A land–water–energy–greenhouse gas nexus framework informs climate change mitigation in agriculture: A case study in the North China Plain

Xin Xuan , Yuping Bai , Gaurav Sikka , Chuyao Weng , Xiangzheng Deng

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) : 100354

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) :100354 DOI: 10.1016/j.geosus.2025.100354
Research Article
review-article

A land–water–energy–greenhouse gas nexus framework informs climate change mitigation in agriculture: A case study in the North China Plain

Author information +
History +
PDF

Abstract

The land, water, energy use, and greenhouse gas (GHG) emissions involved in agricultural production are intrinsically linked. However, quantitative characterization and scenario simulations of these elements’ inherent interrelationships remain scarce. We developed a land-water-energy-GHG (LWEG) nexus framework for the North China Plain (NCP). The framework identifies the mutual feedback in the life cycle of agricultural production among the four factors. We applied the framework to assess the agricultural GHG mitigation potential for winter wheat, summer maize, and rice in NCP municipalities. The results showed that cropping structure optimization reduced GHG emissions by 1.96 Mt CO2e. Controlling indirect energy consumption in upstream processes of crop production and reducing on-site energy use reduced the volume and intensity per unit area of agricultural GHG emissions. Because of the synergies between land, water, and energy, nexus management, which combines multiple measures of groundwater management, fertilizer, and energy control, has substantial GHG mitigation potential. The nexus management scenario produced a total GHG of 159.51 Mt CO2e, a decrease of 15.38 % from the baseline scenario. This study quantifies the LWEG nexus within agricultural production processes and identifies agricultural management practices that integrate water, energy conservation, and emissions mitigation contributing to the Sustainable Development Goals.

Keywords

Land-water-energy-GHG nexus / Agricultural GHG mitigation / Energy conservation / Scenario simulation

Cite this article

Download citation ▾
Xin Xuan, Yuping Bai, Gaurav Sikka, Chuyao Weng, Xiangzheng Deng. A land–water–energy–greenhouse gas nexus framework informs climate change mitigation in agriculture: A case study in the North China Plain. Geography and Sustainability, 2025, 6(6): 100354 DOI:10.1016/j.geosus.2025.100354

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Xin Xuan: Writing – original draft, Visualization, Validation, Formal analysis, Conceptualization. Yuping Bai: Project administration, Funding acquisition, Supervision, Data curation. Gaurav Sikka: Visualization, Validation, Software, Data curation. Chuyao Weng: Writing – original draft, Validation, Methodology. Xiangzheng Deng: Writing – review & editing, Resources, Project administration, Investigation.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grants No. 72474200, 72104223), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 72221002), and the Innovation Centre for Digital Business and Capital Development of Beijing Technology and Business University (Grant No. SZSK202211).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100354.

References

[1]

Albrecht, T. R., Crootof, A., Scott, C. A., 2018. The Water-Energy-Food Nexus: a systematic review of methods for nexus assessment. Environ. Res. Lett., 13, Article 043002. doi: 10.1088/1748-9326/aaa9c6.

[2]

Allen, R. G., Pereira, L. S., Raes, D., Smith, M., 1998. Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. FAO, Rome

[3]

Bai, S. H., Omidvar, N., Gallart, M., Kämper, W., Tahmasbian, I., Farrar, M. B., Singh, K., Zhou, G., Muqadass, B., Xu, C. Y., Koech, R., Li, Y., Nguyen, T. T. N., van Zwieten, L., 2022. Combined effects of biochar and fertilizer applications on yield: a review and meta-analysis. Sci. Total Environ., 808, Article 152073. doi: 10.1016/j.scitotenv.2021.152073.

[4]

Bai, Y., Wang, Y., Xuan, X., Weng, C., Huang, X., Deng, X., 2024a. Tele-connections, driving forces and scenario simulation of agricultural land, water use and carbon emissions in China’s trade. Resour. Conserv. Recycl. 203, 107433. doi: 10.1016/j.resconrec. 2024.107433.

[5]

Bai, Y., Xuan, X., Wang, Y., Weng, C., Huang, X., Deng, X., 2024b. Revealing the nexus profile of agricultural water–land–food–GHG flows in China. Resour. Conserv. Recycl. 204, 107528. doi: 10.1016/j.resconrec.2024.107528.

[6]

Cansino-Loeza, B., Munguía-López, A., del, C., Ponce-Ortega, J. M., 2022. Ponce-Ortega. A water-energy-food security nexus framework based on optimal resource allocation. Environ. Sci. Policy, 133, pp. 1-16. doi: 10.1016/j.envsci.2022.03.006.

[7]

Cremades, R., Rothausen, S. G. S. A., Conway, D., Zou, X., Wang, J., Li, Y., 2016. Co-benefits and trade-offs in the water–energy nexus of irrigation modernization in China. Environ. Res. Lett., 11, Article 054007. doi: 10.1088/1748-9326/11/5/054007.

[8]

Cui, J., Sui, P., Wright, D. L., Wang, D., Sun, B., Ran, M., Shen, Y., Li, C., Chen, Y., 2019. Carbon emission of maize-based cropping systems in the North China Plain. J. Clean. Prod., 213, pp. 300-308. doi: 10.1016/j.jclepro.2018.12.174.

[9]

Department of Agricultural Mechanization, 2023. Implementation Plan for Beijing Agricultural Mechanization Enhancement Action (2023–2025). http://www.njhs.moa.gov.cn/qcjxhtjxd/202301/t20230131_6419551.htm (accessed 31 January 2023).

[10]

Dong, J., Pang, Z., Fu, Y., Peng, Q., Li, X., Yuan, W., 2023. Annual winter wheat mappingdatasets and dynamics in China from 2001 to 2020. https://doi.org/10.57760/sciencedb.13901

[11]

Endo, A., Tsurita, I., Burnett, K., Orencio, P. M., 2017. A review of the current state of research on the water, energy, and food nexus. Water Energy Food Nexus Asia-Pac. Reg., 11, pp. 20-30. doi: 10.1016/j.ejrh.2015.11.010.

[12]

Fan, X., Zhang, W., Chen, W., Chen, B., 2020. Land–water–energy nexus in agricultural management for greenhouse gas mitigation. Appl. Energy, 265, Article 114796. doi: 10.1016/j.apenergy.2020.114796.

[13]

Fu, B., Meadows, M. E., Zhao, W., 2022. Geography in the Anthropocene: transforming our world for sustainable development. Geogr. Sustain., 3 (1), pp. 1-6. doi: 10.1016/j.geosus.2021.12.004.

[14]

Fu, C., Yu, G., 2010. Estimation and spatiotemporal analysis of methane emissions from agriculture in China. Environ. Manage., 46, pp. 618-632. doi: 10.1007/s00267-010-9495-1.

[15]

Gao, Y., Cabrera Serrenho, A., 2023. Greenhouse gas emissions from nitrogen fertilizers could be reduced by up to one-fifth of current levels by 2050 with combined interventions. Nat. Food, 4, pp. 170-178. doi: 10.1038/s43016-023-00698-w.

[16]

Ghorbani, R., Mondani, F., Amirmoradi, S., Feizi, H., Khorramdel, S., Teimouri, M., Sanjani, S., Anvarkhah, S., Aghel, H., 2011. A case study of energy use and economical analysis of irrigated and dryland wheat production systems. Appl. Energy, 88, pp. 283-288. doi: 10.1016/j.apenergy.2010.04.028.

[17]

Gu, W., Ma, G., Wang, R., Scherer, L., He, P., Xia, L., Zhu, Y., Bi, J., Liu, B., 2024. Climate adaptation through crop migration requires a nexus perspective for environmental sustainability in the North China Plain. Nat. Food, 5, pp. 569-580. doi: 10.1038/s43016-024-01008-8.

[18]

Han, Y., Tan, Q., Wang, S., Zhang, S., 2024. Development of an assessment-based planting structure optimization model for mitigating agricultural greenhouse gas emissions. J. Environ. Manage., 349, Article 119322. doi: 10.1016/j.jenvman.2023.119322.

[19]

He, Q., Liu, D. L., Wang, B., Wang, Z., Cowie, A., Simmons, A., Xu, Z., Li, L., Shi, Y., Liu, K., Harrison, M. T., Waters, C., Huete, A., Yu, Q., 2024. A food-energy-water-carbon nexus framework informs region-specific optimal strategies for agricultural sustainability. Resour. Conserv. Recycl., 203, Article 107428. doi: 10.1016/j.resconrec.2024.107428.

[20]

Hoff, H., 2011. Understanding the nexus: background paper for the Bonn 2011 Conference: The Water. Stockholm Environment Institute Stockholm, Stockholm, Sweden

[21]

Hoffman, E., Cavigelli, M. A., Camargo, G., Ryan, M., Ackroyd, V. J., Richard, T. L., Mirsky, S., 2018. Energy use and greenhouse gas emissions in organic and conventional grain crop production: accounting for nutrient inflows. Agric. Syst., 162, pp. 89-96. doi: 10.1016/j.agsy.2018.01.021.

[22]

Hua, E., Han, X., Bai, Y., Engel, B. A., Li, X., Sun, S., Wang, Y., 2023. Synergy of water use in water-energy-food nexus from a symbiosis perspective: a case study in China. Energy, 283, Article 129164. doi: 10.1016/j.energy.2023.129164.

[23]

Huo, Y., Mi, G., Zhu, M., Chen, S., Li, J., Hao, Z., Cai, D., Zhang, F., 2024. Carbon footprint of farming practices in farmland ecosystems on the North and Northeast China plains. J. Environ. Manage., 354, Article 120378. doi: 10.1016/j.jenvman.2024.120378.

[24]

IPCC, 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme. IGES, Japan.

[25]

Jin, G., Chen, K., Wang, P., Guo, B., Dong, Y., Yang, J., 2019. Trade-offs in land-use competition and sustainable land development in the North China Plain. Technol. Forecast. Soc. Change, 141, pp. 36-46. doi: 10.1016/j.techfore.2019.01.004.

[26]

Khaneiki, M. L., Al-Ghafri, A. S., Klöve, B., Haghighi, A. T., 2022. Sustainability and virtual water: the lessons of history. Geogr. Sustain., 3 (4), pp. 358-365. doi: 10.1016/j.geosus.2022.11.005.

[27]

Liang, G., 2022. Nitrogen fertilization mitigates global food insecurity by increasing cereal yield and its stability. Glob. Food Secur., 34, Article 100652. doi: 10.1016/j.gfs.2022.100652.

[28]

Liang, H., Qin, W., Hu, K., Tao, H., Li, B., 2019. Modelling groundwater level dynamics under different cropping systems and developing groundwater neutral systems in the North China Plain. Agric. Water Manage., 213, pp. 732-741. doi: 10.1016/j.agwat.2018.11.022.

[29]

Liu, B., Gu, W., Yang, Y., Lu, B., Wang, F., Zhang, B., Bi, J., 2021. Promoting potato as staple food can reduce the carbon–land–water impacts of crops in China. Nat. Food, 2, pp. 570-577. doi: 10.1038/s43016-021-00337-2.

[30]

Liu, G., Deng, X., Zhang, F., 2024. The spatial and source heterogeneity of agricultural emissions highlight necessity of tailored regional mitigation strategies. Sci. Total Environ. 914, 169917. doi: 10.1016/j.scitotenv.2024.169917.

[31]

Liu, G., Zhang, F., Deng, X., 2023b. Half of the greenhouse gas emissions from China’s food system occur during food production. Commun. Earth. Environ. 4, 1–13. doi: 10. 1038/s43247- 023- 00809- 2.

[32]

Liu, Q., Niu, J., Du, T., Kang, S., 2023a. A full-scale optimization of a crop spatial planting structure and its associated effects. Engineering 28, 139–152. doi: 10.1016/j.eng. 2023.03.012.

[33]

Lulovicova, A., Bouissou, S., 2024. Life cycle assessment as a prospective tool for sustainable agriculture and food planning at a local level. Geogr. Sustain., 5 (2), pp. 251-264. doi: 10.1016/j.geosus.2024.01.008.

[34]

Mehmood, F., Wang, G., Abubakar, S. A., Zain, M., Rahman, S. U., Gao, Y., Duan, A., 2023. Optimizing irrigation management sustained grain yield, crop water productivity, and mitigated greenhouse gas emissions from the winter wheat field in North China Plain. Agric. Water Manage., 290, Article 108599. doi: 10.1016/j.agwat.2023.108599.

[35]

Ministry of Agriculture and Rural Affairs (MARA), 2015. The National Plan for Sustainable Agricultural Development (2015–2030). http://www.moa.gov.cn/nybgb/2015/liu/201712/t20171219_6103855.htm (accessed 20 May 2021)

[36]

Ministry of Agriculture and Rural Affairs (MARA), 2021a. The 14th five-year plan for National planting development. http://www.moa.gov.cn/govpublic/ZZYGLS/202201/t20220113_6386808.htm (accessed 29 December 2021)

[37]

Ministry of Agriculture and Rural Affairs (MARA), 2021b. The goal of the zero-growth action on chemical fertilizer and pesticide use has been successfully achieved, and the utilization rate of chemical fertilizers and pesticides for China’s three major food crops has both reached >40 %. https://www.gov.cn/xinwen/2021-01/17/content_ 5580555.htm (accessed 17 January 2021).

[38]

Ministry of Water Resources (MWR), 2014. Hebei Province launched a comprehensive pilot program to control over-exploitation of groundwater. https://www.gov.cn/xinwen/2014-06/05/content_2694147.htm (accessed June 2014).

[39]

Nan, T., Cao, W., Wang, Z., Gao, Y., Zhao, L., Sun, X., Na, J., 2023. Evaluation of shallow groundwater dynamics after water supplement in North China Plain based on attention-GRU model. J. Hydrol., 625, Article 130085. doi: 10.1016/j.jhydrol.2023.130085.

[40]

Nation Development and Reform Commission (NDRC), 2021. The 14th five-year plan for renewable energy development. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/ 202206/t20220601_1326719.html (accessed 21 October 2021)

[41]

Nation Development and Reform Commission (NDRC), 2022. The 14th five-year plan for Modern energy system. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202203/ t20220322_1320016.html (accessed 29 January 2021).

[42]

Nation Development and Reform Commission (NDRC), 2023. The opinions of the NDRC and other ministries on further strengthening the saving and intensive utilization of water resources. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202309/t20230922_ 1360777_ext.html (accessed 1 September 2021).

[43]

National Development and Reform Commission (NDRC), 2011. Guidelines for the Preparation of Provincial Greenhouse Gas Inventories (Trial). NDRC, Beijing (in Chinese).

[44]

O’Shaughnessy, S. A., Kim, M., Lee, S., Kim, Y., Kim, H., Shekailo, J., 2021. Towards smart farming solutions in the US and South Korea: a comparison of the current status. Geogr. Sustain., 2 (4), pp. 312-327. doi: 10.1016/j.geosus.2021.12.002.

[45]

Osman, A., Mensah, E. A., Mensah, C. A., Asamoah, Y., Dauda, S., Adu-Boahen, K., Adongo, C. A., 2022. Spatial analysis of synergies and trade-offs between the Sustainable Development Goals (SDGs) in Africa. Geogr. Sustain., 3 (3), pp. 220-231. doi: 10.1016/j.geosus.2022.07.003.

[46]

Pan, B., Zheng, Y., Shen, R., Ye, T., Zhao, W., Dong, J., Ma, H., Yuan, W., 2021. High resolution distribution dataset of double-season paddy rice in China. Remote Sens., 13, p. 4609. doi: 10.3390/rs13224609.

[47]

Peng, Q., Shen, R., Li, X., Ye, T., Dong, J., Fu, Y., Yuan, W., 2023. A twenty-year dataset of high-resolution maize distribution in China. Sci. Data, 10, pp. 1-18. doi: 10.1038/s41597-023-02573-6.

[48]

Post, P. M., Dou, Y., Nelson, A., 2024. Effect of food value-chain connections on land-use change. Geogr. Sustain., 6 (1), Article 100247. doi: 10.1016/j.geosus.2024.10.003.

[49]

Qi, X., Feng, K., Sun, L., Zhao, D., Huang, X., Zhang, D., Liu, Z., Baiocchi, G., 2022. Rising agricultural water scarcity in China is driven by expansion of irrigated cropland in water scarce regions. One Earth, 5, pp. 1139-1152. doi: 10.1016/j.oneear.2022.09.008.

[50]

Qian, H., Zhu, X., Huang, S., Linquist, B., Kuzyakov, Y., Wassmann, R., Minamikawa, K., Martinez-Eixarch, M., Yan, X., Zhou, F., Sander, B. O., Zhang, W., Shang, Z., Zou, J., Zheng, X., Li, G., Liu, Z., Wang, S., Ding, Y., van Groenigen, K. J., Jiang, Y., 2023. Greenhouse gas emissions and mitigation in rice agriculture. Nat. Rev. Earth. Environ., 4, pp. 716-732. doi: 10.1038/s43017-023-00482-1.

[51]

Qin, J., Duan, W., Zou, S., Chen, Y., Huang, W., Rosa, L., 2024. Global energy use and carbon emissions from irrigated agriculture. Nat. Commun., 15, p. 3084. doi: 10.1038/s41467-024-47383-5.

[52]

Qiu, G. Y., Zhang, X., Yu, X., Zou, Z., 2018. The increasing effects in energy and GHG emission caused by groundwater level declines in North China’s main food production plain. Agric. Water Manage., 203, pp. 138-150. doi: 10.1016/j.agwat.2018.03.003.

[53]

Rawnsley, R. P., Smith, A. P., Christie, K. M., Harrison, M. T., Eckard, R. J., 2019. Current and future direction of nitrogen fertiliser use in Australian grazing systems. Crop. Pasture Sci., 70, pp. 1034-1043. doi: 10.1071/CP18566.

[54]

Reay, D. S., Davidson, E. A., Smith, K. A., Smith, P., Melillo, J. M., Dentener, F., Crutzen, P. J., 2012. Global agriculture and nitrous oxide emissions. Nat. Clim. Chang., 2, pp. 410-416. doi: 10.1038/nclimate1458.

[55]

Rothausen, S. G. S. A., Conway, D., 2011. Greenhouse-gas emissions from energy use in the water sector. Nat. Clim. Chang., 1, pp. 210-219. doi: 10.1038/nclimate1147.

[56]

Sami, M., Hedström, A., Kvarnström, E., Österlund, H., Nordqvist, K., Herrmann, I., 2024. Treatment of greywater and presence of microplastics in on-site systems. J. Environ. Manage., 366, Article 121859. doi: 10.1016/j.jenvman.2024.121859.

[57]

Shan, Y., Huang, Q., Guan, D., Hubacek, K., 2020. China CO2 emission accounts 2016–2017. Sci. Data, 7, p. 54. doi: 10.1038/s41597-020-0393-y.

[58]

Shandong Provincial Department of Agriculture and Rural Affairs 2022 Shandong Provincial Department of Agriculture and Rural Affairs, 2022. Opinions on continuously promoting the work of reducing the quantity and increasing the efficiency of chemical fertilizers and pesticides. http://www.shandong.gov.cn/art/2022/4/13/art_100038_10312819.html (accessed 13 April 2022).

[59]

Shen, R., Pan, B., Peng, Q., Dong, J., Chen, X., Zhang, X., Ye, T., Huang, J., Yuan, W., 2023. High-resolution distribution maps of single-season rice in China from 2017 to 2022. Earth. Syst. Sci. Data, 15, pp. 3203-3222. doi: 10.5194/essd-15-3203-2023.

[60]

Song, X., Liu, M., Ju, X., Gao, B., Su, F., Chen, X., Rees, R. M., 2018. Nitrous oxide emissions increase exponentially when optimum nitrogen fertilizer rates are exceeded in the North China Plain. Environ. Sci. Technol., 52 (21), pp. 12504-12513. doi: 10.1021/acs.est.8b03931.

[61]

Su, Z., Zhao, J., Zhuang, M., Liu, Z., Zhao, C., Pullens, J. W. M., Liu, K., Harrison, M. T., Yang, X., 2024. Climate-adaptive crop distribution can feed food demand, improve water scarcity, and reduce greenhouse gas emissions. Sci. Total Environ., 944, Article 173819. doi: 10.1016/j.scitotenv.2024.173819.

[62]

Tang, B., Tong, L., Kang, S., 2013. Effects of spatial station density and interpolation methods on accuracy of reference crop evapotranspiration. Trans. Chin. Soc. Agric. Eng. 29 (13), 60–66. doi: 10.3969/j.issn.1002-6819.2013.13.009.

[63]

Tang, K., Ma, C., 2022. The cost-effectiveness of agricultural greenhouse gas reduction under diverse carbon policies in China. China Agric. Econ. Rev., 14, pp. 758-773. doi: 10.1108/CAER-01-2022-0008.

[64]

The State Council, 2023. Groundwater levels in North China generally rebound. https://www.gov.cn/xinwen/2023-02/28/content_5743723.htm (accessed 28 February 2023).

[65]

Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W., Suntharalingam, P., Davidson, E. A., Ciais, P., Jackson, R. B., Janssens-Maenhout, G., Prather, M. J., Regnier, P., Pan, N., Pan, S., Peters, G. P., Shi, H., Tubiello, F. N., Zaehle, S., Zhou, F., Arneth, A., Battaglia, G., Berthet, S., Bopp, L., Bouwman, A. F., Buitenhuis, E. T., Chang, J., Chipperfield, M. P., Dangal, S. R. S., Dlugokencky, E., Elkins, J. W., Eyre, B. D., Fu, B., Hall, B., Ito, A., Joos, F., Krummel, P. B., Landolfi, A., Laruelle, G. G., Lauerwald, R., Li, W., Lienert, S., Maavara, T., MacLeod, M., Millet, D. B., Olin, S., Patra, P. K., Prinn, R. G., Raymond, P. A., Ruiz, D. J., van der Werf, G. R., Vuichard, N., Wang, J., Weiss, R. F., Wells, K. C., Wilson, C., Yang, J., Yao, Y., 2020. A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 586, pp. 248-256. doi: 10.1038/s41586-020-2780-0.

[66]

Tian, Y., Zhang, J., He, Y., 2014. 13, pp. 1393-1403. doi: 10.1016/S2095-3119(13)60624-3.

[67]

Veeck, G., Veeck, A., Yu, H., 2020. Challenges of agriculture and food systems issues in China and the United States. Geogr. Sustain. 1 (2), 109–117. doi: 10.1016/j.geosus. 2020.05.002.

[68]

Vetter, S. H., Sapkota, T. B., Hillier, J., Stirling, C. M., Macdiarmid, J. I., Aleksandrowicz, L., Green, R., Joy, E. J. M., Dangour, A. D., Smith, P., 2017. Greenhouse gas emissions from agricultural food production to supply Indian diets: implications for climate change mitigation. Agric. Ecosyst. Environ., 237, pp. 234-241. doi: 10.1016/j.agee.2016.12.024.

[69]

Walling, E., Vaneeckhaute, C., 2020. Greenhouse gas emissions from inorganic and organic fertilizer production and use: a review of emission factors and their variability. J. Environ. Manage., 276, Article 111211. doi: 10.1016/j.jenvman.2020.111211.

[70]

Wang, B., van Dam, J., Yang, X., Ritsema, C., Du, T., Kang, S., 2023. Reducing water productivity gap by optimizing irrigation regime for winter wheat-summer maize system in the North China Plain. Agric. Water Manage. 280, 108229.

[71]

Wang, J., Rothausen, S. G. S. A., Conway, D., Zhang, L., Xiong, W., Holman, I. P., Li, Y., 2012. China’s water–energy nexus: greenhouse-gas emissions from groundwater use for agriculture. Environ. Res. Lett., 7, Article 014035. doi: 10.1088/1748-9326/7/1/014035.

[72]

Wang, S., Hu, Y., Yuan, R., Feng, W., Pan, Y., Yang, Y., 2019. Ensuring water security, food security, and clean water in the North China Plain – conflicting strategies. Curr. Opin. Environ. Sustain., 40, pp. 63-71. doi: 10.1016/j.cosust.2019.09.008.

[73]

Wang, X., Chang, X., Ma, L., Bai, J., Liang, M., Yan, S., 2023a. Global and regional trends in greenhouse gas emissions from rice production, trade, and consumption. Environ. Impact. Assess. Rev. 101, 107141. doi: 10.1016/j.eiar.2023.107141.

[74]

Xiang, W., Yang, X., Bian, D., Pan, Z., Chen, H., Chen, Y., Li, M., 2023. Evaluation and prediction of water-energy-carbon nexus efficiency in China based on a new multiregional input-output perspective. J. Environ. Manage., 339, Article 117786. doi: 10.1016/j.jenvman.2023.117786.

[75]

Xie, W., Zhu, A., Ali, T., Zhang, Z., Chen, X., Wu, F., Huang, J., Davis, K. F., 2023. Crop switching can enhance environmental sustainability and farmer incomes in China. Nature, 616, pp. 300-305. doi: 10.1038/s41586-023-05799-x.

[76]

Xu, Z., Chen, X., Liu, J., Zhang, Y., Chau, S., Bhattarai, N., Wang, Y., Li, Y., Connor, T., Li, Y., 2020. Impacts of irrigated agriculture on food–energy–water–CO2 nexus across metacoupled systems. Nat. Commun., 11, p. 5837. doi: 10.1038/s41467-020-19520-3.

[77]

Yan, X., Fang, L., Mu, L., 2020. How does the water-energy-food nexus work in developing countries? An empirical study of China. Sci. Total Environ. 716, 134791. doi: 10.1016/ j.scitotenv.2019.134791.

[78]

Yang, J., Huang, X., 2021. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth. Syst. Sci. Data, 13, pp. 3907-3925. doi: 10.5194/essd-13-3907-2021.

[79]

Yi, J., Guo, J., Ou, M., Pueppke, S. G., Ou, W., Tao, Y., Qi, J., 2020. Sustainability assessment of the water-energy-food nexus in Jiangsu Province, China. Habitat Int., 95, Article 102094. doi: 10.1016/j.habitatint.2019.102094.

[80]

Yin, L., Tao, F., Chen, Y., Wang, Y., Ciais, P., Smith, P., 2023. Novel cropping-system strategies in China can increase plant protein with higher economic value but lower greenhouse gas emissions and water use. One Earth, 6, pp. 560-572. doi: 10.1016/j.oneear.2023.04.010.

[81]

Yue, Q., Zhang, F., Wang, Y., Zhang, X., Guo, P., 2021. Fuzzy multi-objective modelling for managing water-food-energy-climate change-land nexus towards sustainability. J. Hydrol., 596, Article 125704. doi: 10.1016/j.jhydrol.2020.125704.

[82]

Zhang, J., Wang, S., Pradhan, P., Zhao, W., Fu, B., 2022. Mapping the complexity of the food-energy-water nexus from the lens of Sustainable Development Goals in China. Resour. Conserv. Recycl., 183, Article 106357. doi: 10.1016/j.resconrec.2022.106357.

[83]

Zhang, W., Dou, Z., He, P., Ju, X., Powlson, D., Chadwick, D., Norse, D., Lu, Y., Zhang, Y., Wu, L., Chen, X., Cassman, K. G., Zhang, F., 2013. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl. Acad. Sci. U.S.A., 110, pp. 8375-8380. doi: 10.1073/pnas.1210447110.

[84]

Zhang, X., Davidson, E. A., Mauzerall, D. L., Searchinger, T. D., Dumas, P., Shen, Y., 2015. Managing nitrogen for sustainable development. Nature, 528, pp. 51-59. doi: 10.1038/nature15743.

[85]

Zhu, Z., Duan, J., Dai, Z., Feng, Y., Yang, G., 2023. Seeking sustainable solutions for human food systems. Geogr. Sustain., 4 (3), pp. 183-187. doi: 10.1016/j.geosus.2023.04.001.

PDF

662

Accesses

0

Citation

Detail

Sections
Recommended

/