The impact of extreme climate on soil organic carbon in China

Zipeng Zhang , Jianli Ding , Liangyi Li , Jinhua Cao , Keqiang Wang , Chuanmei Zhu , Xiangyu Ge , Jinjie Wang , Chaolei Yang , Fujie Li , Jingzhe Wang

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) : 100356

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) :100356 DOI: 10.1016/j.geosus.2025.100356
Research Article
review-article

The impact of extreme climate on soil organic carbon in China

Author information +
History +
PDF

Abstract

Quantitative studies on the national-scale effects of extreme climatic events on soil organic carbon (SOC) remain scarce, thus limiting our understanding of SOC dynamics. This study utilized 4515 publicly available soil samples to quantify the impacts of 19 extreme climatic indices (ECIs) on ΔSOC reservoirs in China through a hybrid space-for-time and meta-analysis approach. Overall, 16/19 ECIs were negatively correlated with ΔSOC, with the minimum temperature of the coldest night (TNn) showing the strongest negative correlation. Notably, topographic factors played a pivotal role in the modeling process, contributing an average of 25 %, followed by ECIs. Under the influence of the ECIs, SOC exhibited spatial variation. Extreme heat resulted in the greatest SOC losses in cold regions, such as North China, with average reductions of > 5 %, whereas its impact was weaker in South China, with SOC losses of ∼3 %. Extreme cold and wet indices promoted SOC accumulation in the Northeast China, with increases of ∼3 %, but showed a weaker response in the humid region, where the SOC increased by only 1 %. At the national scale, the impacts of extreme climatic events on SOC in the 0–20 cm ranged from −2.36 Pg to 2.34 Pg. Different ecosystems responded variably, with forest and grassland ecosystems being more sensitive to ECIs, potentially due to higher organic matter inputs and greater ecosystem complexity. In contrast, bare land exhibited weaker responses due to limited vegetation cover and organic inputs. These findings provide valuable insights into SOC dynamics at national scale during extreme climatic events.

Keywords

Soil organic carbon / Space for time substitution / Meta analysis / Digital soil mapping / Extreme climate

Cite this article

Download citation ▾
Zipeng Zhang, Jianli Ding, Liangyi Li, Jinhua Cao, Keqiang Wang, Chuanmei Zhu, Xiangyu Ge, Jinjie Wang, Chaolei Yang, Fujie Li, Jingzhe Wang. The impact of extreme climate on soil organic carbon in China. Geography and Sustainability, 2025, 6(6): 100356 DOI:10.1016/j.geosus.2025.100356

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability

The data supporting the findings of this study will be made available upon reasonable request. Researchers interested in accessing the data may contact the corresponding author for further details.

CRediT authorship contribution statement

Zipeng Zhang: Software, Visualization, Conceptualization, Writing – original draft, Formal analysis, Validation. Jianli Ding: Conceptualization, Funding acquisition. Liangyi Li: Supervision, Visualization, Resources, Writing – original draft, Software, Validation. Jinhua Cao: Validation, Formal analysis, Writing – original draft, Software, Supervision, Visualization, Resources. Keqiang Wang: Investigation, Formal analysis, Methodology. Chuanmei Zhu: Methodology, Visualization. Xiangyu Ge: Resources, Validation. Jinjie Wang: Writing – original draft. Chaolei Yang: Supervision, Conceptualization. Fujie Li: Resources. Jingzhe Wang: Visualization, Writing – original draft, Funding acquisition.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study was supported by the Open Project of Technology Innovation Center for Natural Ecosystem Carbon Sink (Grant No. CS2023D02), the Open Research Fund of Key Laboratory of Digital Earth Science, Aerospace Information Research Institute Chinese Academy of Sciences, Chinese Academy of Sciences (Grant No. 2022LDE007), the Talent Program “Tianchi Talent (Young Doctor)” in Xinjiang Uygur Autonomous Region, National Natural Science Foundation of China (Grant No. 42401065), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023A1515011273), and Shenzhen Polytechnic University Research Fund (Grant No. 6025310064K), the Innovation Training Program for Undergraduates at the Autonomous Region Level in 2024 (Grant No. S202410755009), the Innovation Training Program for Undergraduates at the University Level in 2024 (Grant No. XJU-SRT-24008), and the National Innovation Training Program for College Students in 2024 (Grant No. 202410755009).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100356.

References

[1]

Adhikari, K., Owens, P. R., Libohova, Z., Miller, D. M., Wills, S. A., Nemecek, J., 2019. Assessing soil organic carbon stock of Wisconsin, USA and its fate under future land use and climate change. Sci. Total Environ. 667, 833-845.

[2]

Allen, S., Barros, V., Cardona, O., Cutter, S., Dube, O. P., Ebi, K., Handmer, J., Lavell, A., Mastrandrea, M., McBean, G., Mechler, R., Nicholls, N., 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, and New York, NY, USA

[3]

Chen, S., Arrouays, D., Leatitia Mulder, V., Poggio, L., Minasny, B., Roudier, P., Libohova, Z., Lagacherie, P., Shi, Z., Hannam, J., Meersmans, J., Richer-de-Forges, A. C., Walter, C., 2022. Digital mapping of GlobalSoilMap soil properties at a broad scale: a review. Geoderma 409, 115567.

[4]

Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A. D., Friedlingstein, P., Grünwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J. F., Sanz, M. J., Schulze, E. D., Vesala, T., Valentini, R., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058), 529-533.

[5]

Crowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., Snoek, B. L., Fang, S., Zhou, G., Allison, S. D., Blair, J. M., Bridgham, S. D., Burton, A. J., Carrillo, Y., Reich, P. B., Clark, J. S., Classen, A. T., Dijkstra, F. A., Elberling, B., Emmett, B. A., Estiarte, M., Frey, S. D., Guo, J., Harte, J., Jiang, L., Johnson, B. R., Kröel-Dulay, G., Larsen, K. S., Laudon, H., Lavallee, J. M., Luo, Y., Lupascu, M., Ma, L. N., Marhan, S., Michelsen, A., Mohan, J., Niu, S., Pendall, E., Peñuelas, J., Pfeifer-Meister, L., Poll, C., Reinsch, S., Reynolds, L. L., Schmidt, I. K., Sistla, S., Sokol, N. W., Templer, P. H., Treseder, K. K., Welker, J. M., Bradford, M. A., 2016. Quantifying global soil carbon losses in response to warming. Nature 540(7631), 104-108.

[6]

Davidson, E. A., Janssens, I. A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081), 165-173.

[7]

De Jong, R., Verbesselt, J., Schaepman, M. E., de Bruin, S., 2012. Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Glob. Change Biol. 18(2), 642-655.

[8]

Faber, J., Quadros, A. F., Zimmer, M., 2018. A space-for-time approach to study the effects of increasing temperature on leaf litter decomposition under natural conditions. Soil Biol. Biochem. 123, 250-256.

[9]

Field, C. B., 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. Special Report of the Intergovernmental Panel on Climate Change, Cambridge University Press

[10]

Frank, D., Reichstein, M., Bahn, M., Thonicke, K., Frank, D., Mahecha, M. D., Smith, P., van der Velde, M., Vicca, S., Babst, F., Beer, C., Buchmann, N., Canadell, J. G., Ciais, P., Cramer, W., Ibrom, A., Miglietta, F., Poulter, B., Rammig, A., Seneviratne, S. I., Walz, A., Wattenbach, M., Zavala, M. A., Zscheischler, J., 2015. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change Biol. 21(8), 2861-2880.

[11]

Gampe, D., Zscheischler, J., Reichstein, M., O'Sullivan, M., Smith, W. K., Sitch, S., Buermann, W., 2021. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Chang. 11(9), 772-779.

[12]

Ganasri, B. P., Ramesh, H., 2016. Assessment of soil erosion by RUSLE model using remote sensing and GIS - a case study of Nethravathi Basin. Geosci. Front. 7(6), 953-961.

[13]

Gray, J. M., Bishop, T. F. A., 2016. Change in soil organic carbon stocks under 12 climate change projections over New South Wales. Australia. Soil Sci. Soc. Am. J. 80(5), 1296-1307.

[14]

Heimann, M., Reichstein, M., 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451(7176), 289-292.

[15]

Huang, M. T., Piao, S. L., Janssens, I. A., Zhu, Z. C., Wang, T., Wu, D. H., Ciais, P., Myneni, R. B., Peaucelle, M., Peng, S. S., Yang, H., Peñuelas, J., 2017. Velocity of change in vegetation productivity over northern high latitudes. Nat. Ecol. Evol. 1(11), 1649-1654.

[16]

Jansson, J. K., Hofmockel, K. S., 2020. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18(1), 35-46.

[17]

Jia, X., Xie, B, Shao, Ma., Zhao, C., 2015. Primary productivity and precipitation-use efficiency in temperate grassland in the Loess Plateau of China. PLoS One 10(8), e0135490.

[18]

Jiang, P., Liu, H. Y., Piao, S. L., Ciais, P., Wu, X. C., Yin, Y., Wang, H. Y., 2019. Enhanced growth after extreme wetness compensates for post-drought carbon loss in dry forests. Nat. Commun. 10, 195.

[19]

Jobbagy, E. E. G., Jackson, R. B., 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10(2), 423-436.

[20]

Li, H., Wu, Y., Liu, S., Xiao, J., Zhao, W., Chen, J., Alexandrov, G., Cao, Y., 2022. Decipher soil organic carbon dynamics and driving forces across China using machine learning. Glob. Change Biol. 28(10), 3394-3410.

[21]

Li, W., Sun, B., Wang, H., Zhou, B., Li, H., Xue, R., Duan, M., Luo, X., Ai, W., 2023. Anthropogenic impact on the severity of compound extreme high temperature and drought/rain events in China. npj Clim. Atmos. Sci. 6(1), 79.

[22]

Li, Y, Z-Li, L., Wu, H., Zhou, C., Liu, X., Leng, P., Yang, P., Wu, W., Tang, R, G-Shang, F., Ma, L., 2023. Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming. Nat. Commun. 14(1), 121.

[23]

Liu, L., Basso, B., 2020. Impacts of climate variability and adaptation strategies on crop yields and soil organic carbon in the US Midwest. PLoS One, 15 (1)

[24]

Liu, S., Bliss, N., Sundquist, E., Huntington, T. G., 2003. Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition. Glob. Biogeochem. Cycle. 17(2), 1074.

[25]

Liu, W. F., Li, M. X., Huang, Y. Y., Makowski, D., Su, Y., Bai, Y. W., Schauberger, B., Du, T. S., Abbaspour, K. C., Yang, K., Yang, H., Ciais, P., 2024. Mitigating nitrogen losses with almost no crop yield penalty during extremely wet years. Sci. Adv. 10(9), eadi9325.

[26]

Lugato, E., 2024. Soil organic carbon losses exacerbated by climate extremes. Nat. Clim. Chang. 14(1), 17-18.

[27]

Ma, Y., Woolf, D., Fan, M., Qiao, L., Li, R., Lehmann, J., 2023. Global crop production increase by soil organic carbon. Nat. Geosci. 16(12), 1159-1165.

[28]

McBratney, A. B., Mendonça Santos, M. L., Minasny, B., 2003. On digital soil mapping. Geoderma 117(1), 3-52.

[29]

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q, T-Liu, Y. 2017. LightGBM: a highly efficient gradient boosting decision tree. Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17), Curran Associates Inc., Red Hook, NY, USA, pp.3149-3157.

[30]

Montgomery, D. C., Peck, E. A., Vining, G. G., 1982. Introduction to Linear Regression Analysis. Wiley, New York

[31]

Kutner, M. H., Nachtsheim, C. J., Neter, J., 2004. Applied Linear Regression Models. (4th edition), McGraw Hill

[32]

R, Coreeam, T., 2013. R: A Language and Environment for Statistical Computing. Vienna, Austria.

[33]

Schwalm, C. R., Williams, C. A., Schaefer, K., Baldocchi, D., Black, T. A., Goldstein, A. H., Law, B. E., Oechel, W. C., Kyaw, T. P. U., Scott, R. L., 2012. Reduction in carbon uptake during turn of the century drought in western North America. Nat. Geosci. 5(8), 551-556.

[34]

Sippel, S., Zscheischler, J., Reichstein, M., 2016. Ecosystem impacts of climate extremes crucially depend on the timing. Proc. Natl. Acad. Sci. U.S.A. 113(21), 5768-5770.

[35]

Smith, M. D., Knapp, A. K., Collins, S. L., 2009. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90(12), 3279-3289.

[36]

Smith, P., Davies, C. A., Ogle, S., Zanchi, G., Bellarby, J., Bird, N., Boddey, R. M., McNamara, N. P., Powlson, D., Cowie, A., van Noordwijk, M., Davis, S. C., Richter, D. D., Kryzanowski, L., van Wijk, M. T., Stuart, J., Kirton, A., Eggar, D., Newton-Cross, G., Adhya, T. K., Braimoh, A. K., 2012. Towards an integrated global framework to assess the impacts of land use and management change on soil carbon: current capability and future vision. Glob. Change Biol. 18(7), 2089-2101.

[37]

Su, J., Zhang, H., Han, X., Peñuelas, J., Filimonenko, E., Jiang, Y., Kuzyakov, Y., Wei, C., 2022. Low carbon availability in paleosols nonlinearly attenuates temperature sensitivity of soil organic matter decomposition. Glob. Change Biol. 28(13), 4180-4193.

[38]

Wang, C., Houlton, B., Liu, D., Hou, J., Cheng, W., Bai, E., 2017. Stable isotopic constraints on global soil organic carbon turnover. Biogeosciences 15(4), 987-995.

[39]

Wang, M., Guo, X., Zhang, S., Xiao, L., Mishra, U., Yang, Y., Zhu, B., Wang, G., Mao, X., Qian, T., Jiang, T., Shi, Z., Luo, Z., 2022. Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate. Nat. Commun. 13(1), 5514.

[40]

Wang, M. M., Zhang, S., Guo, X. W., Xiao, L. J., Yang, Y. H., Luo, Y. Q., Mishra, U., Luo, Z. K., 2023. Responses of soil organic carbon to climate extremes under warming across global biomes. Nat. Clim. Chang. 14(1), 98-105.

[41]

Wu, J., Liu, S., Peng, C., Luo, Y., Terrer, C., Yue, C., Peng, S., Li, J., Wang, B., Shangguan, Z., Deng, L., 2024. Future soil organic carbon stocks in China under climate change. Cell Rep. Sustain. 1(9), 100179.

[42]

Xiao, L. J., Wang, G. C., Wang, M. M., Zhang, S., Sierra, C. A., Guo, X. W., Chang, J. F., Shi, Z., Luo, Z. K., 2022. Younger carbon dominates global soil carbon efflux. Glob. Change Biol. 28(18), 5587-5599.

[43]

Xu, C. G., McDowell, N. G., Fisher, R. A., Wei, L., Sevanto, S., Christoffersen, B. O., Weng, E. S., Middleton, R. S., 2019. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Chang. 9(12), 948-953.

[44]

Xu, L., He, N., Yu, G., 2019. A dataset of carbon density in Chinese terrestrial ecosystems (2010s). China Sci. Data 4(1), 90-96.

[45]

Yu, L. X., Liu, Y., Liu, T. X., Yan, F. Q., 2020. Impact of recent vegetation greening on temperature and precipitation over China. Agric. For. Meteorol. 295, 108197.

[46]

Yu, R., Zhai, P., 2020. More frequent and widespread persistent compound drought and heat event observed in China. Sci. Rep. 10(1), 14576.

[47]

Zhang, M., Yuan, X., 2020. Rapid reduction in ecosystem productivity caused by flash droughts based on decade-long FLUXNET observations. Hydrol. Earth Syst. Sci. 24(11), 5579-5593.

[48]

Zhang, Z., Ding, J., Zhu, C., Wang, J., Ge, X., Li, X., Han, L., Chen, X., Wang, J., 2023. Historical and future variation of soil organic carbon in China. Geoderma 436, 116557.

[49]

Zhang, Z., Ding, J., Zhu, C., Wang, J., Li, X., Ge, X., Han, L., Chen, X., Wang, J., 2023. Exploring the inter-decadal variability of soil organic carbon in China. Catena 230, 107242.

[50]

Zhou, W., Chan, J. C. L., Chen, W., Ling, J., Pinto, J. G., Shao, Y. P., 2009. Synoptic-scale controls of persistent low temperature and icy weather over Southern China in January 2008. Mon. Weather Rev. 137(11), 3978-3991.

[51]

Zimov, S. A., Schuur, E. A. G., Chapin, F. S., 2006. Permafrost and the global carbon budget. Science 312(5780), 1612-1613.

[52]

Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl, T., Zhang, X., 2018. Future climate risk from compound events. Nat. Clim. Chang. 8(6), 469-477.

[53]

Ai, J., Zhang, Z., Yang, C., Cao, J., Zhou, Z., Ge, X., Chen, X., Wang, J., 2025. Unveiling the dynamic patterns and driving forces of soil organic carbon in Chinese croplands from 1980 to 2020. Land Degrad. Dev. 36(10), 3587-3603.

[54]

Bradford, M. A., Wieder, W. R., Bonan, G. B., Fierer, N., Raymond, P. A., Crowther, T. W., 2016. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Chang. 6(8), 751-758.

[55]

Peng, S., Ding, Y., Liu, W., Li, Z., 2019. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 11(4), 1931-1946.

[56]

Rodríguez Martín, J. A., Gabriel, J. L., Gutiérrez, C., Nanos, N., Escuer, M., Ramos-Miras, J. J., Gil, C., Martín-Lammerding, D., Boluda, R., 2019. Soil organic carbon stock on the Majorca Island: temporal change in agricultural soil over the last 10 years. Catena 181, 104087.

[57]

Zhang, Z., Ding, J., Wang, J., Ge, X., 2020. Prediction of soil organic matter in northwestern China using fractional-order derivative spectroscopy and modified normalized difference indices. Catena 185, 104257.

[58]

Zhang, Z., Ding, J., Zhu, C., Shi, H., Chen, X., Han, L., Wang, J., 2022. Changes in soil organic carbon stocks from 1980−1990 and 2010−2020 in the northwest arid zone of China. Land Degrad. Dev. 33(15), 2713-2727.

[59]

Zhu, C., Li, Y., Ding, J., Rao, J., Xiang, Y., Ge, X., Wang, J., Wang, J., Chen, X., Zhang, Z., 2025. Spatiotemporal analysis of AGB and BGB in China: responses to climate change under SSP scenarios. Geosci. Front. 16(3), 102038.

PDF

308

Accesses

0

Citation

Detail

Sections
Recommended

/