Ecological restorations enhance ecosystem stability by improving ecological resilience in a typical basin of the Yangtze River, China

Yixiao Li , Zhengyuan Zhao , Bojie Fu , Yunlong Zhang , Yihe Lü , Ting Li , Shiliang Liu , Gang Wu , Xi Zheng , Xing Wu

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) : 100357

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) :100357 DOI: 10.1016/j.geosus.2025.100357
Research Article
review-article

Ecological restorations enhance ecosystem stability by improving ecological resilience in a typical basin of the Yangtze River, China

Author information +
History +
PDF

Abstract

Ecological restorations (ERs) have been widely implemented in recent decades to enhance ecosystem stability. However, the extent of their impacts on ecosystem stability and the underlying mechanism remain poorly understood. This study developed a comprehensive framework for ecosystem stability assessment by integrating the temporal stability of ecosystem service (ES) provision, ecological resistance, and ecological resilience. Additionally, ER intensity was quantified using vegetation index trends, while the pathways and magnitudes of key factors driving ecosystem stability were identified by partial least squares structural equation modeling. Using the Jialing River Basin as a case study, our results revealed that forests exhibited the highest ecosystem stability due to their enhanced capacity to maintain temporal stability of ES provision and ecological resilience. However, farmlands demonstrated the strongest ecological resistance, followed by forests and grasslands. ER projects were primarily implemented in northern and southern farmland regions characterized by low ecological resilience. Pathway analysis identified that favorable climates significantly enhanced the temporal stability of ES provision, and rugged topography improved the ecological resistance. However, fragmented landscape patches disrupted stable ES provision by reducing ecological connectivity, and socioeconomic development diminished both resistance and resilience through land-use intensification. Notably, ERs improved ecological resilience, which in turn elevated overall ecosystem stability. Our results indicated that the proposed framework provides a systematic approach for comprehensive ecosystem stability evaluation and offers critical insights for developing region-specific ER strategies.

Keywords

Ecosystem stability / Ecological restoration / Ecosystem services / Ecological resistance / Ecological resilience / Jialing River Basin

Cite this article

Download citation ▾
Yixiao Li, Zhengyuan Zhao, Bojie Fu, Yunlong Zhang, Yihe Lü, Ting Li, Shiliang Liu, Gang Wu, Xi Zheng, Xing Wu. Ecological restorations enhance ecosystem stability by improving ecological resilience in a typical basin of the Yangtze River, China. Geography and Sustainability, 2025, 6(6): 100357 DOI:10.1016/j.geosus.2025.100357

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Yixiao Li: Writing – original draft, Validation, Software, Methodology, Investigation, Formal analysis, Data curation. Zhengyuan Zhao: Writing – review & editing, Conceptualization. Bojie Fu: Writing – review & editing, Supervision, Funding acquisition, Conceptualization. Yunlong Zhang: Visualization, Software, Methodology. Yihe Lü: Investigation, Data curation. Ting Li: Visualization, Software, Methodology. Shiliang Liu: Writing – review & editing, Conceptualization. Gang Wu: Writing – review & editing, Conceptualization. Xi Zheng: Supervision, Conceptualization. Xing Wu: Writing – review & editing, Supervision, Funding acquisition, Data curation, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study was supported by the National Key Research and Development Project (Grants No. 2022YFF1303204 and 2024YFF1307902), and the National Natural Science Foundation of China (Grant No. 42271099). We would like to thank the editor and the reviewers for valuable suggestions and comments to improve the previous version of the manuscript.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100357.

References

[1]

Albrich, K., Rammer, W., Thom, D., Seidl, R., 2018. Trade-offs between temporal stability and level of forest ecosystem services provisioning under climate change. Ecol. Appl., 28, pp. 1884-1896. doi: 10.1002/eap.1785.

[2]

Bai, J., Shi, H., Yu, Q., Xie, Z., Li, L., Luo, G., Jin, N., Li, J., 2019. Satellite-observed vegetation stability in response to changes in climate and total water storage in Central Asia. Sci. Total Environ., 659, pp. 862-871. doi: 10.1016/j.scitotenv.2018.12.418.

[3]

Brauman, K. A., Daily, G. C., Duarte, T. K., Mooney, H. A., 2007. The nature and value of ecosystem services: an overview highlighting hydrologic services. Annu. Rev. Environ. Resour., 32, pp. 67-98. doi: 10.1146/annurev.energy.32.031306.102758.

[4]

Buisson, E., Le Stradic, S., Silveira, F. A. O., Durigan, G., Overbeck, G. E., Fidelis, A., Fernandes, G. W., Bond, W. J., Hermann, J-.M., Mahy, G., Alvarado, S. T., Zaloumis, N. P., Veldman, J. W., 2019. Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands. Biol. Rev., 94, pp. 590-609. doi: 10.1111/brv.12470.

[5]

Cao, S., Xia, C., Suo, X., Wei, Z., 2021. A framework for calculating the net benefits of ecological restoration programs in China. Ecosyst. Serv., 50, Article 101325. doi: 10.1016/j.ecoser.2021.101325.

[6]

Chan, K. M. A., Shaw, M. R., Cameron, D. R., Underwood, E. C., Daily, G. C., 2006. Conservation planning for ecosystem services. PLoS Biol., 4, p. e379. doi: 10.1371/journal.pbio.0040379.

[7]

Chang, J., Liu, Q., Wang, S., Huang, C., 2022. Vegetation dynamics and their influencing factors in China from 1998 to 2019. Remote Sens., 14, p. 3390. doi: 10.3390/rs14143390.

[8]

Choi, Y, C-Lim, H., Krasovskiy, A., Platov, A., Kim, Y., Chung, H. I., Kim, M, W-Lee, K., Shvidenko, A., Kraxner, F., Schepaschenko, D., Biging, G. S., Chon, J., Jeon, S. W., 2022. Can a national afforestation plan achieve simultaneous goals of biodiversity and carbon enhancement? Exploring optimal decision making using multi-spatial modeling. Biol. Conserv., 267, Article 109474. doi: 10.1016/j.biocon.2022.109474.

[9]

Dang, D., Li, X., Li, S., Li, X., Lyu, X., Dou, H., Li, M., Liu, S., Xuan, X., Wang, K., 2023b. Changing rural livelihood activities may reduce the effectiveness of ecological restoration projects. Land Degrad. Dev. 34, 362–376. doi: 10.1002/ldr.4465.

[10]

Dang, D., Li, X., Li, S., Lyu, X., Dou, H., Li, M., Wang, K., 2023a. Changed ecosystem stability in response to climate anomalies in the context of ecological restoration projects. Land Degrad. Dev. 34, 3003–3016. doi: 10.1002/ldr.4663.

[11]

Dardonville, M., Bockstaller, C., Villerd, J., Therond, O., 2022. Resilience of agricultural systems: biodiversity-based systems are stable, while intensified ones are resistant and high-yielding. Agric. Syst., 197, Article 103365. doi: 10.1016/j.agsy.2022.103365.

[12]

De Keersmaecker, W., Lhermitte, S., Honnay, O., Farifteh, J., Somers, B., Coppin, P., 2014. How to measure ecosystem stability? An evaluation of the reliability of stability metrics based on remote sensing time series across the major global ecosystems. Glob. Change Biol., 20, pp. 2149-2161. doi: 10.1111/gcb.12495.

[13]

Ding, H., Yuan, Z., Yin, J., Shi, X., Shi, M., 2023. Evaluating ecosystem stability based on the dynamic time warping algorithm: a case study in the Minjiang River Basin, China. Ecol. Indic., 154, Article 110501. doi: 10.1016/j.ecolind.2023.110501.

[14]

Fang, J., Song, H., Zhang, Y., Li, Y., Liu, J., 2018. Climate-dependence of ecosystem services in a nature reserve in northern China. PLoS One, 13, Article e0192727. doi: 10.1371/journal.pone.0192727.

[15]

Fang, L., Wang, L., Chen, W., Sun, J., Cao, Q., Wang, S., Wang, L., 2021. Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins. J. Clean. Prod., 314, Article 127995. doi: 10.1016/j.jclepro.2021.127995.

[16]

Fu, B., Wu, X., Wang, S., Zhao, W., 2024. Scientific principles for accelerating the sustainable development goals. Geogr. Sustain., 5, pp. 157-159. doi: 10.1016/j.geosus.2024.01.005.

[17]

Fu, B., Zhang, L., Xu, Z., Zhao, Y., Wei, Y., Skinner, D., 2015. Ecosystem services in changing land use. J. Soils Sediments, 15, pp. 833-843. doi: 10.1007/s11368-015-1082-x.

[18]

Ganjurjav, H., Zhang, Y., Gornish, E. S., Hu, G., Li, Y., Wan, Y., Gao, Q., 2019. Differential resistance and resilience of functional groups to livestock grazing maintain ecosystem stability in an alpine steppe on the Qinghai-Tibetan Plateau. J. Environ. Manage., 251, Article 109579. doi: 10.1016/j.jenvman.2019.109579.

[19]

Guclu, Y. S., 2020. Improved visualization for trend analysis by comparing with classical Mann-Kendall test and ITA. J. Hydrol., 584, Article 124674. doi: 10.1016/j.jhydrol.2020.124674.

[20]

Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., Lovejoy, T. E., Sexton, J. O., Austin, M. P., Collins, C. D., Cook, W. M., Damschen, E. I., Ewers, R. M., Foster, B. L., Jenkins, C. N., King, A. J., Laurance, W. F., Levey, D. J., Margules, C. R., Melbourne, B. A., Nicholls, A. O., Orrock, J. L., Song, D-.X., Townshend, J. R., 2015. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv., 1, Article e1500052. doi: 10.1126/sciadv.1500052.

[21]

Hair, J. F., Ringle, C. M., Sarstedt, M., 2011. PLS-SEM: indeed a silver bullet. J. Market Theory Prac., 19, pp. 139-152. doi: 10.2753/MTP1069-6679190202.

[22]

Hayat, R., Ali, S., Amara, U., Khalid, R., Ahmed, I., 2010. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann. Microbiol., 60, pp. 579-598. doi: 10.1007/s13213-010-0117-1.

[23]

Hayes, A. F., Montoya, A. K., Rockwood, N. J., 2017. The analysis of mechanisms and their contingencies: PROCESS versus structural equation modeling. Australas. Mark. J., 25, pp. 76-81. doi: 10.1016/j.ausmj.2017.02.001.

[24]

Hesselbarth, M., Sciaini, M., With, K., Wiegand, K., Nowosad, J., 2019. landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography, 42, pp. 1648-1657. doi: 10.1111/ecog.04617.

[25]

Hossain, M. L., Li, J., 2021. NDVI-based vegetation dynamics and its resistance and resilience to different intensities of climatic events. Glob. Ecol. Conserv., 30, Article e01768. doi: 10.1016/j.gecco.2021.e01768.

[26]

Hou, B., Wei, C., Liu, X., Meng, Y., Li, X., 2023. Assessing forest landscape stability through automatic identification of landscape pattern evolution in Shanxi Province of China. Remote Sens., 15, p. 545. doi: 10.3390/rs15030545.

[27]

Hou, M., Ge, J., Gao, J., Meng, B., Li, Y., Yin, J., Liu, J., Feng, Q., Liang, T., 2020. Ecological risk assessment and impact factor analysis of Alpine wetland ecosystem based on LUCC and boosted regression tree on the Zoige Plateau, China. Remote Sens., 12, p. 368. doi: 10.3390/rs12030368.

[28]

Hu, B., Kang, F., Han, H., Cheng, X., Li, Z., 2021. Exploring drivers of ecosystem services variation from a geospatial perspective: insights from China’s Shanxi Province. Ecol. Indic., 131, p. 108188. doi: 10.1016/j.ecolind.2021.108188.

[29]

Hu, B., Wu, H., Li, Z., Jing, H., Zheng, Z., Han, H., Cheng, X., Kang, F., 2023. Aridification weakens ecosystem services by reducing complexity and stability of socio-ecological networks. J. Clean. Prod., 387, Article 135823. doi: 10.1016/j.jclepro.2022.135823.

[30]

Huang, K., Xia, J., 2019. High ecosystem stability of evergreen broadleaf forests under severe droughts. Glob. Change Biol., 25, pp. 3494-3503. doi: 10.1111/gcb.14748.

[31]

Huang, P, X-Zheng, T., Li, X., Hu, K, Z-Zhou, Q., 2023. More complex interactions: continuing progress in understanding the dynamics of regional climate change under a warming climate. Innovation, 4, Article 100398. doi: 10.1016/j.xinn.2023.100398.

[32]

Kang, W., Liu, S., Chen, X., Feng, K., Guo, Z., Wang, T., 2022. Evaluation of ecosystem stability against climate changes via satellite data in the eastern sandy area of northern China. J. Environ. Manage., 308, Article 114596. doi: 10.1016/j.jenvman.2022.114596.

[33]

Kim, G., Kim, J., Ko, Y., Eyman, O. T. G., Chowdhury, S., Adiwal, J., Lee, W., Son, Y., 2021. How do nature-based solutions improve environmental and socio-economic resilience to achieve the Sustainable Development Goals? Reforestation and afforestation cases from the Republic of Korea. Sustainability, 13, Article 12171. doi: 10.3390/su132112171.

[34]

Lal, R., 2004. Soil carbon sequestration to mitigate climate change. Geoderma, 123, pp. 1-22. doi: 10.1016/j.geoderma.2004.01.032.

[35]

Li, S., Zhao, X., Pu, J., Miao, P., Wang, Q., Tan, K., 2021b. Optimize and control territorial spatial functional areas to improve the ecological stability and total environment in karst areas of Southwest China. Land Use Policy 100, 104940. doi: 10.1016/j.landusepol.2020.104940.

[36]

Li, T., Chen, Y.-Z., Han, L.-J., Cheng, L.-H., Lv, Y.-H., Fu, B.-J., Feng, X.-M., Wu, X., 2021a. Shortened duration and reduced area of frozen soil in the Northern Hemisphere. Innovation 2, 100146. doi: 10.1016/j.xinn.2021.100146.

[37]

Li, X., Liu, X., Hou, B., Tian, L., Yang, Q., Zhu, L., Meng, Y., 2023. Multi-dimensional evaluation of ecosystem health in China’s Loess Plateau based on function-oriented metrics and BFAST algorithm. Remote Sens., 15, p. 383. doi: 10.3390/rs15020383.

[38]

Liu, J., Dou, Y., Chen, H., 2024. Stepwise ecological restoration: a framework for improving restoration outcomes. Geogr. Sustain. 5, 160–166. doi: 10.1016/j.geosus.2024.02.003.

[39]

Liu, P., Chi, Y., Chen, J., Zhou, L., 2023. Global climate regulates dimensions of terrestrial ecosystem stability. Ecosphere, 14, p. e4577. doi: 10.1002/ecs2.4577.

[40]

, D., , Y., Gao, G., Sun, S., Wang, Y., Fu, B., 2024. A landscape persistence-based methodological framework for assessing ecological stability. Env. Sci. Ecotechnol., 17, Article 100300. doi: 10.1016/j.ese.2023.100300.

[41]

Lu, J., Yan, F., 2023. The dvergent resistance and resilience of forest and grassland ecosystems to extreme summer drought in carbon sequestration. Land, 12, p. 1672. doi: 10.3390/land12091672.

[42]

, Y., Li, T., Whitham, C., Feng, X., Fu, B., Zeng, Y., Wu, B., Hu, J., 2020. Scale and landscape features matter for understanding the performance of large payments for ecosystem services. Landsc. Urban Plan., 197, Article 103764. doi: 10.1016/j.landurbplan.2020.103764.

[43]

Maus, V., Câmara, G., Cartaxo, R., Sanchez, A., Ramos, F. M., de Queiroz , G. R., 2016. A time-weighted dynamic time warping method for land-use and land-cover mapping. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 9, pp. 3729-3739. doi: 10.1109/JSTARS.2016.2517118.

[44]

Miralles-Wilhelm, F., Matthews, J. H., Karres, N., Abell, R., Dalton, J, S-Kang, T., Liu, J., Maendly, R., Matthews, N., McDonald, R., Muñoz-Castillo, R., Ochoa-Tocachi, B. F., Pradhan, N., Rodriguez, D., Vigerstøl, K., van Wesenbeeck, B., 2023. Emerging themes and future directions in watershed resilience research. Water Secur., 18, Article 100132. doi: 10.1016/j.wasec.2022.100132.

[45]

North, M. P., Stevens, J. T., Greene, D. F., Coppoletta, M., Knapp, E. E., Latimer, A. M., Restaino, C. M., Tompkins, R. E., Welch, K. R., York, R. A., Young, D. J. N., Axelson, J. N., Buckley, T. N., Estes, B. L., Hager, R. N., Long, J. W., Meyer, M. D., Ostoja, S. M., Safford, H. D., Shive, K. L., Tubbesing, C. L., Vice, H., Walsh, D., Werner, C. M., Wyrsch, P., 2019. Tamm Review: reforestation for resilience in dry western U.S. forests. For. Ecol. Manage., 432, pp. 209-224. doi: 10.1016/j.foreco.2018.09.007.

[46]

Oliver, T. H., Heard, M. S., Isaac, N. J. B., Roy, D. B., Procter, D., Eigenbrod, F., Freckleton, R., Hector, A., Orme, C. D. L., Petchey, O. L., Proença, V., Raffaelli, D., Suttle, K. B., Mace, G. M., Martín-López, B., Woodcock, B. A., Bullock, J. M., 2015. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol., 30, pp. 673-684. doi: 10.1016/j.tree.2015.08.009.

[47]

Pardini, R., Bueno, A. A., Gardner, T. A., Prado, P. I., Metzger, J. P., 2010. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS One, 5, Article e13666. doi: 10.1371/journal.pone.0013666.

[48]

Pei, N., Wang, C., Jin, J., Jia, B., Chen, B., Qie, G., Qiu, E., Gu, L., Sun, R., Li, J., Zhang, C., Jiang, S., Zhang, Z., 2018. Long-term afforestation efforts increase bird species diversity in Beijing, China. Urban. For. Urban. Green., 29, pp. 88-95. doi: 10.1016/j.ufug.2017.11.007.

[49]

Peng, G., Zhou, X., Xie, B., Huang, C., Uddin, M.M., Chen, X., Huang, L., 2021a. Ecosystem stability and water quality improvement in a eutrophic shallow lake via long-term integrated biomanipulation in Southeast China. Ecol. Eng. 159, 106119. doi: 10.1016/j.ecoleng.2020.106119.

[50]

Peng, J., Jiang, H., Liu, Q., Green, S.M., Quine, T.A., Liu, H., Qiu, S., Liu, Y., Meersmans, J., 2021b. Human activity vs. climate change: distinguishing dominant drivers on LAI dynamic in karst region of southwest China. Sci. Total. Environ. 769, 144297. doi: 10.1016/j.scitotenv.2020.144297.

[51]

Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., Blair, R., 1995. Environmental and economic costs of soil erosion and conservation benefits. Science, 267, pp. 1117-1123. doi: 10.1126/science.267.5201.1117.

[52]

Pimm, S. L., 1984. The complexity and stability of ecosystems. Nature, 307, pp. 321-326. doi: 10.1038/307321a0.

[53]

Qi, Y., Lian, X., Wang, H., Zhang, J., Yang, R., 2020. Dynamic mechanism between human activities and ecosystem services: a case study of Qinghai lake watershed, China. Ecol. Indic., 117, Article 106528. doi: 10.1016/j.ecolind.2020.106528.

[54]

Qi, Y., Lian, X., Wang, H., Zhang, J., Yang, R., 2020. Dynamic mechanism between human activities and ecosystem services: a case study of Qinghai lake watershed, China. Ecol. Indic. 117, 106528. doi: 10.1016/j.ecolind.2020.106528.

[55]

Qu, S., Wang, L., Lin, A., Zhu, H., Yuan, M., 2018. What drives the vegetation restoration in Yangtze River basin, China: climate change or anthropogenic factors?. Ecol. Indic., 90, pp. 438-450. doi: 10.1016/j.ecolind.2018.03.029.

[56]

Ren, L., Huo, J., Xiang, X., Pan, Y., Li, Y., Wang, Y., Meng, D., Yu, C., Chen, Y., Xu, Z., Huang, Y., 2023. Environmental conditions are the dominant factor influencing stability of terrestrial ecosystems on the Tibetan Plateau. Commun. Earth Environ., 4, p. 196. doi: 10.1038/s43247-023-00849-8.

[57]

Sharp, R., Tallis, H. T., Ricketts, T., Guerry, A. D., Wood, S. A., Chaplin-Kramer, R., Nelson, E., Ennaanay, D., Wolny, S., Olwero, N., 2018. InVEST 3.2. 0 User’s Guide. The Natural Capital Project

[58]

Shi, X., Chen, F., Ding, H., Shi, M., Li, Y., 2022. Assessing vegetation ecosystem resistance to drought in the middle reaches of the Yellow River Basin, China. Int. J. Environ. Res. Public Health, 19, p. 4180. doi: 10.3390/ijerph19074180.

[59]

Stuart-Haëntjens, E., De Boeck, H. J., Lemoine, N. P., Mänd, P., Kröel-Dulay, G., Schmidt, I. K., Jentsch, A., Stampfli, A., Anderegg, W. R. L., Bahn, M., Kreyling, J., Wohlgemuth, T., Lloret, F., Classen, A. T., Gough, C. M., Smith, M. D., 2018. Mean annual precipitation predicts primary production resistance and resilience to extreme drought. Sci. Total. Environ., 636, pp. 360-366. doi: 10.1016/j.scitotenv.2018.04.290.

[60]

Su, C, B-Fu, J, C-He, S, Y-, H., 2012. Variation of ecosystem services and human activities: a case study in the Yanhe Watershed of China. Acta Oecol., 44, pp. 46-57. doi: 10.1016/j.actao.2011.11.006.

[61]

Tian, P., Cao, L., Li, J., Pu, R., Liu, Y., Zhang, H., Wang, C., 2022. Ecosystem stability assessment of Yancheng coastal wetlands, a world natural heritage site. Land, 11, p. 564. doi: 10.3390/land11040564.

[62]

Ullman, J. B., Bentler, P. M., 2012. Structural equation modeling. I.B. Weiner (Ed.), Handbook of Psychology (2nd Ed.), John Wiley & Sons, Ltd, pp. 661-690. doi: 10.1002/9781118133880.hop202023.

[63]

UNEP and FAO. The UN decade on ecosystem restoration (2021–2030). https://www.decadeonrestoration.org/.

[64]

United Nations. The UN sustainable development goals. https://sdgs.un.org/goals.

[65]

Wang, C., Ma, L., Zhang, Y., Chen, N., Wang, W., 2022. Spatiotemporal dynamics of wetlands and their driving factors based on PLS-SEM: a case study in Wuhan. Sci. Total Environ., 806, Article 151310. doi: 10.1016/j.scitotenv.2021.151310.

[66]

Wang, F., Zhu, W., Chen, H., 2016. Changes of soil C stocks and stability after 70-year afforestation in the Northeast USA. Plant Soil 401, 319–329. doi: 10.1007/s11104-015-2755-3.

[67]

Wang, Y., Gong, J., Zhu, Y., 2024. Integrating social-ecological system into watershed ecosystem services management: a case study of the Jialing River Basin, China. Ecol. Indic. 160, 111781. doi: 10.1016/j.ecolind.2024.111781.

[68]

Wu, L., Wang, S., Bai, X., Tian, Y., Luo, G., Wang, J., Li, Q., Chen, F., Deng, Y., Yang, Y., Hu, Z., 2020. Climate change weakens the positive effect of human activities on karst vegetation productivity restoration in southern China. Ecol. Indic., 115, Article 106392. doi: 10.1016/j.ecolind.2020.106392.

[69]

Wu, X., , Y., Zhang, J., Lu, N., Jiang, W., Fu, B., 2023. Adapting ecosystem restoration for sustainable development in a changing world. Innovation, 4, Article 100375. doi: 10.1016/j.xinn.2023.100375.

[70]

Wu, X., Wang, S., Fu, B., Liu, J., 2021. Spatial variation and influencing factors of the effectiveness of afforestation in China’s Loess Plateau. Sci. Total Environ., 771, Article 144904. doi: 10.1016/j.scitotenv.2020.144904.

[71]

Xiao, W., Lv, X., Zhao, Y., Sun, H., Li, J., 2020. Ecological resilience assessment of an arid coal mining area using index of entropy and linear weighted analysis: a case study of Shendong Coalfield, China. Ecol. Indic., 109, Article 105843. doi: 10.1016/j.ecolind.2019.105843.

[72]

Xu, X., Yang, G., Tan, Y., Liu, J., Hu, H., 2018. Ecosystem services trade-offs and determinants in China’s Yangtze River Economic Belt from 2000 to 2015. Sci. Total Environ., 634, pp. 1601-1614. doi: 10.1016/j.scitotenv.2018.04.046.

[73]

Yang, G., Wagg, C., Veresoglou, S. D., Hempel, S., Rillig, M. C., 2018. How soil biota drive ecosystem stability. Trends. Plant Sci., 23, pp. 1057-1067. doi: 10.1016/j.tplants.2018.09.007.

[74]

Yao, Y., Fu, B., Liu, Y., Li, Y., Wang, S., Zhan, T., Wang, Y., Gao, D., 2022. Evaluation of ecosystem resilience to drought based on drought intensity and recovery time. Agric. For. Meteorol., 314, Article 108809. doi: 10.1016/j.agrformet.2022.108809.

[75]

Zeng, X., Zhao, N., Sun, H., Ye, L., Zhai, J., 2015. Changes and relationships of climatic and hydrological droughts in the Jialing River Basin, China. PLoS One, 10, Article e0141648. doi: 10.1371/journal.pone.0141648.

[76]

Zhang, J., Fu, M., Zhang, Z., Tao, J., Fu, W., 2014. A trade-off approach of optimal land allocation between socio-economic development and ecological stability. Ecol. Model., 272, pp. 175-187. doi: 10.1016/j.ecolmodel.2013.10.008.

[77]

Zhang, R., Tian, D., Wang, J., Niu, S., 2023. Critical role of multidimensional biodiversity in contributing to ecosystem sustainability under global change. Geogr. Sustain., 4, pp. 232-243. doi: 10.1016/j.geosus.2023.05.002.

[78]

Zhang, Y., Yang, Y., Chen, Z., Zhang, S., 2020. Multi-criteria assessment of the resilience of ecological function areas in China with a focus on ecological restoration. Ecol. Indic., 119, Article 106862. doi: 10.1016/J.ECOLIND.2020.106862.

[79]

Zhang, Y., Zhao, X., Gong, J., Luo, F., Pan, Y., 2024. Effectiveness and driving mechanism of ecological restoration efforts in China from 2009 to 2019. Sci. Total Environ., 910, Article 168676. doi: 10.1016/j.scitotenv.2023.168676.

[80]

Zhao, M., Peng, J., Liu, Y., Li, T., Wang, Y., 2018. Mapping watershed-level ecosystem service bundles in the Pearl River Delta, China. Ecol. Econ., 152, pp. 106-117. doi: 10.1016/j.ecolecon.2018.04.023.

[81]

Zhao, Z., Fu, B., , Y., Li, T., Deng, L., , D., Wu, X., 2024. Variable climatic conditions dominate decreased wetland vulnerability on the Qinghai‒Tibet Plateau: insights from the ecosystem pattern-process-function framework. J. Clean. Prod., 458, Article 142496. doi: 10.1016/j.jclepro.2024.142496.

[82]

Zhou, Y., Fu, D., Lu, C., Xu, X., Tang, Q., 2021. Positive effects of ecological restoration policies on the vegetation dynamics in a typical ecologically vulnerable area of China. Ecol. Eng., 159, Article 106087. doi: 10.1016/j.ecoleng.2020.106087.

PDF

430

Accesses

0

Citation

Detail

Sections
Recommended

/