annu. Rev. Environ. Resour., 40, pp. 285-307. doi: 10.1146/annurev-environ-102014-021155.

[50]

Reyes-Riveros, R., Altamirano, A., Barrera, F., Rozas-Vásquez, D., Vieli, L., Meli, P., 2021. Linking public urban green spaces and human well-being: a systematic review. Urban For. Urban Green., 61, Article 127105. doi: 10.1016/j.ufug.2021.127105.

[51]

Saadatian, O., Sopian, K., Salleh, E., Lim, C. H., Riffat, S., Saadatian, E., Toudeshki, A., Sulaiman, M. Y., 2013. A review of energy aspects of green roofs. Renew. Sustain. Energy Rev., 23, pp. 155-168. doi: 10.1016/j.rser.2013.02.022.

[52]

Segura, R., Krayenhoff, E. S., Martilli, A., Badia, A., Estruch, C., Ventura, S., Villalba, G., 2022. How do street trees affect urban temperatures and radiation exchange? Observation and numerical evaluation in a highly compact city. Urban Clim., 46, Article 101288. doi: 10.1016/j.uclim.2022.101288.

[53]

SMG (Seoul Metropolitan Government), 2023. Operational guidelines for the ecological area ratio. https://urban.seoul.go.kr/view/html/PMNU5090400000#view/399947 (accessed 11 December 2023).

[54]

Saadatian, O., Sopian, K., Salleh, E., Lim, C.H., Riffat, S., Saadatian, E., Toudeshki, A., Sulaiman, M.Y., 2013. A review of energy aspects of green roofs. Renew. Sustain. Energy Rev. 23, 155–168. doi: 10.1016/j.rser.2013.02.022.

[55]

Segura, R., Krayenhoff, E.S., Martilli, A., Badia, A., Estruch, C., Ventura, S., Villalba, G., 2022. How do street trees affect urban temperatures and radiation exchange? Observation and numerical evaluation in a highly compact city. Urban Clim. 46, 101288. doi: 10.1016/j.uclim.2022.101288.

[56]

Sharp, R., Douglass, J., Wolny, S., Arkema, K. K., Bernhardt, J., Bierbower, W., Chaumont, N., Denu, D., Fisher, D. M., Glowinski, K., Griffin, R., Guannel, G., Guerry, A. D., Johnson, J., Hamel, P., Kennedy, C., Kim, C. K., Lacayo, M., Lonsdorf, E., Mandle, L., Rogers, L., Silver, J., Toft, J., Verutes, G. M., Vogl, A. L., Wood, S., Wyatt, K., 2020. InVEST 3.8.7 User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund

[57]

Shukla, A., Jain, K., 2021. Analyzing the impact of changing landscape pattern and dynamics on land surface temperature in Lucknow city, India. Urban For. Urban Green., 58, Article 126877. doi: 10.1016/j.ufug.2020.126877.

[58]

Siddique, S., Uddin, M., 2022. Green space dynamics in response to rapid urbanization: patterns, transformations and topographic influence in Chattogram city, Bangladesh. Land Use Policy, 114, Article 105974. doi: 10.1016/j.landusepol.2022.105974.

[59]

Singkran, N., 2023. Evaluating urban park ecosystem services and modeling improvement scenarios. Heliyon, 9 (12), Article e22002. doi: 10.1016/j.heliyon.2023.e22002.

[60]

Skelhorn, C., Lindley, S., Levermor, G., 2014. The impact of vegetation types on air and surface temperatures in a temperate city: a fine scale assessment in Manchester, UK. Landsc. Urban Plan. 121, 129–140. doi: 10.1016/j.landurbplan.2013.09.012.

[61]

Son, C., Hyun, K., Kim, D., Baek, J., Ban, Y., 2017. Development and application of a low impact development (LID)-based district unit planning model. Sustainability, 9 (1), p. 145. doi: 10.3390/su9010145.

[62]

Stewart, I., Oke, T., 2012. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc., 93, pp. 1879-1900. doi: 10.1175/BAMS-D-11-00019.1.

[63]

Sugawara, H., Shimizu, S., Takahashi, H., Hagiwara, S., Narita, K., Mikam, K., Hirano, T., 2016. Thermal influence of a large green space on a hot urban environment. J. Environ. Qual., 45 (1), pp. 125-133. doi: 10.2134/jeq2015.01.0049.

[64]

Tsoka, S., Leduc, T., Rodler, A., 2021. Assessing the effects of urban street trees on building cooling energy needs: the role of foliage density and planting pattern. Sust. Cities Soc. 65, 102633. doi: 10.1016/j.scs.2020.102633.

[65]

United Nations. World urbanization prospects: the 2018 revision. https://doi.org/10.18356/b9e995fe-en.

[66]

Vasconcelos, L., Langemeyer, J., Cole, H., Baró, F., 2024. Nature-based climate shelters? exploring urban green spaces as cooling solutions for older adults in a warming city. Urban For. Urban Green., 98, Article 128408. doi: 10.1016/j.ufug.2024.128408.

[67]

Wang, C., Ren, Z., Dong, Y., Zhang, P., Guo, Y., Wang, W., Bao, G., 2022a. Efficient cooling of cities at global scale using urban green space to mitigate urban heat island effects in different climatic regions. Urban For. Urban Green. 74, 127635. doi: 10.1016/j.ufug.2022.127635.

[68]

Wang, X., Li, H., Sodoudi, S., 2022b. The effectiveness of cool and green roofs in mitigating urban heat island and improving human thermal comfort. Build. Environ. 217, 109082. doi: 10.1016/j.buildenv.2022.109082.

[69]

Xu, Z., Zhao, S., 2023. Scale dependence of urban green space cooling efficiency: a case study in Beijing metropolitan area. Sci. Total Environ., 898, Article 165563. doi: 10.1016/j.scitotenv.2023.165563.

[70]

Yang, J., Sun, J., Ge, Q., Li, X., 2017. Assessing the impacts of urbanization-associated green space on urban land surface temperature: a case study of Dalian, China. Urban For. Urban Green., 22, pp. 1-10. doi: 10.1016/j.ufug.2017.01.002.

[71]

Yu, Z., Yang, G., Zuo, S., Jorgensen, G., Koga, M., 2020. Critical review on the cooling effect of urban blue-green space: a threshold-size perspective. Urban For. Urban Green., 49, Article 126630. doi: 10.1016/j.ufug.2020.126630.

[72]

Zhao, D., Cai, J., Xu, Y., Liu, Y., Yao, M., 2023. Carbon sinks in urban public green spaces under carbon neutrality: a bibliometric analysis and systematic literature review. Urban For. Urban Green., 86, Article 128037. doi: 10.1016/j.ufug.2023.128037.

[73]

Zheng, X., Kong, F., Yin, H., Middel, A., Yang, S., Liu, H., Huang, J., 2023. Green roof cooling and carbon mitigation benefits in a subtropical city. Urban For. Urban Green., 86, Article 128018. doi: 10.1016/j.ufug.2023.128018.

PDF

352

Accesses

0

Citation

Detail

Sections
Recommended

/