Ecosystem-dependent two-stage changes in soil organic carbon stock across the contiguous United States from 1970 to 2014

Feixue Shen , Lin Yang , Lei Zhang , A-Xing Zhu , Xiang Li , Chenconghai Yang , Chenghu Zhou , Yiqi Luo , Shilong Piao

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) : 100359

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) :100359 DOI: 10.1016/j.geosus.2025.100359
Research Article
review-article

Ecosystem-dependent two-stage changes in soil organic carbon stock across the contiguous United States from 1970 to 2014

Author information +
History +
PDF

Abstract

Temporal dynamics in soil organic carbon (SOC) play a crucial role in the global carbon cycle. How warming affects SOC change has been widely studied at the site scale, mainly through short-term manipulative experiments. Decades-long SOC dynamics in ecosystems can be complicated, particularly as real-world warming rates varied on decade-scale. However, the lack of long-term repeated observations on whole-profile SOC limits our understanding of SOC dynamics across large regions. Herein, we reconstructed 45 years of SOC dynamics (1970–2014) in topsoil (0–30 cm) and subsoil (30–100 cm) using 10,639 soil profiles from forest and cropland across the contiguous United States, and investigated their relations with key dynamic environments (e.g., climate, vegetation and nitrogen). We further examined the spatial pattern of SOC stock changes at a finer scale (∼2 km) using machine learning techniques. Our results revealed ecosystem-dependent, two-stage changes of SOC stock, characterized by continental-scale halts in SOC loss following warming deceleration since the late 1990s. This shift led to an overall increase in SOC stock of 1.41 % in forest and 1.14 % in cropland within the top 1-meter over 45 years. Temperature was the primary factor related to topsoil SOC losses, whereas soil water content may primarily control subsoil SOC change. Notably, a threshold effect of warming rates on SOC loss was identified in both topsoil and subsoil. These findings provide new insights into long-term whole-profile SOC dynamics at a large scale, offering valuable implications for carbon sequestration to support sustainable development in different ecosystems.

Keywords

Soil organic carbon / Temporal dynamics / Climate change / Warming rate / Soil depths / Soil water content

Cite this article

Download citation ▾
Feixue Shen, Lin Yang, Lei Zhang, A-Xing Zhu, Xiang Li, Chenconghai Yang, Chenghu Zhou, Yiqi Luo, Shilong Piao. Ecosystem-dependent two-stage changes in soil organic carbon stock across the contiguous United States from 1970 to 2014. Geography and Sustainability, 2025, 6(6): 100359 DOI:10.1016/j.geosus.2025.100359

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Feixue Shen: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Lin Yang: Writing – review & editing, Resources, Project administration, Funding acquisition, Conceptualization. Lei Zhang: Writing – review & editing, Validation, Methodology, Formal analysis. A-Xing Zhu: Writing – review & editing, Visualization, Investigation. Xiang Li: Writing – review & editing, Validation. Chenconghai Yang: Validation, Data curation. Chenghu Zhou: Project administration, Funding acquisition. Yiqi Luo: Writing – review & editing, Formal analysis. Shilong Piao: Writing – review & editing, Resources.

Declaration of competing interestss

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 42471468), and the Leading Funds for the FirstClass Universities (Grants No. 020914912203 and 020914902302). We thank David G. Rossiter of ISRIC-World Soil Information and Cornell University for the detailed comments on the manuscript and technical editing of the scientific English.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100359.

References

[1]

Abdelbaki, A. M., 2018. Evaluation of pedotransfer functions for predicting soil bulk density for U.S. soils. Ain Shams Eng. J., 9 (4), pp. 1611-1619. doi: 10.1016/j.asej.2016.12.002.

[2]

Adalibieke, W., Cui, X., Cai, H., You, L., Zhou, F., 2023. Global crop-specific nitrogen fertilization dataset in 1961–2020. Sci. Data, 10, p. 617. doi: 10.1038/s41597-023-02526-z.

[3]

Bai, X., Tang, J., Wang, W., Ma, J., Shi, J., Ren, W., 2023. Organic amendment effects on cropland soil organic carbon and its implications: a global synthesis. Catena, 231, Article 107343. doi: 10.1016/j.catena.2023.107343.

[4]

Bala, G., Devaraju, N., Chaturvedi, R. K., Caldeira, K., Nemani, R., 2013. Nitrogen deposition: how important is it for global terrestrial carbon uptake?. Biogeosciences, 10, pp. 7147-7160. doi: 10.5194/bg-10-7147-2013.

[5]

Batjes, N. H., Ribeiro, E., van Oostrum, A., 2020. Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019). Earth Syst. Sci. Data, 12, pp. 299-320. doi: 10.5194/essd-12-299-2020.

[6]

Beillouin, D., Corbeels, M., Demenois, J., Berre, D., Boyer, A., Fallot, A., Feder, F., Rémi Cardinael, R., 2023. A global meta-analysis of soil organic carbon in the anthropocene. Nat. Commun., 14, p. 3700. doi: 10.1038/s41467-023-39338-z.

[7]

Birkes, D., Dodge, Y., 1993. Alternative Methods of Regression, 1st ed. Wiley

[8]

Bossio, D. A., Cook-Patton, S. C., Ellis, P. W., Fargione, J., Sanderman, J., Smith, P., Wood, S., Zomer, R. J., von Unger, M., Emmer, I. M., Griscom, B. W., 2020. The role of soil carbon in natural climate solutions. Nat. Sustain., 3, pp. 391-398. doi: 10.1038/s41893-020-0491-z.

[9]

Cates, A. M., Jilling, A., Tfaily, M. M., Jackson, R. D., 2022. Temperature and moisture alter organic matter composition across soil fractions. Geoderma, 409, Article 115628. doi: 10.1016/j.geoderma.2021.115628.

[10]

Copernicus Climate Change Service, 2019. ERA5-land monthly averaged data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) doi: 10.24381/cds.68d2bb30.

[11]

Crowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., Snoek, B. L., Fang, S., Zhou, G., Allison, S. D., Blair, J. M., Bridgham, S. D., Burton, A. J., Carrillo, Y., Reich, P. B., Clark, J. S., Classen, A. T., Dijkstra, F. A., Elberling, B., Emmett, B. A., Estiarte, M., Frey, S. D., Guo, J., Harte, J., Jiang, L., Johnson, B. R., Kröel-Dulay, G., Larsen, K. S., Laudon, H., Lavallee, J. M., Luo, Y., Lupascu, M., Ma, L. N., Marhan, S., Michelsen, A., Mohan, J., Niu, S., Pendall, E., Peñuelas, J., Pfeifer-Meister, L., Poll, C., Reinsch, S., Reynolds, L. L., Schmidt, I. K., Sistla, S., Sokol, N. W., Templer, P. H., Treseder, K. K., Welker, J. M., Bradford, M. A., 2016. Quantifying global soil carbon losses in response to warming. Nature, 540, pp. 104-108. doi: 10.1038/nature20150.

[12]

Davidson, E. A., Trumbore, S. E., Amundson, R., 2000. Soil warming and organic carbon content. Nature, 408, pp. 789-790. doi: 10.1038/35048672.

[13]

De Rosa, D., Ballabio, C., Lugato, E., Fasiolo, M., Jones, A., Panagos, P., 2024. Soil organic carbon stocks in european croplands and grasslands: how much have we lost in the past decade?. Glob. Change Biol., 30 (1), Article e16992. doi: 10.1111/gcb.16992.

[14]

Deng, L., Huang, C, D-Kim, G., Shangguan, Z., Wang, K., Song, X., 2020. Soil GHG fluxes are altered by N deposition: new data indicate lower N stimulation of the N2O flux and greater stimulation of the calculated C pools. Glob. Change Biol., 26 (4), pp. 2613-2629. doi: 10.1111/gcb.14970.

[15]

Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E., Hahn, N., Palminteri, S., Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E. C., Jones, B., Barber, C. V., Hayes, R., Kormos, C., Martin, V., Crist, E., Sechrest, W., Price, L., Baillie, J. E. M., Weeden, D., Suckling, K., Davis, C., Sizer, N., Moore, R., Thau, D., Birch, T., Potapov, P., Turubanova, S., Tyukavina, A., de Souza, N., Pintea, L., Brito, J. C., Llewellyn, O. A., Miller, A. G., Patzelt, A., Ghazanfar, S. A., Timberlake, J., Klöser, H., Shennan-Farpón, Y., Kindt, R, J-Lillesø, P. B., van Breugel, P., Graudal, L., Voge, M., Al-Shammari, K. F., Saleem, M., 2017. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience, 67, pp. 534-545. doi: 10.1093/biosci/bix014.

[16]

Ding, J., Liu, L., Niu, S., Wang, T., Piao, S. 2022. Soil carbon dynamics and responses to environmental changes. Y. Yang, M. Keiluweit, N. Senesi, B. Baoshan Xing (Eds.), Multi-scale biogeochemical processes in soil ecosystems: critical reactions and resilience to climate changes, John Wiley & Sons, Ltd, pp.207-231.

[17]

García-Palacios, P., Crowther, T. W., Dacal, M., Hartley, I. P., Reinsch, S., Rinnan, R., Rousk, J., van den Hoogen, J, J-Ye, S., Bradford, M. A., 2021. Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming. Nat. Rev. Earth Env., 2, pp. 507-517. doi: 10.1038/s43017-021-00178-4.

[18]

Guo, Y-X, G-Yu, H., Hu, S., Liang, C., Kappler, A., Jorgenson, M. T., Guo, L., Georg Guggenberger, G., 2024. Deciphering the intricate control of minerals on deep soil carbon stability and persistence in alaskan permafrost. Glob. Change Biol., 30, Article e17552. doi: 10.1111/gcb.17552.

[19]

Hao, Y., Mao, J., Bachmann, C. M., Hoffman, F. M., Koren, G., Chen, H., Tian, H., Liu, J., Tao, J., Tang, J., Li, L., Liu, L., Apple, M., Shi, M., Jin, M., Zhu, Q., Kannenberg, S., Shi, X., Zhang, X., Wang, Y., Fang, Y., Dai, Y., 2025. Soil moisture controls over carbon sequestration and greenhouse gas emissions: a review. NPJ Clim. Atmos. Sci., 8, p. 16. doi: 10.1038/s41612-024-00888-8.

[20]

Harwood, R., 1993. A look back at USDA's report and recommendations on organic farming. Am. J. Altern. Agric., 8, pp. 150-154. doi: 10.1017/S0889189300005270.

[21]

Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., Kempen, B., 2017. SoilGrids250m: global gridded soil information based on machine learning. PLoS One, 12, Article e0169748. doi: 10.1371/journal.pone.0169748.

[22]

Heuvelink, G. B. M., Angelini, M. E., Poggio, L., Bai, Z., Batjes, N. H., van den Bosch, R., Bossio, D., Estella, S., Lehmann, J., Olmedo, G. F., Sanderman, J., 2021. Machine learning in space and time for modelling soil organic carbon change. Eur. J. Soil Sci., 72, pp. 1607-1623. doi: 10.1111/ejss.12998.

[23]

Hicks Pries, C. E., Castanha, C., Porras, R. C., Torn, M. S., 2017. The whole-soil carbon flux in response to warming. Science, 355, pp. 1420-1423. doi: 10.1126/science.aal1319.

[24]

Hogan, J. A., Domke, G. M., Zhu, K., Johnson, D. J., Lichstein, J. W., 2024. Climate change determines the sign of productivity trends in US forests. Proc. Natl. Acad. Sci. U.S.A., 121 (4), Article e2311132121. doi: 10.1073/pnas.2311132121.

[25]

Hollister, R. D., 2024. Why we need long-term monitoring to understand ecosystem change. Proc. Natl. Acad. Sci. U.S.A., 121 (27), Article e2409666121. doi: 10.1073/pnas.2409666121.

[26]

Hu, Y., Deng, Q., Kätterer, T., Olesen, J. E., Ying, S. C., Ochoa-Hueso, R., Mueller, C. W., Weintraub, M. N., Chen, J., 2024. Depth-dependent responses of soil organic carbon under nitrogen deposition. Glob. Change Biol., 30 (3), Article e17247. doi: 10.1111/gcb.17247.

[27]

Huang, W., Hall, S. J., 2017. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter. Nat. Commun., 8, p. 1774. doi: 10.1038/s41467-017-01998-z.

[28]

Jin, Z., Ainsworth, E. A., Leakey, A. D. B., Lobell, D. B., 2018. Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US midwest. Glob. Change Biol., 24, pp. 522-533. doi: 10.1111/gcb.13946.

[29]

Jobbágy, E. G., Jackson, R. B., 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl., 10, pp. 423-436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2.

[30]

Knorr, M. A., Contosta, A. R., Morrison, E. W., Muratore, T. J., Anthony, M. A., Stoica, I., Geyer, K. M., Simpson, M. J., Frey, S. D., 2024. Unexpected sustained soil carbon flux in response to simultaneous warming and nitrogen enrichment compared with single factors alone. Nat. Ecol. Evol., 8, pp. 2277-2285. doi: 10.1038/s41559-024-02546-x.

[31]

Köchy, M., Hiederer, R., Freibauer, A., 2015. Global distribution of soil organic carbon – part 1: masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil 1, 351–365. doi: 10.5194/soil-1-351-2015.

[32]

Lambers, J. H. R., 2015. Extinction risks from climate change. Science, 348, pp. 501-502. doi: 10.1126/science.aab2057.

[33]

Lei, J., Guo, X., Zeng, Y., Zhou, J., Gao, Q., Yang, Y., 2021. Temporal changes in global soil respiration since 1987. Nat. Commun., 12, p. 403. doi: 10.1038/s41467-020-20616-z.

[34]

Liang, S., Cheng, J., Jia, K., Jiang, B., Liu, Q., Xiao, Z., Yao, Y., Yuan, W., Zhang, X., Zhao, X., Zhou, J., 2021. The global land surface satellite (GLASS) product suite. Bull. Am. Meteorol. Soc., 102, pp. E323-E337. doi: 10.1175/BAMS-D-18-0341.1.

[35]

Liang, Z., Guo, X., Liu, S., Su, Y., Zeng, Y., Xie, C., Gao, Q., Lei, J., Li, B., Wang, M., Dai, T., Ma, L., Fan, F., Yang, Y., Liu, X., Zhou, J., 2024. Microbial mediation of soil carbon loss at the potential climax of alpine grassland under warming. Soil Biol. Biochem., 192, Article 109395. doi: 10.1016/j.soilbio.2024.109395.

[36]

Ling, J., Dungait, J. A. J., Delgado-Baquerizo, M., Cui, Z., Zhou, R., Zhang, W., Gao, Q., Chen, Y., Yue, S., Kuzyakov, Y., Zhang, F., Chen, X., Tian, J., 2025. Soil organic carbon thresholds control fertilizer effects on carbon accrual in croplands worldwide. Nat. Commun., 16, p. 3009. doi: 10.1038/s41467-025-57981-6.

[37]

Lu, M., Zhou, X., Luo, Y., Yang, Y., Fang, C., Chen, J., Li, B., 2011. Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis. Agric. Ecosyst. Environ., 140, pp. 234-244. doi: 10.1016/j.agee.2010.12.010.

[38]

Lu, M., Zhou, X., Yang, Q., Li, H., Luo, Y., Fang, C., Chen, J., Yang, X., Li, B., 2013. Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology, 94 (3), pp. 726-738. doi: 10.1890/12-0279.1.

[39]

Luke, N., Kris, J., Catharine van I., et al., 2022. International soil carbon network version 3 database (ISCN3) ver 1

[40]

Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V., Carvalhais, N., Chappell, A., Ciais, P., Davidson, E. A., Finzi, A., Georgiou, K., Guenet, B., Hararuk, O., Harden, J. W., He, Y., Hopkins, F., Jiang, L., Koven, C., Jackson, R. B., Jones, C. D., Lara, M. J., Liang, J., McGuire, A. D., Parton, W., Peng, C., Randerson, J. T., Salazar, A., Sierra, C. A., Smith, M. J., Tian, H., Todd-Brown, K. E. O., Torn, M., van Groenigen, K. J., Wang, Y. P., West, T. O., Wei, Y., Wieder, W. R., Xia, J., Xu, X., Xu, X., Zhou, T., 2016. Toward more realistic projections of soil carbon dynamics by Earth system models. Glob. Biogeochem. Cycle., 30 (1), pp. 40-56. doi: 10.1002/2015GB005239.

[41]

Luo, Z., Wang, G., Wang, E., 2019. Global subsoil organic carbon turnover times dominantly controlled by soil properties rather than climate. Nat. Commun. 10, 3688. doi: 10.1038/s41467-019-11597-9.

[42]

MacDonald, H., McKenney, D. W., Papadopol, P., Lawrence, K., Pedlar, J., Hutchinson, M. F., 2020. North American historical monthly spatial climate dataset, 1901–2016. Sci. Data, 7, p. 411. doi: 10.1038/s41597-020-00737-2.

[43]

Mahalanobis, P. C., 1936. On the generalised distance in statistics. Proc. Natl. Inst. Sci. India 2, 49-55.

[44]

Marotzke, J., Forster, P. M., 2015. Forcing, feedback and internal variability in global temperature trends. Nature, 517, pp. 565-570. doi: 10.1038/nature14117.

[45]

Melillo, J. M., Frey, S. D., DeAngelis, K. M., Werner, W. J., Bernard, M. J., Bowles, F. P., Pold, G., Knorr, M. A., Grandy, A. S., 2017. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 358 (2017), pp. 101-105. doi: 10.1126/science.aan2874.

[46]

Modak, A., Mauritsen, T., 2021. The 2000–2012 global warming hiatus more likely with a low climate sensitivity. Geophys. Res. Lett., 48, Article e2020GL091779. doi: 10.1029/2020GL091779.

[47]

Naumann, G., Alfieri, L., Wyser, K., Mentaschi, L., Betts, R. A., Carrao, H., Spinoni, J., Vogt, J., Feyen, L., 2018. Global changes in drought conditions under different levels of warming. Geophys. Res. Lett., 45, pp. 3285-3296. doi: 10.1002/2017GL076521.

[48]

Nussbaum, M., Spiess, K., Baltensweiler, A., Grob, U., Keller, A., Greiner, L., Schaepman, M. E., Papritz, A., 2018. Evaluation of digital soil mapping approaches with large sets of environmental covariates. Soil, 4, pp. 1-22. doi: 10.5194/soil-4-1-2018.

[49]

Obermeier, W. A., Lehnert, L. W., Kammann, C. I., Müller, C., Grünhage, L., Luterbacher, J., Erbs, M., Moser, G., Seibert, R., Yuan, N., Bendix, J., 2017. Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions. Nat. Clim. Chang., 7, pp. 137-141. doi: 10.1038/nclimate3191.

[50]

Pallandt, M., Ahrens, B., Koirala, S., Lange, H., Reichstein, M., Schrumpf, M., Zaehle, S., 2022. Vertically divergent responses of SOC decomposition to soil moisture in a changing climate. J. Geophys. Res. Biogeosci., 127, Article e2021JG006684. doi: 10.1029/2021JG006684.

[51]

Patoine, G., Eisenhauer, N., Cesarz, S., Phillips, H. R. P., Xu, X., Zhang, L., Guerra, C. A., 2022. Drivers and trends of global soil microbial carbon over two decades. Nat. Commun., 13, p. 4195. doi: 10.1038/s41467-022-31833-z.

[52]

Peterson, T. C., Heim, R. R., Hirsch, R., Kaiser, D. P., Brooks, H., Diffenbaugh, N. S., Dole, R. M., Giovannettone, J. P., Guirguis, K., Karl, T. R., Katz, R. W., Kunkel, K., Lettenmaier, D., McCabe, G. J., Paciorek, C. J., Ryberg, K. R., Schubert, S., Silva, V. B. S., Stewart, B. C., Vecchia, A. V., Villarini, G., Vose, R. S., Walsh, J., Wehner, M., Wolock, D., Wolter, K., Woodhouse, C. A., Wuebbles, D., 2013. Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: state of knowledge. Bull. Am. Meteorol. Soc., 94, pp. 821-834. doi: 10.1175/BAMS-D-12-00066.1.

[53]

Püspök, J. F., Zhao, S., Calma, A. D., Vourlitis, G. L., Allison, S. D., Aronson, E. L., Schimel, J. P., Hanan, E. J., Homyak, P. M., 2023. Effects of experimental nitrogen deposition on soil organic carbon storage in southern california drylands. Glob. Change Biol., 29, pp. 1660-1679. doi: 10.1111/gcb.16563.

[54]

Qin, Z., Dunn, J. B., Kwon, H., Mueller, S., Wander, M. M., 2016. Soil carbon sequestration and land use change associated with biofuel production: empirical evidence. GCB Bioenergy, 8, pp. 66-80. doi: 10.1111/gcbb.12237.

[55]

Sáez-Sandino, T., García-Palacios, P., Maestre, F. T., Plaza, C., Guirado, E., Singh, B. K., Wang, J., Cano-Díaz, C., Eisenhauer, N., Gallardo, A., Delgado-Baquerizo, M., 2023. The soil microbiome governs the response of microbial respiration to warming across the globe. Nat. Clim. Chang., 13, pp. 1382-1387. doi: 10.1038/s41558-023-01868-1.

[56]

Senthilkumar, S., Basso, B., Kravchenko, A., Robertson, G. P., 2009. Contemporary evidence of soil carbon loss in the U.S. corn belt. Soil Sci. Soc. Am. J., 73 (6), pp. 2078-2086. doi: 10.2136/sssaj2009.0044.

[57]

Shen, F., Yang, L., Zhang, L., Guo, M., Huang, H., Zhou, C., 2023. Quantifying the direct effects of long-term dynamic land use intensity on vegetation change and its interacted effects with economic development and climate change in Jiangsu, China. J. Environ. Manage., 325, Article 116562. doi: 10.1016/j.jenvman.2022.116562.

[58]

Shi, W., Gao, D., Zhang, Z., Ding, J., Zhao, C., Wang, H., Hagedorn, F., 2024. Exploring global data sets to detect changes in soil microbial carbon and nitrogen over three decades. Earths Future, 12, Article e2024EF004733. doi: 10.1029/2024EF004733.

[59]

Smith, P, J-Soussana, F., Angers, D., Schipper, L., Chenu, C., Rasse, D. P., Batjes, N. H., van Egmond, F., McNeill, S., Kuhnert, M., Arias-Navarro, C., Olesen, J. E., Chirinda, N., Fornara, D., Wollenberg, E., Sanz-Cobena, A., Klumpp, K., 2020. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob. Change Biol., 26, pp. 219-241. doi: 10.1111/gcb.14815.

[60]

Soil Survey Staff, 2023. Gridded national soil survey geographic (gNATSGO) database for the conterminous united states. United States Department of Agriculture, Natural Resources Conservation Service.

[61]

Song, X., Peng, C., Ciais, P., Li, Q., Xiang, W., Xiao, W., Zhou, G., Deng, L., 2020. Nitrogen addition increased CO2 uptake more than non-CO2 greenhouse gases emissions in a Moso bamboo forest. Sci. Adv., 6 (12), p. eaaw5790. doi: 10.1126/sciadv.aaw5790.

[62]

Spohn, M., Bagchi, S., Biederman, L. A., Borer, E. T., Bråthen, K. A., Bugalho, M. N., Caldeira, M. C., Catford, J. A., Collins, S. L., Eisenhauer, N., Hagenah, N., Haider, S., Hautier, Y., Knops, J. M. H., Koerner, S. E., Laanisto, L., Lekberg, Y., Martina, J. P., Martinson, H., McCulley, R. L., Peri, P. L., Macek, P., Power, S. A., Risch, A. C., Roscher, C., Seabloom, E. W., Stevens, C., Veen, G. F., Virtanen, R., Yahdjian, L., 2023. The positive effect of plant diversity on soil carbon depends on climate. Nat. Commun., 14, p. 6624. doi: 10.1038/s41467-023-42340-0.

[63]

Sun, X-L., Minasny, B, H-Wang, L, Y-Zhao, G, G-Zhang, L, Y-Wu, J., 2021. Spatiotemporal modelling of soil organic matter changes in Jiangsu, China between 1980 and 2006 using INLA-SPDE. Geoderma, 384, Article 114808. doi: 10.1016/j.geoderma.2020.114808.

[64]

Tang, B., Rocci, K. S., Lehmann, A., Rillig, M. C., 2023. Nitrogen increases soil organic carbon accrual and alters its functionality. Glob. Change Biol., 29, pp. 1971-1983. doi: 10.1111/gcb.16588.

[65]

Theobald, D. M., Harrison-Atlas, D., Monahan, W. B., Albano, C. M., 2015. Ecologically-relevant maps of landforms and physiographic diversity for climate adaptation planning. PLoS One, 10, Article e0143619. doi: 10.1371/journal.pone.0143619.

[66]

US EPA, 2016. Climate change indicators: U.S. and Global temperature. https://www.epa.gov/climate-indicators/climate-change-indicators-us-and-global-temperature. (accessed 8 November 2024).

[67]

Wang, M., Guo, X., Zhang, S., Xiao, L., Mishra, U., Yang, Y., Zhu, B., Wang, G., Mao, X., Qian, T., Jiang, T., Shi, Z., Luo, Z., 2022. Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate. Nat. Commun., 13, p. 5514. doi: 10.1038/s41467-022-33278-w.

[68]

Wang, S., Zhang, Y., Ju, W., Chen, J. M., Ciais, P., Cescatti, A., Sardans, J., Janssens, I. A., Wu, M., Berry, J. A., Campbell, E., Fernandez-Martinez, M., Alkama, R., Sftch, S., Friedlingstein, P., Smith, W. K., Yuan, W., He, W., Lombardozzi, D., Kautz, M., Zhu, D., Lienert, S., Kato, E., Poulter, B., Sanders, T. G. M., Kruger, I., Wang, R., Zeng, N., Tian, H., Vuichard, N., Jain, A. K., Wiltshire, A., Haverd, V., Goll, D. S., Penuelas, J., 2020. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science, 370, pp. 1295-1300. doi: 10.1126/science.abb7772.

[69]

Winkler, K., Fuchs, R., Rounsevell, M.D.A., Herold, M., 2020. HILDA + global land use change between 1960 and 2019. https://doi.org/10.1594/PANGAEA.921846

[70]

Yang, Y., Keiluweit, M., Senesi, N., Xing, B., 2022. Multi-scale Biogeochemical Processes in Soil Ecosystems: Critical Reactions and Resilience to Climate Changes. John Wiley & Sons, Inc

[71]

Zhou, Z., Wang, C., Li, Y., Wang, X., He, X., Xu, M., Cai, A., 2025. Carbon gain in upper but loss in deeper cropland soils across China over the last four decades. Proc. Natl. Acad. Sci. U.S.A., 122, Article e2422371122. doi: 10.1073/pnas.2422371122.

[72]

Zhu, J., Wang, C., Zhou, Z., Zhou, G., Hu, X., Jiang, L., Li, Y., Liu, G., Ji, C., Zhao, S., Li, P., Zhu, J., Tang, Z., Zheng, C., Birdsey, R. A., Pan, Y., Fang, J., 2020. Increasing soil carbon stocks in eight permanent forest plots in China. Biogeosciences, 17, pp. 715-726. doi: 10.5194/bg-17-715-2020.

[73]

Zhu, Y., Wang, T., Wang, H., 2016. Relative contribution of the anthropogenic forcing and natural variability to the interdecadal shift of climate during the late 1970s and 1990s. Sci. Bull. 61, 416–424. doi: 10.1007/s11434-016-1012-3.

[74]

Zomer, R. J., Xu, J., Trabucco, A., 2022. Version 3 of the global aridity index and potential evapotranspiration database. Sci. Data, 9, p. 409. doi: 10.1038/s41597-022-01493-1.

[75]

Zosso, C. U., Ofiti, N. O. E., Torn, M. S., Wiesenberg, G. L. B., Schmidt, M. W. I., 2023. Wiesenberg, M.W.I. Schmidt. Rapid loss of complex polymers and pyrogenic carbon in subsoils under whole-soil warming. Nat. Geosci., 16, pp. 344-348. doi: 10.1038/s41561-023-01142-1.

PDF

632

Accesses

0

Citation

Detail

Sections
Recommended

/