The high-altitude peatland carbon cycle: A review of the impacts of climate change, human disturbance and management

Paul P.J. Gaffney , Qiuhong Tang , Jinsong Wang , Chi Zhang , Ximeng Xu , Xiangbo Xu , Yuan Li , Sabolc Pap , Joshua L. Ratcliffe , Quanwen Li , Shuli Niu

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) : 100353

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) :100353 DOI: 10.1016/j.geosus.2025.100353
Review Article
review-article

The high-altitude peatland carbon cycle: A review of the impacts of climate change, human disturbance and management

Author information +
History +
PDF

Abstract

High-altitude peatlands (HAPs; defined as > 1,500 m) provide important ecosystem services including soil carbon (C) storage. However, temperatures in high-altitude regions have been rising rapidly in recent decades, while HAPs are increasingly affected by human activities such as intensive drainage and grazing. Collectively, climate change and land management may strongly affect the HAP C cycle. Here, we synthesise current global progress on the HAP C cycle, focussing on the impacts of climate change and land management. Warming increased both ecosystem respiration (ER) and methane (CH4) emissions (26 %–86 %), while impacts on net ecosystem exchange (NEE) of CO2 were still unclear. However, short-term drought decreased ER and CH4 emissions (7 %–96 %), along with NEE (12 %–52 %). Snow, permafrost, and glacier decline may also impact the C cycle in HAPs, although a limited number of studies have been conducted. Grazing and vegetation degradation impacts on HAP C cycling were related to grazing and degradation intensity, while generally decreasing soil organic C stocks (3 %–51 %). Moving from shallower to deeper WTLs stimulated ER (9 %–812 %), while reducing CH4 emissions (13 %–100 %), with variable effects on NEE (-53 %–700 %). Restoration by rewetting began to reverse the trend of drainage. We highlight several knowledge gaps, including limited understanding of climate change and land-management effects on gross primary productivity and dissolved organic carbon, while there is still limited knowledge of regional differences in HAP C cycling. Future research should focus on the interaction of land-use and climate change in HAPs, including HAP restoration, which may help future conservation of these valuable ecosystems.

Keywords

Climate warming / Drought / Permafrost and glaciers / Drainage / Restoration / Grazing

Cite this article

Download citation ▾
Paul P.J. Gaffney, Qiuhong Tang, Jinsong Wang, Chi Zhang, Ximeng Xu, Xiangbo Xu, Yuan Li, Sabolc Pap, Joshua L. Ratcliffe, Quanwen Li, Shuli Niu. The high-altitude peatland carbon cycle: A review of the impacts of climate change, human disturbance and management. Geography and Sustainability, 2025, 6(6): 100353 DOI:10.1016/j.geosus.2025.100353

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Paul P.J. Gaffney: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. Qiuhong Tang: Writing – review & editing, Writing – original draft, Supervision, Resources, Project administration, Funding acquisition, Conceptualization. Jinsong Wang: Writing – review & editing, Writing – original draft, Investigation, Conceptualization. Chi Zhang: Writing – review & editing, Resources. Ximeng Xu: Writing – review & editing, Methodology. Xiangbo Xu: Writing – review & editing, Resources. Yuan Li: Writing – review & editing, Investigation. Sabolc Pap: Writing – review & editing, Resources. Joshua L. Ratcliffe: Writing – review & editing, Writing – original draft, Investigation. Quanwen Li: Writing – review & editing, Software, Investigation. Shuli Niu: Writing – review & editing, Resources, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grants No. U2243226 and 42250410326), and the Research Start-up Fund of the Institute of Geographic Sciences and Natural Resources Research (Chinese Academy of Sciences).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100353 .

References

[1]

Ackerman, D., Millet, D. B., Chen, X., 2019. Global estimates of inorganic nitrogen deposition across four decades. Glob. Biogeochem. Cycle., 33 (1), pp. 100-107. doi: 10.1029/2018GB005990.

[2]

Andersen, R., Farrell, C., Graf, M., Muller, F., Calvar, E., Frankard, P., Caporn, S., Anderson, P., 2016. An overview of the progress and challenges of peatland restoration in Western Europe. Restor. Ecol., 25 (2), pp. 271-282. doi: 10.1111/rec.12415.

[3]

Bao, K., Wang, G., Xing, W., Shen, J., 2015. Accumulation of organic carbon over the past 200 years in alpine peatlands, northeast China. Environ. Earth Sci., 73 (11), pp. 7489-7503. doi: 10.1007/s12665-014-3922-1.

[4]

Belyea, L. R., Clymo, R. S., 2001. Feedback control of the rate of peat formation. Proc. R. Soc. B-Biol. Sci., 268 (2001), pp. 1315-1321. doi: 10.1098/rspb.2001.1665.

[5]

Benavides, J. C., Vitt, D. H., Wieder, R. K., 2013. The influence of climate change on recent peat accumulation patterns of Distichia muscoides cushion bogs in the high-elevation tropical Andes of Colombia. J. Geophys. Res.: Biogeosci., 118 (4), pp. 1627-1635. doi: 10.1002/2013JG002419.

[6]

Benavides, J. C., Rocha, S., Blanco, E. A., 2023. Spatial and temporal patterns of methane emissions from mountain peatlands in the northern Andes across a disturbance gradient. Front. Earth Sci., 11, Article 1078830. doi: 10.3389/feart.2023.1078830.

[7]

Benavides, J.C., 2014a. The Changing Face of Andean Peatlands: the Effects of Climate and Human Disturbance on Ecosystem Structure and Function. Southern Illinois University Carbondale.

[8]

Benavides, J. C., 2014. The effect of drainage on organic matter accumulation and plant communities of high-altitude peatlands in the Colombian tropical Andes. Mires Peat 15, 01.

[9]

Benfield, A. J., Yu, Z., Benavides, J. C., 2021. Environmental controls over Holocene carbon accumulation in Distichia muscoides-dominated peatlands in the eastern Andes of Colombia. Quat. Sci. Rev., 251, Article 106687. doi: 10.1016/j.quascirev.2020.106687.

[10]

Bergamini, A., Peintinger, M., Schmid, B., Urmi, E., 2001. Effects of management and altitude on bryophyte species diversity and composition in montane calcareous fens. Flora, 196 (3), pp. 180-193. doi: 10.1016/S0367-2530(17)30040-3.

[11]

Bombonato, L., Gerdol, R., 2012. Manipulating snow cover in an alpine bog: effects on ecosystem respiration and nutrient content in soil and microbes. Clim. Change, 114 (2), pp. 261-272. doi: 10.1007/s10584-012-0405-9.

[12]

Bonn, A., Allott, T., Evans, M., Joosten, H., Stoneman, R., 2016. Peatland Restoration and Ecosystem Services: Science, Policy, and Practice. Cambridge University Press, Cambridge (2016)

[13]

Bragazza, L., Parisod, J., Buttler, A., Bardgett, R. D., 2013. Biogeochemical plant-soil microbe feedback in response to climate warming in peatlands. Nat. Clim. Change, 3 (3), pp. 273-277. doi: 10.1038/nclimate1781.

[14]

Bragazza, L., Buttler, A., Robroek, B. J. M., Albrecht, R., Zaccone, C., Jassey, V. E. J., Signarbieux, C., 2016. Persistent high temperature and low precipitation reduce peat carbon accumulation. Glob. Change Biol., 22 (12), pp. 4114-4123. doi: 10.1111/gcb.13319.

[15]

Cao, R., Chen, Y., Wu, X., Zhou, Q., Sun, S., 2018. The effect of drainage on CO2, CH4 and N2O emissions in the Zoige peatland: a 40-month in situ study. Mires Peat, 21, pp. 1-15. doi: 10.19189/MaP.2017.OMB.292.

[16]

Cheema, S., Zeyer, J., Henneberger, R., 2015. Methanotrophic and methanogenic communities in swiss alpine fens dominated by Carex rostrata and Eriophorum angustifolium . Appl. Environ. Microbiol. 81 (17), 5832–5844. doi: 10.1128/AEM.01519-15.

[17]

Chen, H., Wu, N., Wang, Y., Gao, Y., Peng, C., 2011. Methane fluxes from alpine wetlands of zoige plateau in relation to water regime and vegetation under two scales. Water Air Soil Pollut., 217 (1–4), pp. 173-183. doi: 10.1007/s11270-010-0577-8.

[18]

Chen, H., Yang, G., Peng, C., Zhang, Y., Zhu, D., Zhu, Q., Hu, J., Wang, M., Zhan, W., Zhu, E., Bai, Z., Li, W., Wu, N., Wang, Y., Gao, Y., Tian, J., Kang, X., Zhao, X., Wu, J., 2014. The carbon stock of alpine peatlands on the Qinghai-Tibetan Plateau during the holocene and their future fate. Quat. Sci. Rev., 95, pp. 151-158. doi: 10.1016/j.quascirev.2014.05.003.

[19]

Chen, H., Liu, X., Xue, D., Zhu, D., Zhan, W., Li, W., Wu, N., Yang, G., 2021. Methane emissions during different freezing-thawing periods from a fen on the Qinghai-Tibetan Plateau: four years of measurements. Agric. For. Meteorol., 297 (86), Article 108279. doi: 10.1016/j.agrformet.2020.108279.

[20]

Chimner, R. A., Karberg, J. M., 2008. Long-term carbon accumulation in two tropical mountain peatlands, Andes Mountains, Ecuador. Mires Peat 3(4), 1-10.

[21]

Cooper, D. J., Kaczynski, K., Slayback, D., Yager, K., 2015. Growth and organic carbon production in peatlands dominated by Distichia muscoides, Bolivia, South America. Arct. Antarct. Alp. Res., 47 (3), pp. 505-510. doi: 10.1657/AAAR0014-060.

[22]

Cui, M., Ma, A., Qi, H., Zhuang, X., Zhuang, G., Zhao, G., 2015. Warmer temperature accelerates methane emissions from the Zoige wetland on the Tibetan Plateau without changing methanogenic community composition. Sci. Rep., 5, Article 11616. doi: 10.1038/srep11616.

[23]

Domic, A. I., Capriles, J. M., Escobar-Torrez, K., Santoro, C. M., Maldonado, A., 2018. Two thousand years of land-use and vegetation evolution in the andean highlands of northern chile inferred from pollen and charcoal analyses. Quaternary, 1 (3), p. 32. doi: 10.3390/quat1030032.

[24]

Dorrepaal, E., Toet, S., van Logtestijn, R. S. P., Swart, E., van de Weg, M. J., Callaghan, T. V., Aerts, R., 2009. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature, 460 (2009), pp. 616-619. doi: 10.1038/nature08216.

[25]

Drexler, J. Z., Fuller, C. C., Orlando, J., Moore, P. E., 2015. Recent rates of carbon accumulation in montane fens of Yosemite National Park, California, U.S.A. Arct. Antarct. Alp. Res., 47 (4), pp. 657-669. doi: 10.1657/AAAR0015-002.

[26]

Fenner, N., Freeman, C., 2011. Drought-induced carbon loss in peatlands. Nat. Geosci., 4 (12), pp. 895-900. doi: 10.1038/ngeo1323.

[27]

Fenner, N., Ostle, N. J., McNamara, N., Sparks, T., Harmens, H., Reynolds, B., Freeman, C., 2007. Elevated CO2 effects on peatland plant community carbon dynamics and DOC production. Ecosystems, 10 (4), pp. 635-647. doi: 10.1007/s10021-007-9051-x.

[28]

Fenner, N., Meadham, J., Jones, T., Hayes, F., Freeman, C., 2021. Effects of climate change on peatland reservoirs: a DOC perspective. Glob. Biogeochem. Cycle, 35 (7), Article e2021GB006992. doi: 10.1029/2021GB006992.

[29]

Fonkén, M. S. M., 2015. An introduction to the bofedales of the Peruvian High Andes. Mires Peat 15, 05.

[30]

Franchini, A. G., Henneberger, R., Aeppli, M., Zeyer, J., 2015. Methane dynamics in an alpine fen: a field-based study on methanogenic and methanotrophic microbial communities. FEMS Microbiol. Ecol., 91 (3). doi: 10.1093/femsec/fiu032.

[31]

Gaffney, P. P. J., Hancock, M. H., Taggart, M. A., Andersen, R., 2018. Measuring restoration progress using pore- and surface-water chemistry across a chronosequence of formerly afforested blanket bogs. J. Environ. Manage., 219, pp. 239-251. doi: 10.1016/j.jenvman.2018.04.106.

[32]

Gaffney, P. P. J., Jutras, S., Hugron, S., Marcoux, O., Raymond, S., Rochefort, L., 2020. Ecohydrological change following rewetting of a deep-drained northern raised bog. Ecohydrology, 13 (5), p. e2210. doi: 10.1002/eco.2210.

[33]

Gaffney, P. P. J., Hancock, M. H., Taggart, M. A., Andersen, R., 2022. Restoration of afforested peatland: effects on pore- and surface-water quality in relation to differing harvesting methods. Ecol. Eng., 177, Article 106567. doi: 10.1016/j.ecoleng.2022.106567.

[34]

Gaffney, P. P. J., Tang, Q., Li, Q., Zhang, R., Pan, J., Xu, X., Li, Y., Niu, S., 2023. The impacts of land-use and climate change on the Zoige peatland carbon cycle: a review. Wiley Interdiscip. Rev.-Clim. Chang., 15 (1), p. e862. doi: 10.1002/wcc.862.

[35]

Gerdol, R., Bragazza, L., Brancaleoni, L., 2008. New Phytol., 179 (1), pp. 142-154. doi: 10.1111/j.1469-8137.2008.02429.x.

[36]

Gorham, E., 1957. The development of peat lands. Q. Rev. Biol. 32(2), 145-166.

[37]

Hambley, G., Andersen, R., Levy, P., Saunders, M., Cowie, N. R., Teh, Y. A., Hill, T. C., 2019. Net ecosystem exchange from two formerly afforested peatlands undergoing restoration in the Flow Country of northern Scotland. Mires Peat, 23, p. 05. doi: 10.19189/MaP.2018.DW.346.

[38]

Hancock, M. H., Klein, D., Andersen, R., Cowie, N. R., 2018. Vegetation response to restoration management of a blanket bog damaged by drainage and afforestation. Appl. Veg. Sci. 21(2), 167-178.

[39]

Hao, Y., Cui, X. Y., Wang, Y. F., Mei, X. R., Kang, X. M., Wu, N., Luo, P., Zhu, D., 2011. Predominance of precipitation and temperature controls on ecosystem CO2 exchange in zoige alpine wetlands of southwest China. Wetlands, 31 (2), pp. 413-422. doi: 10.1007/s13157-011-0151-1.

[40]

Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin, S., Orlove, B., Steltzer, H., Weyer (Eds.), 2019. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, Cambridge University Press, Cambridge, UK and New York, USA, pp. 131-202. doi: 10.1017/9781009157964.004.

[41]

Hopple, A. M., Wilson, R. M., Kolton, M., Zalman, C. A., Chanton, J. P., Kostka, J., Hanson, P. J., Keller, J. K., Bridgham, S. D., 2020. Massive peatland carbon banks vulnerable to rising temperatures. Nat. Commun., 11 (1), p. 2373. doi: 10.1038/s41467-020-16311-8.

[42]

Hribljan, J. A., Cooper, D. J., Sueltenfuss, J., Wolf, E. C., Heckman, K. A., Lilleskov, E. A., Chimner, R. A., 2015. Carbon storage and long-term rate of accumulation in high-altitude Andean peatlands of Bolivia. Mires Peat 15(12), 1-14.

[43]

Hribljan, J. A., Suárez, E., Heckman, K. A., Lilleskov, E. A., Chimner, R. A., 2016. Peatland carbon stocks and accumulation rates in the Ecuadorian páramo. Wetl. Ecol. Manag., 24 (2), pp. 113-127. doi: 10.1007/s11273-016-9482-2.

[44]

Hribljan, J. A., Suarez, E., Bourgeau-Chavez, L., Endres, S., Lilleskov, E. A., Chimbolema, S., Wayson, C., Serocki, E., Chimner, R. A., 2017. Multidate, multisensor remote sensing reveals high density of carbon-rich mountain peatlands in the páramo of Ecuador. Glob. Change Biol., 23 (12), pp. 5412-5425. doi: 10.1111/gcb.13807.

[45]

Hribljan, J. A., Hough, M., Lilleskov, E. A., Suarez, E., Heckman, K., Planas-Clarke, A. M., Chimner, R. A., 2024. Elevation and temperature are strong predictors of long-term carbon accumulation across tropical Andean mountain peatlands. Mitig. Adapt. Strateg. Glob. Change, 29, p. 1. doi: 10.1007/s11027-023-10089-y.

[46]

Hu, G., Zhao, L., Wu, T., Wu, X., Park, H., Li, R., Zhu, X., Ni, J., Zou, D., Hao, J., Li, W., 2022. Continued warming of the permafrost regions over the northern hemisphere under future climate change. Earths Future, 10 (9), Article e2022EF002835. doi: 10.1029/2022EF002835.

[47]

Huaman, Y., Moreira-turcq, P., Espinoza, R., Llanos, R., Apaestegui, J., Turcq, B., Willems, B., 2020. Influence of climate changes on carbon accumulation in high Andean peatlands during the last 2500 years. Ecol. Apl., 19 (1), pp. 35-41. doi: 10.21704/rea.v19i1.1444.

[48]

Hughes, P. D. M., Mallon, G., Brown, A., Essex, H. J., Stanford, J. D., Hotes, S., 2013. The impact of high tephra loading on late-Holocene carbon accumulation and vegetation succession in peatland communities. Quat. Sci. Rev., 67, pp. 160-175. doi: 10.1016/j.quascirev.2013.01.015.

[49]

IPCC, 2018. Summary for policymakers. In: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J.B.R., Chen, Y., Zhou, X., Gomis, M.I., Lonnoy, E., Maycock, T., Tignor, M., Waterfield, T. (Eds.), Global Warming of 1.5°C. An IPCC Special Report on the impacts of Global Warming of 1.5°C above Pre-Industrial Levels and related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change. Cambridge University Press, Cambridge, UK and New York, USA, pp. 3–24.

[50]

IPCC, 2022. Annex II: definitions, units and conventions. In: In: Climate Change 2022 - Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp. 1821–1840. doi: 10.1017/9781009157926.021.

[51]

Jia, G., Shevliakova, E., Artaxo, P., De Noblet-Ducoudré, N., Houghton, R., House, J., Kitajima, K., Lennard, C., Popp, A., Sirin, A., Sukumar, R., Verchot, L., 2019. Land–climate interactions. In: Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., Malley, J. (Eds.), Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 131–248. doi: 10.1017/9781009157988.004.

[52]

Kang, X., Yan, L., Cui, L., Zhang, X., Hao, Y., Wu, H., Zhang, Y., Li, W., Zhang, K., Yan, Z., Li, Y., Wang, J., 2018. Reduced carbon dioxide sink and methane source under extreme drought condition in an alpine peatland. Sustainability, 10 (11), p. 4285. doi: 10.3390/su10114285.

[53]

Koch, O., Tscherko, D., Kandeler, E., 2007. Seasonal and diurnal net methane emissions from organic soils of the Eastern Alps, Austria: effects of soil temperature, water balance, and plant biomass. Arct. Antarct. Alp. Res. 39 (3), 438–448. doi: 10.1657/1523-0430(06-020)[KOCH]2.0.CO;2.

[54]

Koch, O., Tscherko, D., Küppers, M., Kandeler, E., 2008. Interannual ecosystem CO2 dynamics in the alpine zone of the eastern alps, Austria. Arct. Antarct. Alp. Res., 40 (3), pp. 487-496. doi: 10.1657/1523-0430(07-055)[KOCH]2.0.CO;2.

[55]

Kuhry, P., Makopoulou, E., Pascual Descarrega, D., Pecker Marcosig, I., Trombotto Liaudat, D., 2022. Soil organic carbon stocks in the high mountain permafrost zone of the semi-arid Central Andes (Cordillera Frontal, Argentina). Catena 217, 106434. doi: 10.1016/j.catena.2022.106434.

[56]

Kylander, M. E., Martínez-Cortizas, A., Bindler, R., Kaal, J., Sjöström, J. K., Hansson, S. V., Silva-Sánchez, N., Greenwood, S. L., Gallagher, K., Rydberg, J, C-Mörth, M., Rauch, S., 2018. Mineral dust as a driver of carbon accumulation in northern latitudes. Sci. Rep., 8 (1), p. 6876. doi: 10.1038/s41598-018-25162-9.

[57]

Laiho, R., 2006. Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol. Biochem., 38 (8), pp. 2011-2024. doi: 10.1016/j.soilbio.2006.02.017.

[58]

Laitinen, J., Rehell, S., Oksanen, J., 2008. Community and species responses to water level fluctuations with reference to soil layers in different habitats of mid-boreal mire complexes. Plant Ecol. 194 (1), 17–36. doi: 10.1007/s11258-007-9271-3.

[59]

Large, D. J., Spiro, B., Ferrat, M., Shopland, M., Kylander, M., Gallagher, K., Li, X., Shen, C., Possnert, G., Zhang, G., Darling, W. G., Weiss, D., 2009. The influence of climate, hydrology and permafrost on Holocene peat accumulation at 3500 m on the eastern Qinghai-Tibetan Plateau. Quat. Sci. Rev., 28 (27–28), pp. 3303-3314. doi: 10.1016/j.quascirev.2009.09.006.

[60]

Leifeld, J., Wüst-Galley, C., Page, S., 2019. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Change 9 (12), 945–947. doi: 10.1038/s41558-019-0615-5.

[61]

Li, Z. W., Wang, Z. Y., Brierley, G., Nicoll, T., Pan, B. Z., Li, Y. F., 2015. Pan, Y.F. Li. Shrinkage of the Ruoergai Swamp and changes to landscape connectivity, Qinghai-Tibet Plateau. Catena, 126, pp. 155-163. doi: 10.1016/j.catena.2014.10.035.

[62]

Li, C., Huang, Y., Guo, H., Cui, L., Li, W., 2018. Draining effects on recent accumulation rates of C and N in Zoige alpine peatland in the Tibetan Plateau. Water, 10 (5), p. 0576. doi: 10.3390/w10050576.

[63]

Liu, X., Chen, H., Zhu, Q., Wu, J., Frolking, S., Zhu, D., Wang, M., Wu, N., Peng, C., He, Y., 2018. Holocene peatland development and carbon stock of Zoige peatlands, Tibetan Plateau: a modeling approach. J. Soils Sediments 18(5), 2032-2043.

[64]

Liu, S., Zheng, R., Guo, X., Wang, X., Chen, L., Hou, Y., 2019. Effects of yak excreta on soil organic carbon mineralization and microbial communities in alpine wetlands of southwest of China. J. Soils Sediments, 19 (3), pp. 1490-1498. doi: 10.1007/s11368-018-2149-2.

[65]

Liu, J., Liu, H., Chen, H., Yu, Z., Piao, S., Smol, J. P., Zhang, J., Huang, L., Wang, T., Yang, B., Zhao, Y., Chen, F., 2022. Anthropogenic warming reduces the carbon accumulation of Tibetan Plateau peatlands. Quat. Sci. Rev., 281, Article 107449. doi: 10.1016/j.quascirev.2022.107449.

[66]

Liu, N., Wang, Q., Zhou, R., Zhang, R., Tian, D., Gaffney, P. P. J., Chen, W., Gan, D., Zhang, Z., Niu, S., Ma, L., Wang, J., 2024. Elevating water table reduces net ecosystem carbon losses from global drained wetlands. Glob. Change Biol., 30 (9), Article e17495. doi: 10.1111/gcb.17495.

[67]

X-Lou, D, S-Zhai, Q., Kang, B, Y-Hu, L, L-Hu, L., 2014. Rapid response of hydrological loss of DOC to water table drawdown and warming in zoige peatland: results from a mesocosm experiment. PLoS One, 9 (11), Article e109861. doi: 10.1371/journal.pone.0109861.

[68]

Luan, J., Cui, L., Xiang, C., Wu, J., Song, H., Ma, Q., 2014. Soil carbon stocks and quality across intact and degraded alpine wetlands in Zoige, east Qinghai-Tibet Plateau. Wetl. Ecol. Manag., 22 (4), pp. 427-438. doi: 10.1007/s11273-014-9344-8.

[69]

Luo, L., Yu, J., Zhu, L., Gikas, P., He, Y., Xiao, Y., Deng, S., Zhang, Y., Zhang, S., Zhou, W., Deng, O., 2022. Nitrogen addition may promote soil organic carbon storage and CO2 emission but reduce dissolved organic carbon in Zoige peatland. J. Environ. Manage., 324, Article 116376. doi: 10.1016/j.jenvman.2022.116376.

[70]

Ma, K., Zhang, Y., Tang, S., Liu, J., 2016. Spatial distribution of soil organic carbon in the Zoige alpine wetland, northeastern Qinghai-Tibet Plateau. Catena, 144, pp. 102-108. doi: 10.1016/j.catena.2016.05.014.

[71]

Ma, W., Li, G., Wu, J., Xu, G., Wu, J., 2020a. Respiration and CH4 fluxes in Tibetan peatlands are influenced by vegetation degradation. Catena 195, 104789. doi: 10.1016/j.catena.2020.104789.

[72]

Ma, W., Li, G., Wu, J., Xu, G., Wu, J., 2020b. Response of soil labile organic carbon fractions and carbon-cycle enzyme activities to vegetation degradation in a wet meadow on the Qinghai–Tibet Plateau. Geoderma 377, 114565. doi: 10.1016/j.geoderma.2020.114565.

[73]

Martin, C. E., Adamson, V. J., 2001. Photosynthetic capacity of mosses relative to vascular plants. J. Bryol., 23 (4), pp. 319-323. doi: 10.1179/jbr.2001.23.4.319.

[74]

Millar, D. J., Cooper, D. J., Dwire, K. A., Hubbard, R. M., von Fischer, J., 2017. Mountain peatlands range from CO2 sinks at high elevations to sources at low elevations: implications for a changing climate. Ecosystems, 20 (2), pp. 416-432. doi: 10.1007/s10021-016-0034-7.

[75]

Nakayama, K., Inubushi, K., Yashima, M. M., Sakamoto, M., 2022. Effects of mire disturbance by Sika deer on physico-chemical properties of peat soils and greenhouse gas flux in Ozegahara Mire, Japan. Soil Sci. Plant Nutr., 68 (1), pp. 27-34. doi: 10.1080/00380768.2021.2004557.

[76]

Niu, S., Song, L., Wang, J., Luo, Y., Yu, G., 2023. Dynamic carbon-nitrogen coupling under global change. Sci. China Life Sci., 66 (4), pp. 771-782. doi: 10.1007/s11427-022-2245-y.

[77]

Peng, H., Hong, B., Hong, Y., Zhu, Y., Cai, C., Yuan, L., Wang, Y., 2015. Annual ecosystem respiration variability of alpine peatland on the eastern Qinghai–Tibet Plateau and its controlling factors. Environ. Monit. Assess., 187, p. 550. doi: 10.1007/s10661-015-4733-x.

[78]

Peng, H., Guo, Q., Ding, H., Hong, B., Zhu, Y., Hong, Y., Cai, C., Wang, Y., Yuan, L., 2019. Multi-scale temporal variation in methane emission from an alpine peatland on the Eastern Qinghai-Tibetan Plateau and associated environmental controls. Agric. For. Meteorol., 276–277, Article 107616. doi: 10.1016/j.agrformet.2019.107616.

[79]

Peng, H., Chi, J., Yao, H., Guo, Q., Hong, B., Ding, H., Zhu, Y., Wang, J., Hong, Y., 2021. Methane emissions offset net carbon dioxide uptake from an Alpine Peatland on the eastern Qinghai-Tibetan Plateau. J. Geophys. Res. Atmos., 126, Article e2021JD034671. doi: 10.1029/2021JD034671.

[80]

Planas-Clarke, A. M., Chimner, R. A., Hribljan, J. A., Lilleskov, E. A., Fuentealba, B., 2020. The effect of water table levels and short-term ditch restoration on mountain peatland carbon cycling in the Cordillera Blanca, Peru. Wetl. Ecol. Manag., 28 (1), pp. 51-69. doi: 10.1007/s11273-019-09694-z.

[81]

Pullens, J. W. M., Sottocornola, M., Kiely, G., Toscano, P., Gianelle, D., 2016. Carbon fluxes of an alpine peatland in Northern Italy. Agric. For. Meteorol., 220, pp. 69-82. doi: 10.1016/j.agrformet.2016.01.012.

[82]

Quenta, E., Molina-Rodriguez, J., Gonzales, K., Rebaudo, F., Casas, J., Jacobsen, D., Dangles, O., 2016. Direct and indirect effects of glaciers on aquatic biodiversity in high Andean peatlands. Glob. Change Biol., 22 (9), pp. 3196-3205. doi: 10.1111/gcb.13310.

[83]

Rao, Z., Guo, H., Cao, J., Shi, F., Jia, G., Li, Y., Chen, F., 2020. Consistent long-term Holocene warming trend at different elevations in the Altai Mountains in arid central Asia. J. Quat. Sci., 35 (8), pp. 1036-1045. doi: 10.1002/jqs.3254.

[84]

Ratcliffe, J. L., Campbell, D. I., Clarkson, B. R., Wall, A. M., Schipper, L. A., 2019. Water table fluctuations control CO2 exchange in wet and dry bogs through different mechanisms. Sci. Total Environ., 655, pp. 1037-1046. doi: 10.1016/j.scitotenv.2018.11.151.

[85]

Román-Cuesta, R. M., Salinas, N., Asbjornsen, H., Oliveras, I., Huaman, V., Gutiérrez, Y., Puelles, L., Kala, J., Yabar, D., Rojas, M., Astete, R., Jordán, D. Y., Silman, M., Mosandl, R., Weber, M., Stimm, B., Günter, S., Knoke, T., Malhi, Y., 2011. Implications of fires on carbon budgets in Andean cloud montane forest: the importance of peat soils and tree resprouting. For. Ecol. Manage., 261 (11), pp. 1987-1997. doi: 10.1016/j.foreco.2011.02.025.

[86]

Rydin, H., Jeglum, J. K., 2013. The Biology of Peatlands, Second Ed. Oxford University Press, Oxford (2013)

[87]

Sánchez, M. E., Chimner, R. A., Hribljan, J. A., Lilleskov, E. A., Suárez, E., 2017. Carbon dioxide and methane fluxes in grazed and undisturbed mountain peatlands in the ecuadorian Andes. Mires Peat, 19, p. 20. doi: 10.19189/MaP.2017.OMB.277.

[88]

Salvador, F., Monerris, J., Rochefort, L., 2015. Peatlands of the Peruvian Puna ecoregion: types, characteristics and disturbance. Mires Peat 15, 03.

[89]

Schimelpfenig, D. W., Cooper, D. J., Chimner, R. A., 2014. Effectiveness of ditch blockage for restoring hydrologic and soil processes in mountain peatlands. Restor. Ecol., 22 (2), pp. 257-265. doi: 10.1111/rec.12053.

[90]

Shang, Z. H., Feng, Q. S., Wu, G. L., Ren, G. H., Long, R. J., 2013. Grasslandification has significant impacts on soil carbon, nitrogen and phosphorus of alpine wetlands on the Tibetan plateau. Ecol. Eng., 58, pp. 170-179. doi: 10.1016/j.ecoleng.2013.06.035.

[91]

Shen, X., Liu, Y., Zhang, J., Wang, Y., Ma, R., Liu, B., Lu, X., Jiang, M., 2022. Asymmetric impacts of diurnal warming on vegetation carbon sequestration of marshes in the Qinghai Tibet Plateau. Glob. Biogeochem. Cycle., 36 (7), Article e2022GB007396. doi: 10.1029/2022GB007396.

[92]

Song, C., Luo, F., Zhang, L., Yi, L., Wang, C., Yang, Y., Li, J., Chen, K., Wang, W., Li, Y., Zhang, F., 2021. Nongrowing season CO2 emissions determine the distinct carbon budgets of two alpine wetlands on the northeastern Qinghai—Tibet Plateau. Atmosphere, 12 (12), p. 1695. doi: 10.3390/atmos12121695.

[93]

Sun, G., Luo, X., Turner, R., 2001. A study on peat deposition chronology of Holocene of Zoige Plateau of Northeast Qinghai-Tibetan Plateau. Acta Sedimentol. Sin. 19(2), 177-182.

[94]

Treby, S., Grover, S. P., 2023. Carbon emissions from Australian Sphagnum peatlands increase with feral horse (Equus caballus) presence. J. Environ. Manage., 347, Article 119034. doi: 10.1016/j.jenvman.2023.119034.

[95]

Turunen, J., Tomppo, E., Tolonen, K., Reinikainen, A., 2002. Estimating carbon accumulation rates of undrained mires in Finland – application to boreal and subarctic regions. Holocene, 12 (1), pp. 69-80. doi: 10.1191/0959683602hl522rp.

[96]

UNEP 2022 UNEP. Global Peatlands Assessment: the State of the World’s Peatlands - evidence for Action toward the Conservation, Restoration, and Sustainable Management of Peatlands. United Nations Environment Programme

[97]

Veber, G., Kull, A., Villa, J. A., Maddison, M., Paal, J., Oja, T., Iturraspe, R., Pärn, J., Teemusk, A., Mander, Ü., 2018. Greenhouse gas emissions in natural and managed peatlands of America: case studies along a latitudinal gradient. Ecol. Eng., 114, pp. 34-45. doi: 10.1016/j.ecoleng.2017.06.068.

[98]

Verbeke, B. A., Lamit, L. J., Lilleskov, E. A., Hodgkins, S. B., Basiliko, N., Kane, E. S., Andersen, R., Artz, R. R. E., Benavides, J. C., Benscoter, B. W., Borken, W., Bragazza, L., Brandt, S. M., Bräuer, S. L., Carson, M. A., Charman, D., Chen, X., Clarkson, B. R., Cobb, A. R., Convey, P, Pasquel, JDÁ., Enriquez, A. S., Griffiths, H., Grover, S. P., Harvey, C. F., Harris, L. I., Hazard, C., 2022. Latitude, elevation, and mean annual temperature predict peat organic matter chemistry at a global scale. Glob. Biogeochem. Cycle., 36 (2), Article e2021GB007057. doi: 10.1029/2021GB007057.

[99]

Villa, J. A., Mejía, G. M., Velásquez, D., Botero, A., Acosta, S. A., Marulanda, J. M., Osorno, A. M., Bohrer, G., 2019. Carbon sequestration and methane emissions along a microtopographic gradient in a tropical Andean peatland. Sci. Total Environ., 654, pp. 651-661. doi: 10.1016/j.scitotenv.2018.11.109.

[100]

Volkova, I. I., Callaghan, T. V., Volkov, I. V., Chernova, N. A., Volkova, A. I., 2021. South-Siberian mountain mires: perspectives on a potentially vulnerable remote source of biodiversity. Ambio, 50 (11), pp. 1975-1990. doi: 10.1007/s13280-021-01596-w.

[101]

Wang, M., Chen, H., Wu, N., Peng, C., Zhu, Q., Zhu, D., Yang, G., Wu, J., He, Y., Gao, Y., Tian, J., Zhao, X., 2014. Carbon dynamics of peatlands in China during the holocene. Quat. Sci. Rev., 99, pp. 34-41. doi: 10.1016/j.quascirev.2014.06.004.

[102]

Wang, Q., Fan, X., Wang, M., 2016. Evidence of high-elevation amplification versus Arctic amplification. Sci. Rep. 6, 19219. doi: 10.1038/srep19219.

[103]

Wang, Q., Jin, H., Zhang, T., Cao, B., Peng, X., Wang, K., Xiao, X., Guo, H., Mu, C., Li, L., 2017. Hydro-thermal processes and thermal offsets of peat soils in the active layer in an alpine permafrost region, NE Qinghai-Tibet Plateau. Glob. Planet. Change, 156, pp. 1-12. doi: 10.1016/j.gloplacha.2017.07.011.

[104]

Wang, Q., Wang, M., Fan, X., 2018. Seasonal patterns of warming amplification of high-elevation stations across the globe. Int. J. Climatol. 38 (8), 3466–3473. doi: 10.1002/joc.5509.

[105]

Wang, X., Li, Y., Yan, Z., Hao, Y., Kang, E., Zhang, X., Li, M., Zhang, K., Yan, L., Yang, A., Niu, Y., Kang, X., 2022. The divergent vertical pattern and assembly of soil bacterial and fungal communities in response to short-term warming in an alpine peatland. Front. Plant Sci., 13, Article 986034. doi: 10.3389/fpls.2022.986034.

[106]

Ward, S. E., Orwin, K. H., Ostle, N. J., Briones, M. J. I., Thomson, B. C., Griffiths, R. I., Oakley, S., Quirk, H., Bardgett, R. D., 2015. Vegetation exerts a greater control on litter decomposition than climate warming in peatlands. Ecology, 96 (1), pp. 113-123. doi: 10.1890/14-0292.1.

[107]

Wei, D., Tao, J., Wang, Z., Zhao, H., Zhao, W., Wang, X., 2024. Elevation-dependent pattern of net CO2 uptake across China. Nat. Commun., 15 (1), p. 2489. doi: 10.1038/s41467-024-46930-4.

[108]

Wu, H. D., Cui, L. J., Wang, J. Z., Yan, L., Zhang, X. D., Li, W., Li, Y., Kang, X. M., 2018. Carbon budgets and valuation of carbon sequestration of Zoige Alpine Peatland. Wetl. Sci. Manag., 14 (1), pp. 16-19. doi: 10.3969/j.issn.1673-3290.2018.01.04.

[109]

Wu, H., Yan, L., Li, Y., Zhang, K., Hao, Y., Wang, J., Zhang, X., Yan, Z., Zhang, Y., Kang, X., 2020. Drought-induced reduction in methane fluxes and its hydrothermal sensitivity in alpine peatland. PeerJ 2020 (4), 8874. doi: 10.7717/peerj.8874.

[110]

Wu, T., Ma, W., Wu, X., Li, R., Qiao, Y., Li, X., Yue, G., Zhu, X., Ni, J., 2022. Weakening of carbon sink on the Qinghai–Tibet Plateau. Geoderma, 412, Article 115707. doi: 10.1016/j.geoderma.2022.115707.

[111]

Xiang, S., Guo, R., Wu, N., Sun, S., 2009. Current status and future prospects of Zoige Marsh in Eastern Qinghai-Tibet Plateau. Ecol. Eng., 35 (4), pp. 553-562. doi: 10.1016/j.ecoleng.2008.02.016.

[112]

Xu, L., Li, P., Li, Z., Zhang, Z., Wang, P., Xu, C., 2010. Advances in research on changes and effects of glaciers in Xinjiang mountains. Adv. Water Sci., 31 (6), pp. 946-959. doi: 10.14042/j.cnki.32.1309.2020.06.014.

[113]

Xu, J., Morris, P. J., Liu, J., Holden, J., 2018. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena, 160, pp. 134-140. doi: 10.1016/j.catena.2017.09.010.

[114]

Yager, K., Prieto, M., Meneses, R. I., 2021. Reframing pastoral practices of bofedal management to increase the resilience of Andean water towers. Mt. Res. Dev., 41 (4), pp. A1-A9. doi: 10.1659/MRD-JOURNAL-D-21-00011.1.

[115]

Yan, Z., Li, Y., Wu, H., Zhang, K., Hao, Y., Wang, J., Zhang, X., Yan, L., Kang, X., 2020. Different responses of soil hydrolases and oxidases to extreme drought in an alpine peatland on the Qinghai-Tibet Plateau, China. Eur. J. Soil Biol., 99, Article 103195. doi: 10.1016/j.ejsobi.2020.103195.

[116]

Yan, Z., Kang, E., Zhang, K., Li, Y., Hao, Y., Wu, H., Li, M., Zhang, X., Wang, J., Yan, L., Kang, X., 2021. Plant and soil enzyme activities regulate CO2 efflux in Alpine peatlands after 5 years of simulated extreme drought. Front. Plant Sci., 12, Article 756956. doi: 10.3389/fpls.2021.756956.

[117]

Yang, G., Chen, H., Wu, N., Tian, J., Peng, C., Zhu, Q., Zhu, D., He, Y., Zheng, Q., Zhang, C., 2014. Effects of soil warming, rainfall reduction and water table level on CH4 emissions from the Zoige peatland in China. Soil Biol. Biochem., 78, pp. 83-89. doi: 10.1016/j.soilbio.2014.07.013.

[118]

Yang, Y., Wang, G., Klanderud, K., Wang, J., Liu, G., 2015. Plant community responses to five years of simulated climate warming in an alpine fen of the Qinghai–Tibetan plateau. Plant Ecol. Divers., 8 (2), pp. 211-218. doi: 10.1080/17550874.2013.871654.

[119]

Yang, G., Peng, C., Chen, H., Dong, F., Wu, N., Yang, Y., Zhang, Y., Zhu, D., He, Y., Shi, S., Zeng, X., Xi, T., Meng, Q., Zhu, Q., 2017a. Qinghai–Tibetan Plateau peatland sustainable utilization under anthropogenic disturbances and climate change. Ecosyst. Health Sustain. 3 (3), e01263. doi: 10.1002/ehs2.1263.

[120]

Yang, G., Wang, M., Chen, H., Liu, L., Wu, N., Zhu, D., Tian, J., Peng, C., Zhu, Q., He, Y., 2017b. Responses of CO2 emission and pore water DOC concentration to soil warming and water table drawdown in Zoige Peatlands. Atmos. Environ. 152, 323–329. doi: 10.1016/j.atmosenv.2016.12.051.

[121]

Yang, Z., Zhu, D., Liu, L., Liu, X., Chen, H., 2022. The effects of freeze–thaw cycles on methane emissions from peat soils of a high-altitude peatland. Front. Earth Sci., 10, Article 850220. doi: 10.3389/feart.2022.850220.

[122]

Yang, Q., Liu, Z., Bai, E., 2023. Comparison of carbon and nitrogen accumulation rate between bog and fen phases in a pristine peatland with the fen-bog transition. Glob. Change Biol. 29 (22), 6350–6366. doi: 10.1111/gcb.16915.

[123]

Yao, H., Peng, H., Hong, B., Guo, Q., Ding, H., Hong, Y., Zhu, Y., Cai, C., Chi, J., 2022. Environmental controls on multi-scale dynamics of net carbon dioxide exchange from an Alpine peatland on the eastern Qinghai-Tibet Plateau. Front. Plant Sci., 12, Article 791343. doi: 10.3389/fpls.2021.791343.

[124]

Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., Hunt, S. J., 2010. Global peatland dynamics since the last Glacial maximum. Geophys. Res. Lett., 37 (13), p. LI3402. doi: 10.1029/2010GL043584.

[125]

Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M., Paul, F., Haeberli, W., Denzinger, F., Ahlstrøm, A. P., Anderson, B., Bajracharya, S., Baroni, C., Braun, L. N., Càceres, B. E., Casassa, G., Cobos, G., Dàvila, L. R., Delgado Granados, H., Demuth, M. N., Espizua, L., Fischer, A., Fujita, K., Gadek, B., Ghazanfar, A., Hagen, J. O., Holmlund, P., Karimi, N., Li, Z., 2015. Historically unprecedented global glacier decline in the early 21st century. J. Glaciol., 61 (228), pp. 745-762. doi: 10.3189/2015JoG15J017.

[126]

Zeng, M., Zhu, C., Song, Y., Ma, C., Yang, Z., 2017. Paleoenvironment change and its impact on carbon and nitrogen accumulation in the Zoige wetland, northeastern Qinghai-Tibetan Plateau over the past 14,000 years. Geochem. Geophys. Geosyst., 18 (4), pp. 1775-1792. doi: 10.1002/2016GC006718.

[127]

Zhang, X., Liu, H., Xing, Z., 2011. Challenges and solutions for sustainable land use in ruoergai-the highest altitude peatland in Qinghai-Tibetan Plateau, China. Energy Proc. 5, 1019–1025. doi: 10.1016/j.egypro.2011.03.180.

[128]

Zhang, W., Lu, Q., Song, K., Qin, G., Wang, Y., Wang, X., Li, H., Li, J., Liu, G., Li, H., 2014. Remotely sensing the ecological influences of ditches in Zoige Peatland, eastern Tibetan Plateau. Int. J. Remote Sens., 35 (13), pp. 5186-5197. doi: 10.1080/01431161.2014.939779.

[129]

Zhang, W., Yi, Y., Song, K., Kimball, J.S., Lu, Q., 2016a. Hydrological response of Alpine wetlands to climate warming in the Eastern Tibetan Plateau. Remote Sens. 8 (4), 336. doi: 10.3390/rs8040336.

[130]

Zhang, Y., Enomoto, H., Ohata, T., Kitabata, H., Kadota, T., Hirabayashi, Y., 2016b. Projections of glacier change in the Altai Mountains under twenty-first century climate scenarios. Clim. Dyn. 47 (9–10), 2935–2953. doi: 10.1007/s00382-016-3006-x.

[131]

Zhang, Y., Yang, P., Gao, C., Tong, C., Zhang, X., Liu, X., Zhang, S., Meyers, P. A., 2020. Peat properties and Holocene carbon and nitrogen accumulation rates in a peatland in the Xinjiang Altai Mountains, Northwestern China. J. Geophys. Res.: Biogeosci., 125 (12), Article e2019JG005615. doi: 10.1029/2019JG005615.

[132]

Zhao, Y., Yu, Z., Zhao, W., 2011. Holocene vegetation and climate histories in the eastern Tibetan Plateau: controls by insolation-driven temperature or monsoon-derived precipitation changes? Quat. Sci. Rev. 30 (9–10), 1173–1184. doi: 10.1016/j.quascirev.2011.02.006.

[133]

Zhao, Y., Tang, Y., Yu, Z., Li, H., Yang, B., Zhao, W., Li, F., Li, Q., 2014. Holocene peatland initiation, lateral expansion, and carbon dynamics in the Zoige Basin of the eastern Tibetan Plateau. Holocene, 24 (9), pp. 1137-1145. doi: 10.1177/0959683614538077.

[134]

Zhou, W., Cui, L., Wang, Y., Li, W., 2017. Methane emissions from natural and drained peatlands in the Zoigê, eastern Qinghai-Tibet Plateau. J. For. Res., 28 (3), pp. 539-547. doi: 10.1007/s11676-016-0343-x.

[135]

Zhou, W., Cui, L., Wang, Y., Li, W., Kang, X., 2021. Carbon emission flux and storage in the degraded peatlands of the Zoige alpine area in the Qinghai–Tibetan Plateau. Soil Use Manage., 37 (1), pp. 72-82. doi: 10.1111/sum.12660.

PDF

476

Accesses

0

Citation

Detail

Sections
Recommended

/