Impacts of China food trade on global resource and environment: A sustainable development assessment

Xiang Wang , Xin Li , Libang Ma , Jing Bai , Li Li , Simin Yan

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) : 100339

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (6) :100339 DOI: 10.1016/j.geosus.2025.100339
Research Article
review-article

Impacts of China food trade on global resource and environment: A sustainable development assessment

Author information +
History +
PDF

Abstract

Meeting China’s burgeoning food demand while safeguarding the resources and environmental long-term development is a critical challenge for the sustainable food systems of this century. China’s accelerated food imports have far-reaching implications for global resource allocation and environmental development. Hence, detailed information regarding China’s food trade resource-environmental impacts is imperative for the design of effective policies that promote environmental mitigation and resource conservation. This study estimated the spatial transfers of virtual water trade (VWT), virtual land trade (VLT), and virtual GHG emission trade (VGT) embodied in China’s food trade. Findings indicate that the VWT, VLT, and VGT transfers embodied in China’s food trade increased by 10.4 %, 9.8 %, and 15.2 % annually. It is more important to mention that virtual water import (VWI) and virtual land import (VLI) saved 119.5 × 109m3 of global water resources and 29.5 Mha of land resources, respectively, but virtual GHG emission import (VGI) increased global 13 Mt CO2-eq GHG emissions. The divergent impacts of China’s food import on global food sustainability stem from variations in virtual water content, yields and emission intensities. Moreover, significant differences in sustainability scores were found among the top 15 importing countries, indicating that China’s food trade contributes to the deepening of global food system sustainability. This study highlights the need for a multifaceted approach that considers the various environmental impacts of food trade. China is therefore encouraged to fully integrate the benefits of resource and environmental conservation into its sustainable food trade strategy, restructuring the food system to ensure the long-term nourishment of its large population.

Keywords

Food trade / Virtual water / Virtual land / Virtual GHG emission / Sustainable development assessment / China

Cite this article

Download citation ▾
Xiang Wang, Xin Li, Libang Ma, Jing Bai, Li Li, Simin Yan. Impacts of China food trade on global resource and environment: A sustainable development assessment. Geography and Sustainability, 2025, 6(6): 100339 DOI:10.1016/j.geosus.2025.100339

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Xiang Wang: Writing – review & editing, Writing – original draft, Visualization, Validation, Supervision, Software, Resources, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. Xin Li: Visualization, Validation, Software, Resources, Investigation, Data curation. Libang Ma: Writing – review & editing, Project administration, Methodology, Formal analysis. Jing Bai: Visualization, Supervision, Software, Data curation. Li Li: Software, Resources. Simin Yan: Visualization, Software, Resources.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Thanks the journal’s editor and the reviewers for their professional comments on the article. This work was supported by the National Natural Science Foundation of China (Grant No. 42301235), Gansu Province Key Research and Development Program Project (Grant No. 22YF7FA124), Lanzhou Youth Science and Technology Talent Innovation Program (Grant No. 2023-QN-54), and Northwest Normal University Young Teachers’ Research Ability Enhancement Program Backbone Project (Grant No. NWNU-LKQN2023-11).

References

[1]

Adjemian, M. K., Smith, A., He, W., 2021. Estimating the market effect of a trade war: the case of soybean tariffs. Food Policy 105, 102152.

[2]

Ali, T., Huang, J., Wang, J., Xie, W., 2017. Global footprints of water and land resources through China’s food trade. Glob. Food Secur. 12, 139-145.

[3]

Auclair, O., Eustachio Colombo, P., Milner, J., Burgos, S. A., 2024. Partial substitutions of animal with plant protein foods in Canadian diets have synergies and trade-offs among nutrition, health and climate outcomes. Nat. Food 5(2), 148-157.

[4]

Barros, F. D. V., Lewis, K., Robertson, A. D., Pennington, R. T., Hill, T. C., Matthews, C., Rowland, L., 2023. Cost-effective restoration for carbon sequestration across Brazil’s biomes. Sci. Total Environ. 876, 162600.

[5]

Caro, D., Davis, S. J., Bastianoni, S., Caldeira, K., 2014. Global and regional trends in greenhouse gas emissions from livestock. Clim. Change 126(1), 203-216.

[6]

Caro, D., LoPresti, A., Davis, S. J., Bastianoni, S., Caldeira, K., 2014. CH4 and N2O emissions embodied in international trade of meat. Environ. Res. Lett. 9(11), 114005.

[7]

Carr, J. A., Odorico, P. D., Suweis, S., Seekell, D. A., 2016. What commodities and countries impact inequality in the global food system?. Environ. Res. Lett. 11(9), 095013.

[8]

Chapagain, A. K., Hoekstra, A. Y., Savenije, H. H. G., 2006. Water saving through international trade of agricultural products. Hydrol. Earth Syst. Sci. 10, 455-468.

[9]

Chaudhary, A., Kastner, T., 2016. Land use biodiversity impacts embodied in international food trade. Glob. Environ. Change 38, 195-204.

[10]

Chen, X., Cui, Z., Fan, M., Vitousek, P., Zhao, M., Ma, W., Zhang, F., 2014. Producing more grain with lower environmental costs. Nature 514(7523), 486-489.

[11]

Crippa, M., Solazzo, E., Guizzardi, D., Monforti-Ferrario, F., Tubiello, F. N., Leip, A., 2021. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2(3), 198-209.

[12]

Dalin, C., Konar, M., Hanasaki, N., Rinaldo, A., Rodriguez-Iturbe, I., 2012. Evolution of the global virtual water trade network. Proc. Natl. Acad. Sci. U.S.A. 109(16), 5989-5994.

[13]

Dalin, C., Hanasaki, N., Qiu, H., Mauzerall, D. L., Rodriguez-Iturbe, I., 2014. Water resources transfers through Chinese interprovincial and foreign food trade. Proc. Natl. Acad. Sci. U.S.A. 111(27), 9774-9779.

[14]

Dalin, C., Rodríguez-Iturbe, I., 2016. Environmental impacts of food trade via resource use and greenhouse gas emissions. Environ. Res. Lett. 11(3), 035012.

[15]

Delgado, C., 2023. The role of land as the central piece to sustainable food systems: lessons learned from Portugal national food-related policies. Geogr. Sustain. 4(1), 84-90.

[16]

Diaz-Bonilla, E., 2015. Lost in translation: the fractured conversation about trade and food security. FAO

[17]

Fader, M., Gerten, D., Thammer, M., Heinke, J., Lotze-Campen, H., Lucht, W., Cramer, W., 2011. Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade. Hydrol. Earth Syst. Sci. 15(5), 1641-1660.

[18]

Falkenmark, M., Rockstrom, J., 2004. Balancing Water for Humans and Nature. Earthscan, London

[19]

FAO 2024 FAO. FAOSTAT Online Database.

[20]

Gatto, A., Chepeliev, M., 2024. Global food loss and waste estimates show increasing nutritional and environmental pressures. Nat. Food 5(2), 136-147.

[21]

Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Shirakawa, N., Shen, Y., Tanaka, K., 2008. An integrated model for the assessment of global water resources—Part 1: model description and input meteorological forcing. Hydrol. Earth Syst. Sci. 12(4), 1007-1025.

[22]

Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., Tanaka, K., 2008. An integrated model for the assessment of global water resources—Part 2: applications and assessments. Hydrol. Earth Syst. Sci. 12(4), 1027-1037.

[23]

Hanasaki, N., Inuzuka, T., Kanae, S., Oki, T., 2010. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J. Hydrol. 384(3–4), 232-244.

[24]

He, P., Baiocchi, G., Hubacek, K., Feng, K., Yu, Y., 2018. The environmental impacts of rapidly changing diets and their nutritional quality in China. Nat. Sustain. 1(3), 122-127.

[25]

Hertwich, E. G., Wood, R., 2018. The growing importance of scope 3 greenhouse gas emissions from industry. Environ. Res. Lett. 13(10), 104013.

[26]

Hinrichs, C., 2003. The practice and politics of food system localization. J. Rural Stud. 19(1), 33-45.

[27]

Huang, H., Von Lampe, M., Van Tongeren, F., 2011. Climate change and trade in agriculture. Food Policy 36(1), S9-S13.

[28]

Jónsdóttir, S., Gísladóttir, G., 2023. Land use planning, sustainable food production and rural development: a literature analysis. Geogr. Sustain. 4(4), 39-403.

[29]

Kastner, T, K-Erb, H., Haberl, H., 2014. Rapid growth in agricultural trade: effects on global area efficiency and the role of management. Environ. Res. Lett. 9(3), 34015.

[30]

Kirwan, J., Maye, D., 2013. Food security framings within the UK and the integration of local food systems. J. Rural Stud. 29, 91-100.

[31]

Konar, M., Dalin, C., Suweis, S., Hanasaki, N., Rinaldo, A., Rodriguez-Iturbe, I., 2011. Water for food: the global virtual water trade network. Water Resour. Res. 47, W05520.

[32]

Lenzen, M., Moran, D., Kanemoto, K., Foran, B., Lobefaro, L., Geschke, A., 2012. International trade drives biodiversity threats in developing nations. Nature 486(7401), 109-112.

[33]

Li, X., Lu, Z., 2021. Quantitative measurement on urbanization development level in urban agglomerations: a case of JJJ urban agglomeration. Ecol. Ind. 133, 108375.

[34]

Lin, B., Guan, C., 2023. Assessing consumption-based carbon footprint of China’s food industry in global supply chain. Sustain. Prod. Consump. 35, 365-375.

[35]

Liu, B., Gu, W., Yang, Y., Lu, B., Bi, J., 2021. Promoting potato as staple food can reduce the carbon–land–water impacts of crops in China. Nat. Food 2(8), 570-577.

[36]

Lobell, D. B., Schlenker, W., Costa-Roberts, J., 2011. Climate trends and global crop production since 1980. Science 333(6042), 616-620.

[37]

Lu, J., Mao, X., Wang, M., Liu, Z., Song, P., 2020. Global and national environmental impacts of the US–China Trade War. Environ. Sci. Technol. 54(24), 16108-16118.

[38]

Lulovicova, A., Bouissou, S., 2024. Life cycle assessment as a prospective tool for sustainable agriculture and food planning at a local level. Geogr. Sustain. 5(2), 251-264.

[39]

Ma, L., Wang, F., Zhang, W., Ma, W., Velthof, G., Qin, W., Zhang, F., 2013. Environmental assessment of management options for nutrient flows in the food chain in China. Environ. Sci. Technol. 47(13), 7260-7268.

[40]

MacDonald, G. K., Brauman, K. A., Sun, S., Carlson, K. M., Cassidy, E. S., Gerber, J. S., West, P. C., 2015. Rethinking agricultural trade relationships in an era of globalization. Bioscience 65(3), 275e289.

[41]

Marin, F. R., Zanon, A. J., Monzon, J. P., Andrade, J. F., Silva, E. H., Richter, G. L., Grassini, P., 2022. Protecting the Amazon forest and reducing global warming via agricultural intensification. Nat. Sustain. 5(12), 1018-1026.

[42]

Meier, T., Christen, O., Semler, E., Jahreis, G., Voget-Kleschin, L., Schrode, A., Artmann, M., 2014. Balancing virtual land imports by a shift in the diet. Using a land balance approach to assess the sustainability of food consumption. Germany as an example. Appetite 74, 20-34.

[43]

Osei-Owusu, A. K., Wood, R., Bjelle, E. L., Caro, D., Thomsen, M., 2021. Understanding the trends in Denmark’s global food trade-related greenhouse gas and resource footprint. J. Clean. Prod. 313, 127785.

[44]

Pendrill, F., Persson, U. M., Godar, J., Kastner, T., Moran, D., Schmidt, S., Wood, R., 2019. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 56, 1-10.

[45]

Porkka, M., Guillaume, J. H. A., Siebert, S., Schaphoff, S., 2017. The use of food imports to overcome local limits to growth. Earths Future 5, 393-407.

[46]

Qiang, W., Liu, A., Cheng, S., Kastner, T., Xie, G., 2013. Agricultural trade and virtual land use: the case of China’s crop trade. Land Use Policy 33, 141-150.

[47]

Qiang, W., Niu, S., Liu, A., Kastner, T., Bie, Q., Wang, X., Cheng, S., 2020. Trends in global virtual land trade in relation to agricultural products. Land Use Policy 92, 104439.

[48]

Skaf, L., Franzese, P. P., Capone, R., Buonocore, E., 2021. Unfolding hidden environmental impacts of food waste: an assessment for fifteen countries of the world. J. Clean. Prod. 310, 127523.

[49]

Springmann, M., Kennard, H., Dalin, C., Freund, F., 2023. International food trade contributes to dietary risks and mortality at global, regional and national levels. Nat. Food 4(10), 886-893.

[50]

Sun, J., Mooney, H., Wu, W., Tang, H., Tong, Y., Xu, Z., Liu, J., 2018. Importing food damages domestic environment: evidence from global soybean trade. Proc. Natl. Acad. Sci. U.S.A. 115(21), 5415-5419.

[51]

Tregear, A., Aničić, Z., Arffni, F., Biasini, B., Bituh, M., Bojović, R., Brečić, R., Brennan, M., Colić Barić, I., Del Rio, D., Donati, M., Filipović, J., Giopp, F., Ilić, A., Lanza, G., Mattas, K., Quarrie, S., Rosi, A., Sayed, M., Scazzina, F., Tsakiridou, E., 2022. Routes to sustainability in public food procurement: an investigation of different models in primary school catering. J. Clean. Prod. 338, 130604.

[52]

Wang, X., Qiang, W., Liu, X., Yan, S., Qi, Y., Jia, Z., Liu, G., 2022. The spatiotemporal patterns and network characteristics of emissions embodied in the international trade of livestock products. J. Environ. Manage. 322, 116128.

[53]

Wang, X., Chang, X., Ma, L., Bai, J., Liang, M., Yan, S., 2023. Global and regional trends in greenhouse gas emissions from rice production, trade, and consumption. Environ. Impact Assess. Rev. 101, 107141.

[54]

Wang, Y., Deng, X., Wang, R., 2024. Greenhouse gas emissions of rice supply chain in China: from production to trade. Resour. Conserv. Recyel. 202, 107356.

[55]

Weinzettel, J., Steen-Olsen, K., Hertwich, E. G., Borucke, M., Galli, A., 2014. Ecological footprint of nations: comparison of process analysis, and standard and hybrid multi regional input-output analysis. Ecol. Econ. 101, 115-126.

[56]

Wiedmann, T., Lenzen, M., 2018. Environmental and social footprints of international trade. Nat. Geosci. 11(5), 314-321.

[57]

Wu, Y., Mao, X., Lu, J., Wang, M., Zhang, Q., Song, P., Gong, W., 2022. Dairy trade helps to alleviate global carbon emission pressure. Environ. Sci. Technol. 56(17), 12656-12666.

[58]

Villoria, N., Garrett, R., Gollnow, F., Carlson, K., 2022. Leakage does not fully offset soy supply-chain efforts to reduce deforestation in Brazil. Nat. Commun. 13(1), 5476.

[59]

Yao, H., Zang, C., Zuo, X., Xian, Y., Lu, Y., Huang, Y., Li, X., 2022. Tradeoff analysis of the pork supply and food security under the influence of African swine fever and the COVID-19 outbreak in China. Geogr. Sustain. 3(1), 32-43.

[60]

Yin, H., Xiao, R., Fei, X., Zhang, Z., Gao, Z., Wan, Y., Guo, Y., 2023. Analyzing “economy-society-environment” sustainability from the perspective of urban spatial structure: a case study of the Yangtze River delta urban agglomeration. Sust. Cities Soc. 96, 104691.

[61]

Zhao, X., Wu, X., Guan, C., Ma, R., Nielsen, C. P., Zhang, B., 2020. Linking agricultural GHG emissions to global trade network. Earths Future 8, e2019EF001361.

[62]

Zhao, H., Chang, J., Havlík, P., van Dijk, M., Valin, H., Janssens, C., Obersteiner, M., 2021. China’s future food demand and its implications for trade and environment. Nat. Sustain. 4(12), 1042-1051.

PDF

526

Accesses

0

Citation

Detail

Sections
Recommended

/