A 36-year geospatial analysis of urbanization dynamics and surface urban heat island effect: Case study of the Bangkok Metropolitan Region

Nattapong Puttanapong , Nithima Nuengjumnong , JoJinda SaeJung , Sitthisak Moukomla

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) : 100322

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) :100322 DOI: 10.1016/j.geosus.2025.100322
Research Article
review-article

A 36-year geospatial analysis of urbanization dynamics and surface urban heat island effect: Case study of the Bangkok Metropolitan Region

Author information +
History +
PDF

Abstract

This study examines the impact of urbanization on the Surface Urban Heat Island (SUHI) effect in the Bangkok Metropolitan Region (BMR) over a 36-year period, utilizing advanced machine learning techniques to assess changes in land use and land cover (LULC). The research addresses three key questions: (1) How have changes in LULC influenced the dynamics of the urban heat island (UHI) effect in the BMR? (2) What roles do green and blue infrastructure play in mitigating urban heat? (3) How effectively can machine learning models classify LULC changes and provide insights to support sustainable urban planning? The findings reveal a strong correlation between urban growth and increased land surface temperatures (LST), with parks and water bodies exhibiting lower LSTs, emphasizing the importance of green and blue infrastructure in mitigating urban heat. The SUHI effect, initially measured at 3 °C from 1988 to 1991, peaked at 4.8 °C between 2012 and 2019 before slightly declining to 4.1 °C in recent years due to urban greening initiatives. However, ongoing urban development continues to diminish green spaces and water bodies, underscoring the urgent need for sustainable urban planning. Economic factors, including the 1997 Asian Financial Crisis and land tax laws introduced in 2019, influenced land use patterns, further exacerbating the SUHI effect. The research highlights the necessity of integrated urban management and sustainable land use policies to enhance climate resilience in rapidly urbanizing regions like the BMR.

Keywords

Surface urban heat island (SUHI) / Urbanization / Machine learning

Cite this article

Download citation ▾
Nattapong Puttanapong, Nithima Nuengjumnong, JoJinda SaeJung, Sitthisak Moukomla. A 36-year geospatial analysis of urbanization dynamics and surface urban heat island effect: Case study of the Bangkok Metropolitan Region. Geography and Sustainability, 2025, 6(4): 100322 DOI:10.1016/j.geosus.2025.100322

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of generative AI and AI-assisted technologies in the writing process

During the preparation of this work, the authors used ChatGPT-4o to assist in improving the manuscript’s English language quality and to correct the syntax and structure of GEE. After employing this tool, the authors carefully reviewed and edited the content as necessary to ensure its accuracy, clarity, and adherence to scientific standards. The authors take full responsibility for the content of the publication and affirm that all insights, analyses, and conclusions drawn in this work are the result of their own intellectual and professional efforts.

CRediT authorship contribution statement

Nattapong Puttanapong: Writing – review & editing, Conceptualization. Nithima Nuengjumnong: Writing – review & editing. JoJinda SaeJung: Writing – review & editing. Sitthisak Moukomla: Writing – review & editing, Writing – original draft, Methodology, Formal analysis, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors express their sincere gratitude to the anonymous reviewers for their insightful comments and constructive suggestions, which have significantly improved the quality of this manuscript. We also extend our gratitude to the Research Unit in Geospatial Research and Analytics for Climate and Environment (GRACE Lab), Thammasat University, for their support and resources that made this study possible.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100322.

References

[1]

Aigbokhan, O. J., Pelemo, O. J., Ogoliegbune, O. M., Essien, N. E., Ekundayo, A. A., Adamu, S. I., 2022. Comparing machine learning algorithms in land use land cover classification of Landsat 8 (OLI) imagery. Asian Res. J. Math., 18 (3) , pp. 62-74. doi: 10.9734/arjom/2022/v18i330367.

[2]

Amindin, A, Pouyan, S, Pourghasemi, H. R., Yousefi, S, Tiefenbacher, J. P., 2021. Spatial and temporal analysis of urban heat island using Landsat satellite images. Environ. Sci. Pollut. Res., 28 , pp. 41439-41450. doi: 10.1007/s11356-021-13693-0.

[3]

Cao, J, Gong, H, Chen, B, Shi, M, Zhou, C, Lei, K, Yu, H, Sun, Y., 2021. Land Subsidence in Beijing’s Sub-Administrative Center and Its Relationship with Urban Expansion Inferred from Sentinel-1/2 Observations. Can. J. Remote Sens., 47 , pp. 802-817. doi: 10.1080/07038992.2021.1964944.

[4]

Chang, L, Cheng, L, Huang, C, Qin, S, Fu, C, Li, S., 2022. Extracting urban water bodies from Landsat imagery based on mNDWI and HSV transformation. Remote Sens., 14 (22) , p. 5785. doi: 10.3390/rs14225785.

[5]

Chang, Y, Xiao, J, Li, X, Weng, Q., 2023. Monitoring diurnal dynamics of surface urban heat island for urban agglomerations using ECOSTRESS land surface temperature observations. Sust. Cities Soc., 98 , Article 104833. doi: 10.1016/j.scs.2023.104833.

[6]

Degerli, B., 2022. Çetin. Evaluation from rural to urban scale for the effect of NDVI-NDBI indices on land surface temperature, in Samsun, Türkiye. Turk. J. Agric.-Food Sci. Technol., 10 , pp. 2446-2452. doi: 10.24925/turjaf.v10i12.2446-2452.5535.

[7]

Deliry, S. I., Avdan, Z. Y., Avdan, U., 2021. Extracting urban impervious surfaces from Sentinel-2 and Landsat-8 satellite data for urban planning and environmental management. Environ. Sci. Pollut. Res., 28 , pp. 6572-6586. doi: 10.1007/s11356-020-11007-4.

[8]

Dewan, A, Kiselev, G, Botje, D, Mahmud, G. I., Bhuian, M. H., Hassan, Q. K., 2021. Surface urban heat island intensity in five major cities of Bangladesh: patterns, drivers and trends. Sust. Cities Soc, 71 , Article 102926. doi: 10.1016/j.scs.2021.102926.

[9]

Dutta, D, Rahman, A, Paul, S. K., Kundu, A., 2019. Changing pattern of urban landscape and its effect on land surface temperature in and around Delhi. Environ. Monit. Assess., 191 (9) , p. 551. doi: 10.1007/s10661-019-7645-3.

[10]

Dutta, I, Das, A., 2020. Exploring the spatio-temporal pattern of regional heat island (RHI) in an urban agglomeration of secondary cities in Eastern India. Urban Clim., 34, 100679.

[11]

Feng, S, Fan, F., 2021. Impervious surface extraction based on different methods from multiple spatial resolution images: a comprehensive comparison. Int. J. Digit. Earth, 14 , pp. 1148-1174. doi: 10.1080/17538947.2021.1936227.

[12]

Garzón, J, Molina, I, Velasco, J, Calabia, A., 2021. A remote sensing approach for surface urban heat island modeling in a tropical colombian city using regression analysis and machine learning algorithms. Remote Sens., 13 (21) , p. 4256. doi: 10.3390/rs13214256.

[13]

Ghosh, S, Kumar, D, Kumari, R., 2022. 85 , Article 104060. doi: 10.1016/j.scs.2022.104060.

[14]

Glassman, J., 2001. Economic crisis in Asia: the case of Thailand. Econ. Geogr., 77 , pp. 122-147. doi: 10.1111/j.1944-8287.2001.tb00158.x.

[15]

Gong, P, Li, X, Zhang, W., 2019. 64 , pp. 756-763. doi: 10.1016/j.scib.2019.04.024.

[16]

Guerri, G, Crisci, A, Messeri, A, Congedo, L, Munafò, M, Morabito, M., 2021. Thermal summer diurnal hot-spot analysis: the role of local urban features layers. Remote Sens., 13 (3) , p. 538. doi: 10.3390/rs13030538.

[17]

Hidalgo-García, D, Arco-Díaz, J., 2022. Modeling the Surface Urban Heat Island (SUHI) to study of its relationship with variations in the thermal field and with the indices of land use in the metropolitan area of Granada (Spain). Sust. Cities Soc., 87 , Article 104166. doi: 10.1016/j.scs.2022.104166.

[18]

Hou, H, Su, H, Yao, C, Wang, Z. H., 2023. Spatiotemporal patterns of the impact of surface roughness and morphology on urban heat island. Sust. Cities Soc., 92 , Article 104513. doi: 10.1016/j.scs.2023.104513.

[19]

Hu, J, Yang, Y, Zhou, Y, Zhang, T, Ma, Z, Meng, X., 2022. Spatial patterns and temporal variations of footprint and intensity of surface urban heat island in 141 China cities. Sust. Cities Soc., 77 , Article 103585. doi: 10.1016/j.scs.2021.103585.

[20]

Iamtrakul, P., Padon, A., Chayphong, S., 2024. Quantifying the impact of urban growth on Urban Surface Heat Islands in the Bangkok Metropolitan Region, Thailand. Atmosphere 15 (1), 100. doi: 10.3390/atmos15010100.

[21]

Jamei, Y, Rajagopalan, P, Sun, Q. C., 2019. Spatial structure of surface urban heat island and its relationship with vegetation and built-up areas in Melbourne, Australia. Sci. Total Environ., 659 , pp. 1335-1351. doi: 10.1016/j.scitotenv.2018.12.308.

[22]

Junaid, M, Sun, J, Iqbal, A, Sohail, M, Zafar, S, Khan, A., 2023. Mapping LULC dynamics and its potential implication on forest cover in Malam Jabba Region with Landsat time series imagery and random forest classification. Sustainability, 15 (3) , p. 1858. doi: 10.3390/su15031858.

[23]

Kanchoochat, V., 2023. Siamese twin troubles: structural and regulatory transformations in unequal Thailand. Asian Econ. Policy Rev., 18 , pp. 47-68. doi: 10.1111/aepr.12400.

[24]

Keeratikasikorn, C, Bonafoni, S., 2018. Satellite images and Gaussian parameterization for an extensive analysis of urban heat Islands in Thailand. Remote Sens., 10 (5) , p. 665. doi: 10.3390/rs10050665.

[25]

Khamchiangta, D, Dhakal, S., 2021. Future urban expansion and local climate zone changes in relation to land surface temperature: case of Bangkok Metropolitan Administration, Thailand. Urban Clim., 37 , Article 100835. doi: 10.1016/j.uclim.2021.100835.

[26]

Kotharkar, R, Bagade, A., 2018. Evaluating urban heat island in the critical local climate zones of an Indian city. Landsc. Urban. Plan., 169 , pp. 92-104. doi: 10.1016/j.landurbplan.2017.08.009.

[27]

Kotharkar, R, Bagade, A, Singh, P. R., 2020. A systematic approach for urban heat island mitigation strategies in critical local climate zones of an Indian city. Urban Clim., 34 , Article 100701. doi: 10.1016/j.uclim.2020.100701.

[28]

Kuang, W, Zhang, S, Li, X, Lu, D., 2021. A 30 m resolution dataset of China’s urban impervious surface area and green space, 2000–2018. Earth. Syst. Sci. Data, 13 , pp. 63-82. doi: 10.5194/essd-13-63-2021.

[29]

Kudo, T, Kumagai, S., 2012. Two-Polar Growth Strategy in Myanmar: Seeking “High” and “Balanced” Development. IDE Disc.

[30]

Laonamsai, J, Julphunthong, P, Saprathet, T, Kimmany, B, Ganchanasuragit, T, Chomcheawchan, P, Tomun, N., 2023. Utilizing NDWI, MNDWI, SAVI, WRI, and AWEI for estimating erosion and deposition in Ping River in Thailand. Hydrology, 10 (3) , p. 70. doi: 10.3390/hydrology10030070.

[31]

Le, M. T., Bakaeva, N., 2023. A technique for generating preliminary satellite data to evaluate SUHI using cloud computing: a case study in Moscow, Russia. Remote Sens., 15 (13) , p. 3294. doi: 10.3390/rs15133294.

[32]

Li, C, Shao, Z, Zhang, L, Huang, X, Zhang, M., 2021. A comparative analysis of index-based methods for impervious surface mapping using multiseasonal Sentinel-2 satellite data. IEEE J. Sel. Top. Appl. Earth. Obs. Remote Sens., 14 , pp. 3682-3694. doi: 10.1109/JSTARS.2021.3067325.

[33]

Li, X, Gong, P., 2016. An “exclusion-inclusion” framework for extracting human settlements in rapidly developing regions of China from Landsat images. Remote Sens. Environ., 186 , pp. 286-296. doi: 10.1016/j.rse.2016.08.029.

[34]

Li, X, Wu, H, Ni, L, Zhang, Y, Jiang, X., 2023. New framework for land surface temperature and emissivity inversion based on hyperspectral thermal infrared data. Int. J. Remote Sens., 45 , pp. 7377-7394. doi: 10.1080/01431161.2023.2216855.

[35]

Liao, J., Tang, L., Shao, G., 2023. Coupling random forest, allometric scaling, and cellular automata to predict the evolution of LULC under various shared socioeconomic pathways. Remote Sens. 15 (8), 2142. doi: 10.3390/rs15082142.

[36]

Lin, C, Doyog, N. D., 2023. Challenges of retrieving LULC information in rural-forest mosaic landscapes using random forest technique. Forests, 14 (4) , p. 816. doi: 10.3390/f14040816.

[37]

Lodato, F, Colonna, N, Pennazza, G, Praticò, S, Santonico, M, Vollero, L, Pollino, M., 2023. Analysis of the spatiotemporal urban expansion of the Rome Coastline through GEE and RF algorithm, using Landsat imagery. ISPRS Int. J. Geo-Inf., 12 (4) , p. 141. doi: 10.3390/ijgi12040141.

[38]

Marks, D, Connell, J., 2023. Unequal and unjust: the political ecology of Bangkok’s increasing urban heat island. Urban Stud., 64 (15) , pp. 2887-2907. doi: 10.1177/00420980221140999.

[39]

Ming, Y, Liu, Y, Gu, J, Wang, J, Liu, X., 2023. Nonlinear effects of urban and industrial forms on surface urban heat island: evidence from 162 Chinese prefecture-level cities. Sust. Cities Soc., 89 , Article 104350. doi: 10.1016/j.scs.2022.104350.

[40]

Moazzam, M. F. U., Lee, B. G., 2024. Urbanization influenced SUHI of 41 megacities of the world using big geospatial data assisted with google earth engine. Sust. Cities Soc., 101 , Article 105095. doi: 10.1016/j.scs.2023.105095.

[41]

Morabito, M, Crisci, A, Guerri, G, Messeri, A, Congedo, L, Munafò, M., 2021. Surface urban heat islands in Italian metropolitan cities: tree cover and impervious surface influences. Sci. Total. Environ., 751 , Article 142334. doi: 10.1016/j.scitotenv.2020.142334.

[42]

Najafzadeh, F, Mohammadzadeh, A, Ghorbanian, A, Jamali, S., 2021. Spatial and temporal analysis of surface urban heat island and thermal comfort using Landsat satellite images between 1989 and 2019: a case study in tehran. Remote Sens., 13 (21) , p. 4469. doi: 10.3390/rs13214469.

[43]

Nguyen, C. T., Chidthaisong, A, Limsakul, A, Varnakovida, P, Ekkawatpanit, C, Diem, P. K., Diep, N. T. H., 2022. How do disparate urbanization and climate change imprint on urban thermal variations? A comparison between two dynamic cities in Southeast Asia. Sust. Cities Soc., 82 , Article 103882. doi: 10.1016/j.scs.2022.103882.

[44]

Nidhiprabha, B., 2017. The rise and fall of Thailand’s export-oriented industries. Asian Econ. Pap., 16 , pp. 128-150. doi: 10.1162/asep_a_00556.

[45]

Odintsov, S. L., Gladkikh, V. A., Kamardin, A. P., Nevzorova, I. V. 2023. Variance of air temperature in the atmospheric surface layer with temperature inversion. 29th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. SPIE, pp.989-995.

[46]

Oke, T. R., 2002. Boundary Layer Climates. Routledge

[47]

Orieschnig, C. A., Belaud, G, Venot, J. P., Massuel, S, Ogilvie, A., 2021. Input imagery, classifiers, and cloud computing: insights from multi-temporal LULC mapping in the Cambodian Mekong Delta. Eur. J. Remote Sens., 54 , pp. 398-416. doi: 10.1080/22797254.2021.1948356.

[48]

Ouma, Y, Nkwae, B, Moalafhi, D, Odirile, P, Parida, B, Anderson, G, Qi, J., 2022. Comparison of machine learning classifiers for multitemporal and multisensor mapping of urban LULC features. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 , pp. 681-689. doi: 10.5194/isprs-archives-XLIII-B3-2022-681-2022.

[49]

Palanisamy, P. A., Jain, K, Bonafoni, S., 2023. Machine learning classifier evaluation for different input combinations: a case study with Landsat 9 and Sentinel-2 data. Remote Sens., 15 (13) , p. 3241. doi: 10.3390/rs15133241.

[50]

Parvin, Most A, MdHaque, I, MdHossain, A, Bashar, A., 2023. Index-based change detection, spatial zoning and environmental criticality of urban land cover: a spatiotemporal study on Gazipur Sadar Upazila of Bangladesh. J. Geogr. Environ. Earth Sci. Int., 27 , pp. 145-163. doi: 10.9734/jgeesi/2023/v27i10722.

[51]

Patel, S, Indraganti, M, Jawarneh, R. N., 2024. Land surface temperature responses to land use dynamics in urban areas of Doha, Qatar. Sust. Cities Soc., 104 , Article 105273. doi: 10.1016/j.scs.2024.105273.

[52]

Pena Acosta, M, Vahdatikhaki, F, Santos, J, Dorée, A. G., 2023. A comparative analysis of surface and canopy layer urban heat island at the micro level using a data-driven approach. Sust. Cities Soc., 99 , Article 104944. doi: 10.1016/j.scs.2023.104944.

[53]

Peng, X, Zhou, Y, Fu, X, Xu, J., 2022. Study on the spatial-temporal pattern and evolution of surface urban heat island in 180 shrinking cities in China. Sust. Cities Soc., 84 , Article 104018. doi: 10.1016/j.scs.2022.104018.

[54]

Puttanapong, N., 2018. Monocentric growth and productivity spillover in Thailand. S. Keola (Ed.), Measuring Urbanization in ASEAN from Space. Institute of Developing Economies, Japan External Trade Organization (Bangkok Office), Bangkok, Thailand

[55]

Rahmawati, A. D., 2022. Vegetation-water-built up index combined: algorithm indices combination for characterization and distribution of mangrove forest through Google Earth Engine. CELEBES Agric., 3 , pp. 20-42. doi: 10.52045/jca.v3i1.298.

[56]

Raj, S, Paul, S. K., Chakraborty, A, Kuttippurath, J., 2020. Anthropogenic forcing exacerbating the urban heat islands in India. J. Environ. Manage., 257 , Article 110006. doi: 10.1016/j.jenvman.2019.110006.

[57]

Rashid, M. B., 2023. Monitoring of drainage system and waterlogging area in the human-induced Ganges-Brahmaputra tidal delta plain of Bangladesh using MNDWI index. Heliyon, 9 , Article e17412. doi: 10.1016/j.heliyon.2023.e17412.

[58]

Rinchumphu, D, Srivanit, M, Iamchuen, N, Aryupong, C., 2024. Exploring summer variations of driving factors affecting land use zoning based on the surface urban heat island in Chiang Mai, Thailand. ISPRS Int. J. Geo-Inf., 13 , p. 228. doi: 10.3390/ijgi13070228.

[59]

Roy, D. P., Kovalskyy, V, Zhang, H. K., Vermote, E. F., Yan, L, Kumar, S. S., Egorov, A., 2016. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ., 185 , pp. 57-70. doi: 10.1016/j.rse.2015.12.024.

[60]

Sarif, M. O., Rimal, B, Stork, N. E., 2020. Assessment of changes in land use/land cover and land surface temperatures and their impact on surface urban heat island phenomena in the Kathmandu Valley (1988–2018). ISPRS Int. J. Geo-Inf., 9 (12) , p. 726. doi: 10.3390/ijgi9120726.

[61]

Sekertekin, A, Zadbagher, E., 2021. Simulation of future land surface temperature distribution and evaluating surface urban heat island based on impervious surface area. Ecol. Indic., 122 , Article 107230. doi: 10.1016/j.ecolind.2020.107230.

[62]

Sharma, R, Pradhan, L, Kumari, M, Bhattacharya, P., 2021. Assessing urban heat islands and thermal comfort in Noida City using geospatial technology. Urban Clim., 35 , Article 100751. doi: 10.1016/j.uclim.2020.100751.

[63]

Short, J. R., Pinet-Peralta, L. M., 2009. Pinet-Peralta. Urban primacy: reopening the debate. Geogr. Compass., 3 (3) , pp. 1245-1266. doi: 10.1111/j.1749-8198.2009.00234.x.

[64]

Silva, J. S., Silva, R. M. D., Santos, C. A. G., 2018. Spatiotemporal impact of land use/land cover changes on urban heat islands: a case study of Paço do Lumiar, Brazil. Build. Environ., 136 , pp. 279-292. doi: 10.1016/j.buildenv.2018.03.041.

[65]

Somokanta, T., 2022. Urban climate change experiments in Gandhinagar, India. Urban Clim., 43 , Article 101149. doi: 10.1016/j.uclim.2022.101149.

[66]

Srivastava, A, Bharadwaj, S, Dubey, R, Sharma, V. B., Biswas, S., 2022. Mapping vegetation and measuring the performance of machine learning algorithm in LULC classification in the large area using Sentinel-2 and Landsat-8 datasets of Dehradun as a test case. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. International Society for Photogrammetry and Remote Sensing , pp. 529-535. doi: 10.5194/isprs-archives-XLIII-B3-2022-529-2022.

[67]

Sultana, S, Satyanarayana, A. N. V., 2020. Assessment of urbanisation and urban heat island intensities using Landsat imageries during 2000–2018 over a sub-tropical Indian City. Sust. Cities Soc., 52 , Article 101846. doi: 10.1016/j.scs.2019.101846.

[68]

Temsumrit, N, Sriket, H., 2023. The structural transformation of Thailand: the role of policy distortion. Asian Dev. Rev., 40 , pp. 203-245. doi: 10.1142/S0116110523500087.

[69]

Thanvisitthpon, N, Nakburee, A, Khamchiangta, D, Saguansap, V., 2023. Climate change-induced urban heat island trend projection and land surface temperature: a case study of Thailand’s Bangkok metropolitan. Urban Clim., 49 , Article 101484. doi: 10.1016/j.uclim.2023.101484.

[70]

Tian, P, Li, J, Cao, L, Pu, R, Wang, Z, Zhang, H, Chen, H, Gong, H., 2021. Assessing spatiotemporal characteristics of urban heat islands from the perspective of an urban expansion and green infrastructure. Sust. Cities Soc., 74 , Article 103208. doi: 10.1016/j.scs.2021.103208.

[71]

Wan, J, Zhu, M, Ding, W., 2021. 2021 , Article 9917145. doi: 10.1155/2021/9917145.

[72]

Wang, Y, Hu, Y, Niu, X, Yan, H, Zhen, L., 2022. Land use/cover change and its driving mechanism in Thailand from 2000 to 2020. Land, 11 (12) , p. 2253. doi: 10.3390/land11122253.

[73]

Wang, Y, Xie, X, Zhao, X, Liang, S, Zhu, B, Tursun, A, Jiang, F, Liu, Y, Zhang, X., 2023. Four-decade response of land surface temperature to urban expansion in Beijing. Agric. For. Meteorol., 341 , Article 109653. doi: 10.1016/j.agrformet.2023.109653.

[74]

Warr, P.G., Suphannachart, W., 2020. Benign Growth: Structural Transformation and Inclusive Growth in Thailand. WIDER Working Paper.

[75]

Welegedara, N. P. Y., Agrawal, S. K., Lotfi, G., 2023. Exploring spatiotemporal changes of the urban heat island effect in high-latitude cities at a neighbourhood level: a case of Edmonton, Canada. Sust. Cities Soc., 90 , Article 104403. doi: 10.1016/j.scs.2023.104403.

[76]

Wongsai, S, Wanishsakpong, W, Suwanprasit, C, Wongsai, N., 2024. Spatial autoregressive regression analysis of surface urban heat island intensity in the tropical industrial city of Rayong, Thailand. Urban Clim., 55 , Article 101980. doi: 10.1016/j.uclim.2024.101980.

[77]

World Bank 2024. Thailand Economic Monitor: Unlocking the Growth Potential of Secondary Cities. World Bank, Bangkok

[78]

World Bank 2022. Thailand Rural Income Diagnostic: Challenges and Opportunities for Rural Farmers. World Bank, Bangkok

[79]

Xu, X, Pei, H, Wang, C, Xu, Q, Xie, H, Jin, Y, Feng, Y, Tong, X, Xiao, C., 2023. Long-term analysis of the urban heat island effect using multisource Landsat images considering inter-class differences in land surface temperature products. Sci. Total. Environ., 858 , Article 159777. doi: 10.1016/j.scitotenv.2022.159777.

[80]

Yang, C, Zhao, S., 2024. Synergies or trade-offs between surface urban heat island and hot extreme: distinct responses in urban environments. Sust. Cities Soc., 101 , Article 105093. doi: 10.1016/j.scs.2023.105093.

[81]

Zhang, J, Du, J, Fang, S, Sheng, Z, Zhang, Y, Sun, B, Mao, J, Li, L., 2023. Dynamic changes, spatiotemporal differences, and ecological effects of impervious surfaces in the Yellow River Basin, 1986–2020. Remote Sens., 15 (1) , p. 268. doi: 10.3390/rs15010268.

PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

/