Profiles and risk assessment of antibiotic resistome between Qinghai-Xizang Plateau and polar regions

Zhenzhe Wu , Guannan Mao , Yuan Gou , Mukan Ji , Qingqing Ma , Yongqin Liu

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) : 100342

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) :100342 DOI: 10.1016/j.geosus.2025.100342
Research Article
review-article

Profiles and risk assessment of antibiotic resistome between Qinghai-Xizang Plateau and polar regions

Author information +
History +
PDF

Abstract

Antibiotic resistance genes (ARGs) are increasingly recognized as a global public health threat, with glaciers acting as reservoirs for ARGs transported via atmospheric pathways. Warming climate accelerates glacier melting, releasing ARGs into downstream environments, posing ecological health and sustainable aquatic ecosystem development challenges. However, the distribution profiles of ARGs and their risks in glaciers from the polar region remain unclear. This study used 294 metagenomic sequences to investigate the distribution and risks of ARGs in glaciers across the Qinghai-Xizang Plateau, Antarctica, and the Arctic regions and compared them with adjacent and anthropogenically impacted environments. Among the three glacier regions studied, the Qinghai-Xizang Plateau exhibited the highest abundance of ARGs, whereas Antarctica displayed the lowest. ARG abundance in adjacent environments was comparable to that in the glaciers of the Qinghai-Xizang Plateau, but in the anthropogenically impacted environment, it was significantly higher than in glaciers. A shared resistome was identified in glaciers, dominated by bacitracin, multidrug, and macrolide-lincosamide-streptogramin (MLS) resistance genes. The bacA gene, which is related to bacitracin resistance, was the most common subtype, indicating that it is naturally present in microbial communities of glaciers. Risk assessments showed that 74.1 %–78.9 % of ARGs were low-risk in the Qinghai-Xizang Plateau and polar glaciers, indicating minimal human influence. However, 7.3 %–8.0 % were classified as high-risk, posing potential threats through horizontal gene transfer (HGT) and the spread of multidrug-resistant pathogens. These findings highlight the need to monitor ARGs in glacier environments, as climate change accelerates glacier melting and subsequent release of ARGs into downstream ecosystems.

Keywords

Antibiotic resistance genes / Glaciers / Antarctica / Arctic / Qinghai-Xizang Plateau / Risk

Cite this article

Download citation ▾
Zhenzhe Wu, Guannan Mao, Yuan Gou, Mukan Ji, Qingqing Ma, Yongqin Liu. Profiles and risk assessment of antibiotic resistome between Qinghai-Xizang Plateau and polar regions. Geography and Sustainability, 2025, 6(6): 100342 DOI:10.1016/j.geosus.2025.100342

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Zhenzhe Wu: Writing – original draft, Software, Data curation, Visualization, Methodology. Guannan Mao: Writing – original draft, Methodology, Visualization, Conceptualization. Yuan Gou: Writing – original draft. Mukan Ji: Writing – review & editing. Qingqing Ma: Visualization, Methodology. Yongqin Liu: Funding acquisition, Writing – review & editing, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study was supported by the State Key Program of National Natural Science of China (Grant No. 42330410) and National Natural Science Foundation of China (Grant No 42101128).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100342.

References

[1]

Abulreesh, H. H., Goulder, R., Scott, G. W., 2007. Wild birds and human pathogens in the context of ringing and migration. Ring. Migr., 23 (4), pp. 193-200. doi: 10.1080/03078698.2007.9674363.

[2]

Alekshun, M. N., Levy, S. B., 2007. Molecular mechanisms of antibacterial multidrug resistance. Cell, 128 (6), pp. 1037-1050. doi: 10.1016/j.cell.2007.03.004.

[3]

Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., Handelsman, J., 2010. Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol., 8 (4), pp. 251-259. doi: 10.1038/nrmicro2312.

[4]

Anesio, A. M., Lutz, S., Chrismas, N. A. M., Benning, L. G., 2017. The microbiome of glaciers and ice sheets. NPJ Biofilms Microbiomes, 3 (1), p. 10. doi: 10.1038/s41522-017-0019-0.

[5]

Bell, T. H., Callender, K. L., Whyte, L. G., Greer, C. W., 2013. Microbial competition in polar soils: a review of an understudied but potentially important control on productivity. Biology, 2 (2), pp. 533-554. doi: 10.3390/biology2020533.

[6]

Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., Piddock, L. J., 2015. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol., 13 (1), pp. 42-51. doi: 10.1038/nrmicro3380.

[7]

Bonanno Ferraro, G., Brandtner, D., Franco, A., Iaconelli, M., Mancini, P., Veneri, C., Briancesco, R., Coccia, A. M., Suffredini, E., Muratore, A., Ferrara, F., Lucentini, L., Piccioli, A., La Rosa, G., 2024. Global quantification and distribution of antibiotic resistance genes in oceans and seas: anthropogenic impacts and regional variability. Sci. Total Environ., 955, Article 176765. doi: 10.1016/j.scitotenv.2024.176765.

[8]

Bowers, R. M., Kyrpides, N. C., Stepanauskas, R., Harmon-Smith, M., Doud, D., Reddy, T. B. K., Schulz, F., Jarett, J., Rivers, A. R., Eloe-Fadrosh, E. A., Tringe, S. G., Ivanova, N. N., Copeland, A., Clum, A., Becraft, E. D., Malmstrom, R. R., Birren, B., Podar, M., Bork, P., Weinstock, G. M., Garrity, G. M., Dodsworth, J. A., Yooseph, S., Sutton, G., Glockner, F. O., Gilbert, J. A., Nelson, W. C., Hallam, S. J., Jungbluth, S. P., Ettema, T. J. G., Tighe, S., Konstantinidis, K. T., Liu, W. T., Baker, B. J., Rattei, T., Eisen, J. A., Hedlund, B., McMahon, K. D., Fierer, N., Knight, R., Finn, R., Cochrane, G., Karsch-Mizrachi, I., Tyson, G. W., Rinke, C., Genome Standards, C., Lapidus, A., Meyer, F., Yilmaz, P., Parks, D. H., Eren, A. M., Schriml, L., Banfield, J. F., Hugenholtz, P., Woyke, T., 2017. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol., 35 (8), pp. 725-731. doi: 10.1038/nbt.3893.

[9]

Buchfink, B., Xie, C., Huson, D. H., 2015. Fast and sensitive protein alignment using DIAMOND. Nat. Methods, 12 (1), pp. 59-60. doi: 10.1038/nmeth.3176.

[10]

Chaumeil, P. A., Mussig, A. J., Hugenholtz, P., Parks, D. H., 2019. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics, 36 (6), pp. 1925-1927. doi: 10.1093/bioinformatics/btz848.

[11]

Chen, B., Yang, Y., Liang, X., Yu, K., Zhang, T., Li, X., 2013. Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments. Environ. Sci. Technol., 47 (22), pp. 12753-12760. doi: 10.1021/es403818e.

[12]

Chen, B., Yuan, K., Chen, X., Yang, Y., Zhang, T., Wang, Y., Luan, T., Zou, S., Li, X., 2016. Metagenomic analysis revealing antibiotic resistance genes (ARGs) and their genetic compartments in the Tibetan environment. Environ. Sci. Technol., 50 (13), pp. 6670-6679. doi: 10.1021/acs.est.6b00619.

[13]

Chen, C., Wu, Y., Li, J., Wang, X., Zeng, Z., Xu, J., Liu, Y., Feng, J., Chen, H., He, Y., Xia, R., 2023. TBtools-II: a “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant, 16 (11), pp. 1733-1742. doi: 10.1016/j.molp.2023.09.010.

[14]

Chen, H., Liu, C., Teng, Y., Zhang, Z., Chen, Y., Yang, Y., 2021. Environmental risk characterization and ecological process determination of bacterial antibiotic resistome in lake sediments. Environ. Int., 147, Article 106345. doi: 10.1016/j.envint.2020.106345.

[15]

Chen, M., Liu, Y., Zhou, Y., Pei, Y., Qu, M., Lv, P., Zhang, J., Xu, X., Hu, Y., Wang, Y., 2025. Deciphering antibiotic resistance genes and plasmids in pathogenic bacteria from 166 hospital effluents in Shanghai, China. J. Hazard. Mater., 483, Article 136641. doi: 10.1016/j.jhazmat.2024.136641.

[16]

Cheng, S., Zhang, R., Liu, Q., He, S., Sun, J., Xing, L., 2025. Occurrence, removal, and ecological risk of antibiotics and antibiotic resistance genes in township wastewater treatment plants in the upper reaches of the Yangtze River, China. Environ. Sci. Pollut. Res. Int., 32 (3), pp. 1223-1235. doi: 10.1007/s11356-024-35832-z.

[17]

Danko, D., Bezdan, D., Afshin, E. E., Ahsanuddin, S., Bhattacharya, C., Butler, D. J., Chng, K. R., Donnellan, D., Hecht, J., Jackson, K., Kuchin, K., Karasikov, M., Lyons, A., Mak, L., Meleshko, D., Mustafa, H., Mutai, B., Neches, R. Y., Ng, A., Nikolayeva, O., Nikolayeva, T., Png, E., Ryon, K. A., Sanchez, J. L., Shaaban, H., Sierra, M. A., Thomas, D., Young, B., Abudayyeh, O. O., Alicea, J., Bhattacharyya, M., Blekhman, R., Castro-Nallar, E., Canas, A. M., Chatziefthimiou, A. D., Crawford, R. W., De Filippis, F., Deng, Y., Desnues, C., Dias-Neto, E., Dybwad, M., Elhaik, E., Ercolini, D., Frolova, A., Gankin, D., Gootenberg, J. S., Graf, A. B., Green, D. C., Hajirasouliha, I., Hastings, J. J. A., Hernandez, M., Iraola, G., Jang, S., Kahles, A., Kelly, F. J., Knights, K., Kyrpides, N. C., Labaj, P. P., Lee, P. K. H., Leung, M. H. Y., Ljungdahl, P. O., Mason-Buck, G., McGrath, K., Meydan, C., Mongodin, E. F., Moraes, M. O., Nagarajan, N., Nieto-Caballero, M., Noushmehr, H., Oliveira, M., Ossowski, S., Osuolale, O. O., Ozcan, O., Paez-Espino, D., Rascovan, N., Richard, H., Ratsch, G., Schriml, L. M., Semmler, T., Sezerman, O. U., Shi, L., Shi, T., Siam, R., Song, L. H., Suzuki, H., Court, D. S., Tighe, S. W., Tong, X., Udekwu, K. I., Ugalde, J. A., Valentine, B., Vassilev, D. I., Vayndorf, E. M., Velavan, T. P., Wu, J., Zambrano, M. M., Zhu, J., Zhu, S., Mason, C. E., 2021. A global metagenomic map of urban microbiomes and antimicrobial resistance. Cell, 184 (13), pp. 3376-3393. doi: 10.1016/j.cell.2021.05.002.

[18]

D'Costa, V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, G. B., Poinar, H. N., Wright, G. D., 2011. Antibiotic resistance is ancient. Nature, 477 (2011), pp. 457-461. doi: 10.1038/nature10388.

[19]

Debroas, D., 2025. Global analysis of the metaplasmidome: ecological drivers and spread of antibiotic resistance genes across ecosystems. Microbiome, 13 (1), p. 77. doi: 10.1186/s40168-025-02062-5.

[20]

El Ghachi, M., Bouhss, A., Blanot, D., Mengin-Lecreulx, D., 2004. The bacA gene of Escherichia coli encodes an undecaprenyl pyrophosphate phosphatase activity. J. Biol. Chem., 279 (29), pp. 30106-30113. doi: 10.1074/jbc.M401701200.

[21]

Gao, Q., Li, Y., Qi, Z., Yue, Y., Min, M., Peng, S., Shi, Z., Gao, Y., 2018. Diverse and abundant antibiotic resistance genes from mariculture sites of China’s coastline. Sci. Total Environ., 630, pp. 117-125. doi: 10.1016/j.scitotenv.2018.02.122.

[22]

Gou, Y., Liu, Y., Hu, A., Mao, G., Dong, R., Li, S., Liu, P., Liu, Y., Ji, M., 2025. Dissemination of genes associated with antibiotic resistance and bacterial virulence during ecosystem succession in two Tibetan glacier forefields. Sci. Total Environ., 963, Article 178514. doi: 10.1016/j.scitotenv.2025.178514.

[23]

Gwenzi, W., Shamsizadeh, Z., Gholipour, S., Nikaeen, M., 2022. The air-borne antibiotic resistome: occurrence, health risks, and future directions. Sci. Total Environ., 804, Article 150154. doi: 10.1016/j.scitotenv.2021.150154.

[24]

Hernandez, J., Gonzalez-Acuna, D., 2016. Anthropogenic antibiotic resistance genes mobilization to the polar regions. Infect. Ecol. Epidemiol., 6 (1), Article 32112. doi: 10.3402/iee.v6.32112.

[25]

Herreid, S., Pellicciotti, F., 2020. The state of rock debris covering Earth’s glaciers. Nat. Geosci., 13 (9), pp. 621-627. doi: 10.1038/s41561-020-0615-0.

[26]

Hu, Y., Yang, X., Li, J., Lv, N., Liu, F., Wu, J., Lin, I. Y., Wu, N., Weimer, B. C., Gao, G. F., Liu, Y., Zhu, B., 2016. The bacterial mobile resistome transfer network connecting the animal and human microbiomes. Appl. Environ. Microbiol., 82 (22), pp. 6672-6681. doi: 10.1128/AEM.01802-16.

[27]

Hu, Y., Yang, X., Qin, J., Lu, N., Cheng, G., Wu, N., Pan, Y., Li, J., Zhu, L., Wang, X., Meng, Z., Zhao, F., Liu, D., Ma, J., Qin, N., Xiang, C., Xiao, Y., Li, L., Yang, H., Wang, J., Yang, R., Gao, G. F., Wang, J., Zhu, B., 2013. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat. Commun., 4, p. 2151. doi: 10.1038/ncomms3151.

[28]

Huang, J., Zhu, J., Liu, S., Luo, Y., Zhao, R., Guo, F., Li, B., 2022. Estuarine salinity gradient governs sedimentary bacterial community but not antibiotic resistance gene profile. Sci. Total Environ., 806 (Pt 3), Article 151390. doi: 10.1016/j.scitotenv.2021.151390.

[29]

Hwengwere, K., Paramel Nair, H., Hughes, K. A., Peck, L. S., Clark, M. S., Walker, C. A., 2022. Hughes, L.S. Peck, M.S. Clark, C.A. Walker. Antimicrobial resistance in Antarctica: is it still a pristine environment?. Microbiome, 10 (1), p. 71. doi: 10.1186/s40168-022-01250-x.

[30]

Ilahi, N., Degen, A. A., Bahadur, A., Haq, A., Wang, W., Kang, S., Sajjad, W., Shang, Z., 2023. Cultivable bacteria in the supraglacial lake formed after a glacial lake outburst flood in northern Pakistan. Int. Microbiol., 26 (2), pp. 309-325. doi: 10.1007/s10123-022-00306-0.

[31]

Kang, D. D., Li, F., Kirton, E., Thomas, A., Egan, R., An, H., Wang, Z., 2019. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ, 7, p. e7359. doi: 10.7717/peerj.7359.

[32]

Kim, H., Kim, M., Kim, S., Lee, Y. M., Shin, S. C., 2022. Characterization of antimicrobial resistance genes and virulence factor genes in an Arctic permafrost region revealed by metagenomics. Environ. Pollut., 294, Article 118634. doi: 10.1016/j.envpol.2021.118634.

[33]

Kong, C., He, X., Guo, M. T., Ma, S. J., Xu, B., Tang, Y. L., 2022. The impacts of chlorine and disinfection byproducts on antibiotic-resistant bacteria (ARB) and their conjugative transfer. Water, 14 (19), p. 3009. doi: 10.3390/w14193009.

[34]

Lehmann-Konera, S., Ruman, M., Kozioł, K., Gajek, G, Polkowska, Ż., 2017. Glaciers as an important element of the world glacier monitoring implemented in Svalbard. D. Godone (Ed.), Glaciers Evolution in a Changing World, IntechOpen, Rijeka, Croatia. doi: 10.5772/intechopen.69237.

[35]

Li, D., Liu, C. M., Luo, R., Sadakane, K., Lam, T. W., 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31 (10), pp. 1674-1676. doi: 10.1093/bioinformatics/btv033.

[36]

Li, L. G., Huang, Q., Yin, X., Zhang, T., 2020. Source tracking of antibiotic resistance genes in the environment—challenges, progress, and prospects. Water. Res., 185, Article 116127. doi: 10.1016/j.watres.2020.116127.

[37]

Li, Y., Xia, C. Q., Feng, Y., Li, H., Zhang, F., Guan, L., Dong, K. S., Shen, S. F., 2021. Deciphering hosts of antibiotic resistance genes by metagenomic binning approaches in Union Glacier. Antarctica Chin. J. Ecol., 40 (9), pp. 2832-2841. doi: 10.13292/j.1000-4890.202109.038.

[38]

Liang, H., Huang, J., Tao, Y., Klumper, U., Berendonk, T. U., Zhou, K., Xia, Y., Yang, Y., Yu, Y., Yu, K., Lin, L., Li, X., Li, B., 2024. Investigating the antibiotic resistance genes and their potential risks in the megacity water environment: a case study of Shenzhen Bay Basin, China. J. Hazard. Mater., 465, Article 133536. doi: 10.1016/j.jhazmat.2024.133536.

[39]

Liao, H., Liu, C., Zhou, S., Liu, C., Eldridge, D. J., Ai, C., Wilhelm, S. W., Singh, B. K., Liang, X., Radosevich, M., Yang, Q. E., Tang, X., Wei, Z., Friman, V. P., Gillings, M., Delgado-Baquerizo, M., Zhu, Y. G., 2024. Prophage-encoded antibiotic resistance genes are enriched in human-impacted environments. Nat. Commun., 15 (1), p. 8315. doi: 10.1038/s41467-024-52450-y.

[40]

Liao, X., Hou, L., Zhang, L., Grossart, H. P., Liu, K., Liu, J., Chen, Y., Liu, Y., Hu, A., 2024. Distinct influences of altitude on microbiome and antibiotic resistome assembly in a glacial river ecosystem of Mount Everest. J. Hazard. Mater., 479, Article 135675. doi: 10.1016/j.jhazmat.2024.135675.

[41]

Liang, J., Lin, H., Singh, B., Wang, A., Yan, Z., 2023. A global perspective on compositions, risks, and ecological genesis of antibiotic resistance genes in biofilters of drinking water treatment plants. Water Res., 233, Article 119822. doi: 10.1016/j.watres.2023.119822.

[42]

Liu, K., Liu, Y., Hu, A., Wang, F., Zhang, Z., Yan, Q., Ji, M., Vick-Majors, T. J., 2021. Vick-Majors. Fate of glacier surface snow-originating bacteria in the glacier-fed hydrologic continuums. Environ. Microbiol., 23 (11), pp. 6450-6462. doi: 10.1111/1462-2920.15788.

[43]

Liu, S., Wang, P., Wang, C., Wang, X., Chen, J. 2021b Anthropogenic disturbances on antibiotic resistome along the Yarlung Tsangpo River on the Tibetan Plateau: ecological dissemination mechanisms of antibiotic resistance genes to bacterial pathogens. Water Res., 202 (2021), Article 117447. doi: 10.1016/j.watres.2021.117447.

[44]

Liu, S., Wang, P., Wang, X., Chen, J. 2021a. Ecological insights into the elevational biogeography of antibiotic resistance genes in a pristine river: metagenomic analysis along the Yarlung Tsangpo River on the Tibetan Plateau. Environ. Pollut., 286 (2021), Article 117101. doi: 10.1016/j.envpol.2021.117101.

[45]

Liu, W., Cheng, Y., Guo, J., Duan, Y., Wang, S., Xu, Q., Liu, M., Xue, C., Guo, S., Shen, Q., Ling, N., 2022. Long-term manure inputs induce a deep selection on agroecosystem soil antibiotic resistome. J. Hazard. Mater., 436, Article 129163. doi: 10.1016/j.jhazmat.2022.129163.

[46]

Lo Giudice, A., Bruni, V., Michaud, L., 2007. Characterization of Antarctic psychrotrophic bacteria with antibacterial activities against terrestrial microorganisms. J. Basic Microbiol. 47 (6), 496–505. doi: 10.1002/jobm.200700227.

[47]

Maciel-Guerra, A., Baker, M., Hu, Y., Wang, W., Zhang, X., Rong, J., Zhang, Y., Zhang, J., Kaler, J., Renney, D., Loose, M., Emes, R. D., Liu, L., Chen, J., Peng, Z., Li, F., Dottorini, T., 2023. Dissecting microbial communities and resistomes for interconnected humans, soil, and livestock. ISME J., 17 (1), pp. 21-35. doi: 10.1038/s41396-022-01315-7.

[48]

Makowska, N., Zawierucha, K., Nadobna, P., Piatek-Bajan, K., Krajewska, A., Szwedyk, J., Iwasieczko, P., Mokracka, J., Koczura, R., 2020. Occurrence of integrons and antibiotic resistance genes in cryoconite and ice of Svalbard, Greenland, and the Caucasus glaciers. Sci. Total Environ., 716, Article 137022. doi: 10.1016/j.scitotenv.2020.137022.

[49]

Mao, G., Ji, M., Jiao, N., Su, J., Zhang, Z., Liu, K., Chen, Y., Liu, Y., 2023. Monsoon affects the distribution of antibiotic resistome in Tibetan glaciers. Environ. Pollut., 317, Article 120809. doi: 10.1016/j.envpol.2022.120809.

[50]

Marzeion, B., Hock, R., Anderson, B., Bliss, A., Champollion, N., Fujita, K., Huss, M., Immerzeel, W. W., Kraaijenbrink, P., Malles, J. H., Maussion, F., Radić, V., Rounce, D. R., Sakai, A., Shannon, S., van de Wal, R., Zekollari, H., 2020. Partitioning the uncertainty of ensemble projections of global glacier mass change. Earths Future, 8 (7), Article e2019EF001470. doi: 10.1029/2019ef001470.

[51]

Miller, R. V., Gammon, K., Day, M. J., 2009. Antibiotic resistance among bacteria isolated from seawater and penguin fecal samples collected near Palmer Station. Antarctica Can. J. Microbiol., 55 (1), pp. 37-45. doi: 10.1139/W08-119.

[52]

Mogrovejo, D. C., Perini, L., Gostincar, C., Sepcic, K., Turk, M., Ambrozic-Avgustin, J., Brill, F. H. H., Gunde-Cimerman, N., 2020. Prevalence of antimicrobial resistance and hemolytic phenotypes in culturable Arctic bacteria. Front. Microbiol., 11, p. 570. doi: 10.3389/fmicb.2020.00570.

[53]

Musilova, M., Tranter, M., Bennett, S. A., Wadham, J., Anesio, A. M., 2015. Stable microbial community composition on the Greenland Ice Sheet. Front. Microbiol., 6, p. 193. doi: 10.3389/fmicb.2015.00193.

[54]

Nawaz, S., Rafiq, M., Pepper, I. L., Betancourt, W. Q., Shah, A. A., Hasan, F., 2023. Prevalence and abundance of antibiotic-resistant genes in culturable bacteria inhabiting a non-polar passu glacier, karakorum mountains range. Pakistan World J. Microbiol. Biotechnol., 39 (4), p. 94. doi: 10.1007/s11274-023-03532-4.

[55]

Nesme, J., Cecillon, S., Delmont, T. O., Monier, J. M., Vogel, T. M., Simonet, P., 2014. Large-scale metagenomic-based study of antibiotic resistance in the environment. Curr. Biol., 24 (10), pp. 1096-1100. doi: 10.1016/j.cub.2014.03.036.

[56]

OriginPro, 2025. Version. OriginLab Corporation. Northampton, MA, USA.

[57]

Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., Tyson, G. W., 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res., 25 (7), pp. 1043-1055. doi: 10.1101/gr.186072.114.

[58]

Parnanen, K., Karkman, A., Hultman, J., Lyra, C., Bengtsson-Palme, J., Larsson, D. G. J., Rautava, S., Isolauri, E., Salminen, S., Kumar, H., Satokari, R., Virta, M., 2018. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nat. Commun., 9 (1), p. 3891. doi: 10.1038/s41467-018-06393-w.

[59]

Provencher, J., George, P. B. L., Thaler, M., Vincent, W. F., Duchaine, C., Culley, A. I., Girard, C., 2024. Microbial antibiotic resistance genes across an anthropogenic gradient in a Canadian High Arctic watershed. Sustain. Microbiol., 1 (1), p. qvae021. doi: 10.1093/sumbio/qvae021.

[60]

Rabbia, V., Bello-Toledo, H., Jiménez, S., Quezada, M., Domínguez, M., Vergara, L., Gómez-Fuentes, C., Calisto-Ulloa, N., González-Acuña, D., López, J., González-Rocha, G., 2016. Antibiotic resistance in Escherichia coli strains isolated from Antarctic bird feces, water from inside a wastewater treatment plant, and seawater samples collected in the Antarctic Treaty area. Polar Sci., 10 (2), pp. 123-131. doi: 10.1016/j.polar.2016.04.002.

[61]

Rafiq, M., Hayat, M., Anesio, A. M., Jamil, S. U. U., Hassan, N., Shah, A. A., Hasan, F., 2017. Recovery of metallo-tolerant and antibiotic resistant psychrophilic bacteria from Siachen glacier, Pakistan. PLoS One, 12 (7), Article e0178180. doi: 10.1371/journal.pone.0178180.

[62]

Rascovan, N., Telke, A., Raoult, D., Rolain, J. M., Desnues, C., 2016. Exploring divergent antibiotic resistance genes in ancient metagenomes and discovery of a novel beta-lactamase family. Environ. Microbiol. Rep., 8 (5), pp. 886-895. doi: 10.1111/1758-2229.12453.

[63]

Ren, Z., Gao, H., 2024. Antibiotic resistance genes in integrated surface ice, cryoconite, and glacier-fed stream in a mountain glacier in Central Asia. Environ. Int., 184, Article 108482. doi: 10.1016/j.envint.2024.108482.

[64]

Sajjad, W., Rafiq, M., Din, G., Hasan, F., Iqbal, A., Zada, S., Ali, B., Hayat, M., Irfan, M., Kang, S., 2020. Resurrection of inactive microbes and resistome present in the natural frozen world: reality or myth?. Sci. Total Environ., 735, Article 139275. doi: 10.1016/j.scitotenv.2020.139275.

[65]

Scott, L. C., Lee, N., Aw, T. G., 2020. Antibiotic resistance in minimally human-impacted environments. Int. J. Environ. Res. Public Health, 17 (11), p. 3939. doi: 10.3390/ijerph17113939.

[66]

Segawa, T., Takeuchi, N., Rivera, A., Yamada, A., Yoshimura, Y., Barcaza, G., Shinbori, K., Motoyama, H., Kohshima, S., Ushida, K., 2013. Distribution of antibiotic resistance genes in glacier environments. Environ. Microbiol. Rep., 5 (1), pp. 127-134. doi: 10.1111/1758-2229.12011.

[67]

Serrana, J. M., Nascimento, F. J. A., Dessirier, B., Broman, E., Posselt, M., 2025. Environmental drivers of the resistome across the Baltic Sea. Microbiome, 13 (1), p. 92. doi: 10.1186/s40168-025-02086-x.

[68]

Shen, J. P., Li, Z. M., Hu, H. W., Zeng, J., Zhang, L. M., Du, S., He, J. Z., 2019. Distribution and succession feature of antibiotic resistance genes along a soil development chronosequence in Urumqi No.1 Glacier of China. Front. Microbiol., 10, p. 1569. doi: 10.3389/fmicb.2019.01569.

[69]

Shu, Q., Gao, H., Li, R. J., Chen, H. Y., Na, G. S., 2024. Li, H.Y. Chen, G.S. Na. The source and dissemination of ARGs in pristine environments: elucidating the role of migratory birds in the Arctic. J. Hazard. Mater., 480, Article 136272. doi: 10.1016/j.jhazmat.2024.136272.

[70]

Silvester, R., Perry, W. B., Webster, G., Rushton, L., Baldwin, A., Pass, D. A., Healey, N., Farkas, K., Craine, N., Cross, G., Kille, P., Weightman, A. J., Jones, D. L., 2025. Weightman, D.L. Jones. Metagenomics unveils the role of hospitals and wastewater treatment plants on the environmental burden of antibiotic resistance genes and opportunistic pathogens. Sci. Total Environ., 961, Article 178403. doi: 10.1016/j.scitotenv.2025.178403.

[71]

Tan, L., Li, L., Ashbolt, N., Wang, X., Cui, Y., Zhu, X., Xu, Y., Yang, Y., Mao, D., Luo, Y., 2018. Arctic antibiotic resistance gene contamination, a result of anthropogenic activities and natural origin. Sci. Total Environ., 621, pp. 1176-1184. doi: 10.1016/j.scitotenv.2017.10.110.

[72]

Van Boeckel, T. P., Gandra, S., Ashok, A., Caudron, Q., Grenfell, B. T., Levin, S. A., Laxminarayan, R., 2014. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect. Dis., 14, pp. 742-750. doi: 10.1016/S1473-3099(14)70780-7.

[73]

Van Goethem, M. W., Pierneef, R., Bezuidt, O. K. I., Van De Peer, Y., Cowan, D. A., Makhalanyane, T. P., 2018. A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils. Microbiome, 6 (1), p. 40. doi: 10.1186/s40168-018-0424-5.

[74]

Vojvoda Zeljko, T., Kajan, K., Jalzic, B., Hu, A., Cukrov, N., Margus, M., Cukrov, N., Markovic, T., Sabatino, R., Di Cesare, A., Orlic, S., 2024. Genome-centric metagenomes unveiling the hidden resistome in an anchialine cave. Environ. Microbiome, 19 (1), p. 67. doi: 10.1186/s40793-024-00612-2.

[75]

Wang, F., Stedtfeld, R. D., Kim, O. S., Chai, B., Yang, L., Stedtfeld, T. M., Hong, S. G., Kim, D., Lim, H. S., Hashsham, S. A., Tiedje, J. M., Sul, W. J., 2016. Influence of soil characteristics and proximity to Antarctic research stations on abundance of antibiotic resistance genes in soils. Environ. Sci. Technol., 50 (23), pp. 12621-12629. doi: 10.1021/acs.est.6b02863.

[76]

Wang, J. R., Li, H. Y., Yang, Q. F., Lu, X., Zheng, X. Q., Xu, Y., 2024. Environmental factors dominate microbial community puppet-like driving the distribution of antibiotic resistance genes in different utilization lands. Environ. Technol. Innov., 34, Article 103553. doi: 10.1016/j.eti.2024.103553.

[77]

Wang, X., Han, C., Lan, B., Wang, C., Zhu, G., 2022. Antibiotic resistance genes on the Qinghai-Tibet Plateau above an elevation of 5000 m. Environ. Sci. Pollut. Res. Int., 29 (3), pp. 4508-4518. doi: 10.1007/s11356-021-16007-6.

[78]

Wang, Y., Xu, N., Chen, B., Zhang, Z., Lei, C., Zhang, Q., Gu, Y., Wang, T., Wang, M., Penuelas, J., Qian, H., 2024. Metagenomic analysis of antibiotic-resistance genes and viruses released from glaciers into downstream habitats. Sci. Total Environ., 908, Article 168310. doi: 10.1016/j.scitotenv.2023.168310.

[79]

Wang, Y. F., Liu, Y. J., Fu, Y. M., Xu, J. Y., Zhang, T. L., Cui, H. L., Qiao, M., Rillig, M. C., Zhu, Y. G., Zhu, D., 2024. Microplastic diversity increases the abundance of antibiotic resistance genes in soil. Nat. Commun., 15 (1), p. 9788. doi: 10.1038/s41467-024-54237-7.

[80]

Xie, J., Jin, L., Wu, D., Pruden, A., Li, X., 2022. Inhalable antibiotic resistome from wastewater treatment plants to urban areas: bacterial hosts, dissemination risks, and source contributions. Environ. Sci. Technol., 56 (11), pp. 7040-7051. doi: 10.1021/acs.est.1c07023.

[81]

Yang, Y., Liu, G., Ye, C., Liu, W., 2019. Bacterial community and climate change implication affected the diversity and abundance of antibiotic resistance genes in wetlands on the Qinghai-Tibetan Plateau. J. Hazard. Mater., 361, pp. 283-293. doi: 10.1016/j.jhazmat.2018.09.002.

[82]

Yin, X., Jiang, X. T., Chai, B., Li, L., Yang, Y., Cole, J. R., Tiedje, J. M., Zhang, T., 2018. ARGs-OAP v2.0 with an expanded SARG database and hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes. Bioinformatics, 34 (13), pp. 2263-2270. doi: 10.1093/bioinformatics/bty053.

[83]

Yin, X., Yang, Y., Deng, Y., Huang, Y., Li, L., Chan, L. Y. L., Zhang, T., 2022. An assessment of resistome and mobilome in wastewater treatment plants through temporal and spatial metagenomic analysis. Water Res., 209, Article 117885. doi: 10.1016/j.watres.2021.117885.

[84]

Yin, X. L., Zheng, X. W., Li, L. G., Zhang, A. N., Jiang, X. T., Zhang, T., 2023. ARGs-OAP v3.0: antibiotic-resistance gene database curation and analysis pipeline optimization. Engineering, 27, pp. 234-241. doi: 10.1016/j.eng.2022.10.011.

[85]

Yuan, K., Yu, K., Yang, R., Zhang, Q., Yang, Y., Chen, E., Lin, L., Luan, T., Chen, W., Chen, B., 2019. Metagenomic characterization of antibiotic resistance genes in Antarctic soils. Ecotox. Environ. Safe., 176, pp. 300-308. doi: 10.1016/j.ecoenv.2019.03.099.

[86]

Zemp, M., Jakob, L., Dussaillant, I., Nussbaumer, S. U., Gourmelen, N., Dubber, S., A, G., Abdullahi, S., Andreassen, L. M., Berthier, E., Bhattacharya, A., Blazquez, A., Boehm Vock, L. F., Bolch, T., Box, J., Braun, M. H., Brun, F., Cicero, E., Colgan, W., Eckert, N., Farinotti, D., Florentine, C., Floricioiu, D., Gardner, A., Harig, C., Hassan, J., Hugonnet, R., Huss, M., Jóhannesson, T, C-Liang, C. A., Ke, C-.Q., Khan, S. A., King, O., Kneib, M., Krieger, L., Maussion, F., Mattea, E., McNabb, R., Menounos, B., Miles, E., Moholdt, G., Nilsson, J., Pálsson, F., Pfeffer, J., Piermattei, L., Plummer, S., Richter, A., Sasgen, I., Schuster, L., Seehaus, T., Shen, X., Sommer, C., Sutterley, T., Treichler, D., Velicogna, I., Wouters, B., Zekollari, H., Zheng, W., The Gla, M. T., 2025. Community estimate of global glacier mass changes from 2000 to 2023. Nature, 639 (2025), pp. 382-388. doi: 10.1038/s41586-024-08545-z.

[87]

Zeng, Y. Y., Yang, F. X., Zhang, Z. L., Guo, H. X., Ding, Y. Z., 2025. Dissemination of antibiotic resistance genes in soil-crop systems: mechanisms and influencing factors. Curr. Opin. Environ. Sci. Health, 43, Article 100593. doi: 10.1016/j.coesh.2025.100593.

[88]

Zhang, A. N., Gaston, J. M., Dai, C. L., Zhao, S., Poyet, M., Groussin, M., Yin, X., Li, L. G., van Loosdrecht, M. C. M., Topp, E., Gillings, M. R., Hanage, W. P., Tiedje, J. M., Moniz, K., Alm, E. J., Zhang, T., 2021. An omics-based framework for assessing the health risk of antimicrobial resistance genes. Nat. Commun., 12 (1), p. 4765. doi: 10.1038/s41467-021-25096-3.

[89]

Zhang, S., Nie, Y., Zhang, H., 2024. Glacial lake changes and risk assessment in Rongxer Watershed of China–Nepal Economic Corridor. Remote Sens. 16 (4), 725. doi: 10.3390/rs16040725.

[90]

Zhang, S., Yang, G., Hou, S., Zhang, T., Li, Z., Liang, F., 2018. Distribution of ARGs and MGEs among glacial soil, permafrost, and sediment using metagenomic analysis. Environ. Pollut., 234, pp. 339-346. doi: 10.1016/j.envpol.2017.11.031.

[91]

Zhang, Z., Zhang, Q., Wang, T., Xu, N., Lu, T., Hong, W., Penuelas, J., Gillings, M., Wang, M., Gao, W., Qian, H., 2022. Assessment of global health risk of antibiotic resistance genes. Nat. Commun., 13 (1), p. 1553. doi: 10.1038/s41467-022-29283-8.

[92]

Zhao, R., Yu, K., Zhang, J., Zhang, G., Huang, J., Ma, L., Deng, C., Li, X., Li, B., 2020. Deciphering the mobility and bacterial hosts of antibiotic resistance genes under antibiotic selection pressure by metagenomic assembly and binning approaches. Water Res., 186, Article 116318. doi: 10.1016/j.watres.2020.116318.

[93]

Zhou, Z., Zhu, R., Song, Y., Zhang, W., Sun, B., Zhang, Z., Yao, H., 2024. Penguin-driven dissemination and high enrichment of antibiotic resistance genes in lake sediments across Antarctica. Environ. Sci. Technol., 58 (32), pp. 14460-14474. doi: 10.1021/acs.est.4c02732.

[94]

Zhu, D. Q., Chen, W. Q., Qu, X. L., Zheng, Y. M., Bi, J., Kan, H. D., Luo, Y. M., Ying, G. G., Zeng, E. Y., Zhao, F. J., Zhu, L. Y., Zhu, Y. G., Tao, S., 2021. Future research needs for environmental science in China. Geogr. Sustain., 2 (3), pp. 234-242. doi: 10.1016/j.geosus.2021.09.003.

[95]

Zhu, G., Wang, X., Yang, T., Su, J., Qin, Y., Wang, S., Gillings, M., Wang, C., Ju, F., Lan, B., Liu, C., Li, H., Long, X. E., Wang, X., Jetten, M. S. M., Wang, Z., Zhu, Y. G., 2021. Air pollution could drive global dissemination of antibiotic resistance genes. ISME J., 15 (1), pp. 270-281. doi: 10.1038/s41396-020-00780-2.

PDF

854

Accesses

0

Citation

Detail

Sections
Recommended

/