Exacerbated global surface water stress under climate change

Ming Peng , Haipeng Yu , Jianping Huang , Yu Ren , Li Fu

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) : 100361

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) :100361 DOI: 10.1016/j.geosus.2025.100361
Research Article
review-article

Exacerbated global surface water stress under climate change

Author information +
History +
PDF

Abstract

Water stress is expected to intensify due to escalating atmospheric and surface dryness under global warming. Despite extensive research indicate that intensified dryness exacerbates water constraints on ecosystems, the dynamics and underlying mechanisms of surface water stress (SWS) under climate change remain poorly understood. In this study, we use annual evaporative stress as the surface water stress index (WSI) and provide a comprehensive analysis of historical and projected global terrestrial SWS, covering its characteristic changes, driving factors, and impacts on vegetation. Our results show a significant declining trend in WSI during 1982–2014 (-0.0033/decade, p < 0.01), indicating the enhancement of SWS concurrent with a rapid expansion of water stress intensified areas at a rate of 1.85 %/decade (p < 0.01). Using the Budyko-Penman budget framework, we found that the intensification of SWS was primarily driven by an increase in vapor pressure deficit (VPD) and a decrease in precipitation. Furthermore, the intensification of SWS contributed to a decline in vegetation growth, with the extent of areas experiencing increased vegetation water deficit expanding rapidly at a rate of 1.38 % per decade (p < 0.01). In the future, SWS is projected to escalate, with the proportion of areas experiencing intensified SWS increasing from 6.3 % to 24.3 % by the end of the century under the SSP5–8.5. Our study provides a comprehensive analysis of the drivers of SWS under climate change and its impacts on ecosystems, offering valuable scientific insights for the effective management of water resources.

Keywords

Surface water stress / Vapor pressure deficit / Vegetation growth

Cite this article

Download citation ▾
Ming Peng, Haipeng Yu, Jianping Huang, Yu Ren, Li Fu. Exacerbated global surface water stress under climate change. Geography and Sustainability, 2025, 6(6): 100361 DOI:10.1016/j.geosus.2025.100361

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability

The meteorological and climatological dataset are available from GLDAS2.0: https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.0/summary?keywords, from ERA5-land: https://cds.climate.copernicus.eu/datasets/, and from TerraClimate: https://www.climatologylab.org/terraclimate.html. The 20 CMIP6 models datasets are available at: https://esgf-node.llnl.gov/search/cmip6/. The Normalized Difference Vegetation Index (NDVI) is available at: https://daac.ornl.gov/VEGETATION/guides/Global_Veg_Greenness_GIMMS_3G.html.

CRediT authorship contribution statement

Ming Peng: Writing – original draft, Visualization, Methodology, Investigation, Data curation, Conceptualization. Haipeng Yu: Writing – review & editing, Supervision, Project administration, Methodology, Funding acquisition, Conceptualization. Jianping Huang: Writing – review & editing, Supervision, Methodology, Funding acquisition. Yu Ren: Writing – review & editing, Investigation, Data curation. Li Fu: Writing – review & editing, Investigation, Data curation.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (Grant No. U2442207), the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2021427), the West Light Foundation (Grant No. xbzg-zdsys-202409) of the Chinese Academy of Sciences, Key Talent Project in Gansu and Central Guidance Fund for Local Science and Technology Development Projects in Gansu (Grant No. 24ZYQA031). The authors acknowledge European Centre for Medium-Range Weather Forecasts (ECMWF), the Goddard Earth Sciences Data and Information Services Center (GES DISC) of NASA, and University of Idaho for providing the Meteorological and climatological datasets. We also acknowledge the World Climate Research Programme’s (WCRP) Working Group on Coupled Modelling (WGCM), the Global Organization for Earth System Science Portals (GO-ESSP) for producing the CMIP6 model simulations and making them available for analysis. Finally, we acknowledge the Computing Center in Xi’an for providing the computing resource.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100361.

References

[1]

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., Hegewisch, K. C., 2018. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958 to 2015. Sci. Data, 5, Article 170191. doi: 10.1038/sdata.2017.191.

[2]

Allan, R.P., Barlow, M., Byrne, M.P., Cherchi, A., Douville, H., Fowler, H.J., Gan, T.Y., Pendergrass, A.G., Rosenfeld, D., Swann, A.L.S., Wilcox, L.J., Zolina, O., 2020. Advances in understanding large-scale responses of the water cycle to climate change. Ann. N. Y. Acad. Sci. 1472, 49–75. doi: 10.1111/nyas.14337.

[3]

Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N, J-Lim, H., Allard, G., Running, S. W., Semerci, A., Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage., 259, pp. 660-684. doi: 10.1016/j.foreco.2009.09.001.

[4]

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration - guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper, p. 56.

[5]

Anderson, M. C., Zolin, C. A., Sentelhas, P. C., Hain, C. R., Semmens, K., Tugrul Yilmaz, M., Gao, F., Otkin, J. A., Tetrault, R., 2016. The Evaporative Stress Index as an indicator of agricultural drought in Brazil: an assessment based on crop yield impacts. Remote Sens. Environ., 174, pp. 82-99. doi: 10.1016/j.rse.2015.11.034.

[6]

Berg, A., McColl Kaighin, A., 2021. No projected global drylands expansion under greenhouse warming. Nat. Clim. Chang., 11, pp. 331-337. doi: 10.1038/s41558-021-01007-8.

[7]

Budyko, M. I., 1974. Climate and Life, International Geophysics Series. Academic Press, New York

[8]

Choudhury, B. J., 1999. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. J. Hydrol., 216, pp. 99-110. doi: 10.1016/S0022-1694(98)00293-5.

[9]

Dai, A., 2011. Drought under global warming: a review. WIRES Clim. Change, 2, pp. 45-65. doi: 10.1002/wcc.81.

[10]

Eamus, D., Boulain, N., Cleverly, J., Breshears, D. D., 2013. Global change-type drought-induced tree mortality: vapor pressure deficit is more important than temperature per se in causing decline in tree health. Ecol. Evol., 3, pp. 2711-2729. doi: 10.1002/ece3.664.

[11]

Fu, B. P., 1981. On the calculation of the evaporation from land surface. Chin. J. Atmos. Sci., 5 (1), pp. 23-31. doi: 10.3878/j.issn.1006-9895.1981.01.03.

[12]

Gordon, B., 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320, pp. 1444-1449. doi: 10.1126/science.1155121.

[13]

Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., Sperry, J. S., McDowell, N. G., 2020. Plant responses to rising vapor pressure deficit. New Phytol., 226, pp. 1550-1566. doi: 10.1111/nph.16485.

[14]

Held, I. M., Soden, B. J., 2006. Robust responses of the hydrological cycle to global warming. J. Clim., 19, pp. 5686-5699. doi: 10.1175/JCLI3990.1.

[15]

Huang, J., Guan, X., Ji, F., 2012. Enhanced cold-season warming in semi-arid regions. Atmos. Chem. Phys. 12, 5391–5398. doi: 10.5194/acp-12-5391-2012.

[16]

Huang, J., Yu, H., Guan, X., Wang, G. G., 2016. Accelerated dryland expansion under climate change. Nat. Clim. Chang., 6, pp. 166-171. doi: 10.1038/nclimate2837.

[17]

Huntington, T. G., 2006. Evidence for intensification of the global water cycle: review and synthesis. J. Hydrol., 319, pp. 83-95. doi: 10.1016/j.jhydrol.2005.07.003.

[18]

Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., Fawcett, P. J., 2013. Terrestrial water fluxes dominated by transpiration. Nature, 496, pp. 347-350. doi: 10.1038/nature11983.

[19]

Jiao, W., Wang, L., Smith, W. K., Chang, Q., Wang, H., D’Odorico, P., 2021. Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun., 12, p. 3777. doi: 10.1038/s41467-021-24016-9.

[20]

Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G., Cescatti, A., Chen, J., de Jeu, R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball, J., Law, B. E., Montagnani, L., Mu, Q., Mueller, B., Oleson, K., Papale, D., Richardson, A. D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N., Weber, U., Williams, C., Wood, E., Zaehle, S., Zhang, K., 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, pp. 951-954. doi: 10.1038/nature09396.

[21]

Katul, G. G., Oren, R., Manzoni, S., Higgins, C., Parlange, M. B., 2012. Evapotranspiration: a process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system. Rev. Geophys., 50, RG3002. doi: 10.1029/2011RG000366.

[22]

Lian, X., Piao, S., Chen, A., Huntingford, C., Fu, B., Li, L. Z. X., Huang, J., Sheffield, J., Berg, A., Keenan, T. F., McVicar, T. R., Wada, Y., Wang, X., Wang, T., Yang, Y., Roderick, M. L., 2021. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ., 2, pp. 232-250. doi: 10.1038/s43017-021-00144-0.

[23]

Liu, L., Gudmundsson, L., Hauser, M., Qin, D., Li, S., Seneviratne, S. I., 2020. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun., 11, p. 4892. doi: 10.1038/s41467-020-18631-1.

[24]

Liu, Q., Guo, H., Zhang, J., Li, S., Li, J., Yao, F., Mahecha, M. D., Peng, J., 2024. Global assessment of terrestrial productivity in response to water stress. Sci. Bull., 69, pp. 2352-2356. doi: 10.1016/j.scib.2024.05.033.

[25]

Lu, H., Qin, Z., Lin, S., Chen, X., Chen, B., He, B., Wei, J., Yuan, W., 2022. Large influence of atmospheric vapor pressure deficit on ecosystem production efficiency. Nat. Commun., 13, p. 1653. doi: 10.1038/s41467-022-29009-w.

[26]

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C, J-Thépaut, N., 2021. Thépaut. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data, 13, pp. 4349-4383. doi: 10.5194/essd-13-4349-2021.

[27]

Nguyen, H., Wheeler, M. C., Otkin, J. A., Cowan, T., Frost, A., Stone, R., 2019. Using the evaporative stress index to monitor flash drought in Australia. Environ. Res. Lett., 14, Article 064016. doi: 10.1088/1748-9326/ab2103.

[28]

Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A. C., Papuga, S. A., Blanken, P. D., Noormets, A., Sulman, B. N., Scott, R. L., Wang, L., Phillips, R. P., 2016. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Chang., 6, pp. 1023-1027. doi: 10.1038/nclimate3114.

[29]

Pinzon, J. E., Pak, E. W., Tucker, C. J., Bhatt, U. S., Frost, G. V., Macander, M. J., 2023. Macander. Global Vegetation Greenness (NDVI) from AVHRR GIMMS-3G+, 1981–2022. ORNL DAAC, Oak Ridge, Tennessee, USA. doi: 10.3334/ORNLDAAC/2187.

[30]

Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A., Klooster, S. A., 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data. Glob. Biogeochem. Cycle., 7, pp. 811-841. doi: 10.1029/93GB02725.

[31]

Roderick, M. L., Farquhar, G. D., 2011. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour. Res., 47 (12), p. W00G07. doi: 10.1029/2010WR009826.

[32]

Roderick, M. L., Sun, F., Lim, W. H., Farquhar, G. D., 2014. A general framework for understanding the response of the water cycle to global warming over land and ocean. Hydrol. Earth Syst. Sci., 18, pp. 1575-1589. doi: 10.5194/hess-18-1575-2014.

[33]

Sulman, B. N., Roman, D. T., Yi, K., Wang, L., Phillips, R. P., Novick, K. A., 2016. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil. Geophys. Res. Lett., 43, pp. 9686-9695. doi: 10.1002/2016GL069416.

[34]

Xu, C., Singh, V., Xu, C., Singh, V., 2002. Cross comparison of empirical equations for calculating potential evapotranspiration with data from Switzerland. Water Resour. Manage., 016, pp. 197-219. doi: 10.1023/a:1020282515975.

[35]

Yang, H., Yang, D., Lei, Z., Sun, F., 2008. New analytical derivation of the mean annual water-energy balance equation. Water Resour. Res., 44, Article W03410. doi: 10.1029/2007WR006135.

[36]

Yang, Y., Roderick, M. L., Guo, H., Miralles, D. G., Zhang, L., Fatichi, S., Luo, X., Zhang, Y., McVicar, T. R., Tu, Z., Keenan, T. F., Fisher, J. B., Gan, R., Zhang, X., Piao, S., Zhang, B., Yang, D., 2023. Evapotranspiration on a greening Earth. Nat. Rev. Earth Environ., 4, pp. 626-641. doi: 10.1038/s43017-023-00464-3.

[37]

Yang, Y., Anderson, M. C., Gao, F., Wardlow, B., Hain, C. R., Otkin, J. A., Alfieri, J., Yang, Y., Sun, L., Dulaney, W., 2018. Field-scale mapping of evaporative stress indicators of crop yield: an application over Mead, NE, USA. Remote Sens. Environ., 210, pp. 387-402. doi: 10.1016/j.rse.2018.02.020.

[38]

Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu, Y., Chen, G., Dong, W., Hu, Z., Jain, A. K., Jiang, C., Kato, E., Li, S., Lienert, S., Liu, S., Nabel, J., Qin, Z., Quine, T. A., Sitch, S. A., Smith, W. K., Wang, F., Wu, C., Xiao, Z., Yang, S., 2019. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv., 5, p. eaax1396. doi: 10.1126/sciadv.aax1396.

[39]

Zhang, J., Hao, X., Liu, Y., Li, X., Liang, Q., Sun, F., Ci, M., Li, Y., 2025. Vegetation greening does not significantly enhance ecosystem resilience in the Northern Hemisphere. Ecol. Indic., 177, Article 113762. doi: 10.1016/j.ecolind.2025.113762.

[40]

Zhang, Y., Feng, X., Fu, B., Chen, Y., Wang, X., 2021. Satellite-observed global terrestrial vegetation production in response to water availability. Remote Sens., 13, p. 1289. doi: 10.3390/rs13071289.

[41]

Zhang, Y., Gentine, P., Luo, X., Lian, X., Liu, Y., Zhou, S., Michalak, A. M., Sun, W., Fisher, J. B., Piao, S., Keenan, T. F., 2022. Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2. Nat. Commun., 13, p. 4875. doi: 10.1038/s41467-022-32631-3.

[42]

Zhao, T., Dai, A., 2022. CMIP6 model-projected hydroclimatic and drought changes and their causes in the twenty-first century. J. Clim., 35, pp. 897-921. doi: 10.1175/JCLI-D-21-0442.1.

[43]

Zhou, S., Yu, B., Lintner, B. R., Findell, K. L., Zhang, Y., 2023. Projected increase in global runoff dominated by land surface changes. Nat. Clim. Chang., 13, pp. 442-449. doi: 10.1038/s41558-023-01659-8.

[44]

Zhong, Z., He, B., Wang, Y., Chen, H. W., Chen, D., Fu, Y., Chen, Y., Guo, L., Deng, Y., Huang, L., Yuan, W., Hao, X., Tang, R., Liu, H., Sun, L., Xie, X., Zhang, Y., 2023. Disentangling the effects of vapor pressure deficit on northern terrestrial vegetation productivity. Sci. Adv., 9, p. eadf3166. doi: 10.1126/sciadv.adf3166.

[45]

Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y., Peng, S., Peñuelas, J., Poulter, B., Pugh, T. A. M., Stocker, B. D., Viovy, N., Wang, X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., Zeng, N., 2016. Greening of the Earth and its drivers. Nat. Clim. Chang., 6, pp. 791-795. doi: 10.1038/nclimate3004.

PDF

456

Accesses

0

Citation

Detail

Sections
Recommended

/