Research framework for integrated geography: Composite driving–system evolution–coupling mechanism–synergistic regulation

Wenwu Zhao , Zizhao Ni , Caichun Yin , Yanxu Liu , Paulo Pereira

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) : 100321

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) :100321 DOI: 10.1016/j.geosus.2025.100321
Editorial
review-article

Research framework for integrated geography: Composite driving–system evolution–coupling mechanism–synergistic regulation

Author information +
History +
PDF

Abstract

Amid ongoing global environmental change and the critical pursuit of sustainable development, human–environment systems are exhibiting increasingly complex dynamic evolutions and spatial relationships, underscoring an urgent need for innovative research frameworks. Integrated geography synthesizes physical geography, human geography, and geographic information science, providing key frameworks for understanding complex human–environment systems. This editorial proposes an emerging research framework for integrated geography—“Composite driving–System evolution–Coupling mechanism–Synergistic regulation (CSCS)”—based on key issues such as climate change, biodiversity loss, resource scarcity, and social–ecological interactions, which have been highlighted in both recent critical literature on human–environment systems and UN assessment reports. The framework starts with diverse composite driving forces, extends to the evolution of human–environment system structures, processes, and functions that these drivers induce, explores couplings within human–environment systems, and calls for regulation aimed at sustainable development in synergies. Major research frontiers include understanding the cascading “evolution–coupling” effects of shocks; measuring system resilience, thresholds, and safe and just operating space boundaries; clarifying linkage mechanisms across scales; and achieving synergistic outcomes for multi-objective sustainability. This framework will help promote the interdisciplinary integration and development of integrated geography, and provide geographical solutions for the global sustainable development agenda.

Keywords

Integrated geography / Driving / Evolution / Coupling / Regulation / Human–environment system

Cite this article

Download citation ▾
Wenwu Zhao, Zizhao Ni, Caichun Yin, Yanxu Liu, Paulo Pereira. Research framework for integrated geography: Composite driving–system evolution–coupling mechanism–synergistic regulation. Geography and Sustainability, 2025, 6(3): 100321 DOI:10.1016/j.geosus.2025.100321

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Wenwu Zhao: Conceptualization, Methodology, Writing – original draft, Writing – review & editing. Zizhao Ni: Visualization, Writing – original draft, Writing – review & editing. Caichun Yin: Writing – review & editing. Yanxu Liu: Writing – review & editing. Paulo Pereira: Writing – review & editing.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Wenwu Zhao and Paulo Pereira are Associate Editors for this journal and were not involved in the editorial review or the decision to publish this article.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants No. W2412144, 42271292), the 111 project, and the Fundamental Research Funds for the Central Universities of China. The authors gratefully acknowledge the constructive suggestions provided by Professor Bojie Fu from the Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

Supplementary materials

A Chinese language version of this editorial can be found as supplementary material in the online version, at doi:10.1016/j.geosus.2025.100321.

References

[1]

Abbass, K, Qasim, M. Z., Song, H, Murshed, M, Mahmood, H, Younis, I., 2022. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res., 29 (28) , pp. 42539-42559. doi: 10.1007/s11356-022-19718-6.

[2]

Anderson, K, Ryan, B, Sonntag, W, Kavvada, A, Friedl, L., 2017. Earth observation in service of the 2030 agenda for sustainable development. Geo-Spat. Inf. Sci., 20 (2) , pp. 77-96. doi: 10.1080/10095020.2017.1333230.

[3]

Andersen, T, Carstensen, J, Hernandez-Garcia, E, Duarte, C. M., 2009. Ecological thresholds and regime shifts: approaches to identification. Trends Ecol. Evol., 24 (1) , pp. 49-57. doi: 10.1016/j.tree.2008.07.014.

[4]

Basu, T, Das, A, Pereira, P., 2023. 4 (2) , pp. 150-160. doi: 10.1016/j.geosus.2023.03.002.

[5]

Basu, T., Das, A., Pereira, P., 2023. Exploring the drivers of urban expansion in a medium-class urban agglomeration in India using the remote sensing techniques and geographically weighted models. Geogr. Sustain. 4 (2), 150–160. doi: 10.1016/j.geosus.2023.03.002.

[6]

Berdugo, M, Delgado-Baquerizo, M, Soliveres, S, Hernandez-Clemente, R, Zhao, Y, Gaitan, J. J., Gross, N, Saiz, H, Maire, V, Lehman, A, Rillig, M. C., Sole, R. V., Maestre, F. T., 2020. Global ecosystem thresholds driven by aridity. Science, 367 (2020), pp. 787-790. doi: 10.1126/science.aay5958.

[7]

Bicudo da Silva, R. F., Batistella, M, Dou, Y, Moran, E, Torres, S. M., Liu, J., 2017. The Sino-Brazilian telecoupled soybean system and cascading effects for the exporting country. Land, 6 (3) , p. 53. doi: 10.3390/land6030053.

[8]

Boillat, S, J-Gerber, D, Oberlack, C, Zaehringer, J. G., Speranza, C. I., Rist, S., 2018. Distant interactions, power, and environmental justice in protected area governance: a telecoupling perspective. Sustainability, 10 (11) , p. 3954. doi: 10.3390/su10113954.

[9]

Cao, M, Chang, L, Ma, S, Zhao, Z, Wu, K, Hu, X, Gu, Q, Lu, G, Chen, M., 2022. Multi-scenario simulation of land use for Sustainable Development Goals. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 15 , pp. 2119-2127. doi: 10.1109/JSTARS.2022.3152904.

[10]

Carpenter, S. R., Cole, J. J., Pace, M. L., Batt, R, Brock, W. A., Cline, T, Coloso, J, Hodgson, J. R., Kitchell, J. F., Seekell, D. A., Smith, L, Weidel, B., 2011. Early warnings of regime shifts: a whole-ecosystem experiment. Science, 332 (2011), pp. 1079-1082. doi: 10.1126/science.1203672.

[11]

Clement, S, Jozaei, J, Mitchell, M, Allen, C, Garmestani, A., 2024. How resilience is framed matters for governance of coastal social-ecological systems. Environ. Policy Gov., 34 (1) , pp. 65-76. doi: 10.1002/eet.2056.

[12]

Cochran, F, Daniel, J, Jackson, L, Neale, A., 2020. Earth observation-based ecosystem services indicators for national and subnational reporting of the Sustainable Development Goals. Remote Sens. Environ., 244 , Article 111796. doi: 10.1016/j.rse.2020.111796.

[13]

Dearing, J. A., Wang, R, Zhang, K, Dyke, J. G., Haberl, H, Hossain, M. S., Langdon, P. G., Lenton, T. M., Raworth, K, Brown, S, Carstensen, J, Cole, M. J., Cornell, S. E., Dawson, T. P., Doncaster, C. P., Eigenbrod, F, Floerke, M, Jeffers, E, Mackay, A. W., Nykvist, B, Poppy, G. M., 2014. Safe and just operating spaces for regional social-ecological systems. Glob. Environ. Change-Human Policy Dimens., 28 , pp. 227-238. doi: 10.1016/j.gloenvcha.2014.06.012.

[14]

deYoung, B, Barange, M, Beaugrand, G, Harris, R, Perry, R. I., Scheffer, M, Werner, F., 2008. Regime shifts in marine ecosystems: detection, prediction and management. Trends Ecol. Evol., 23 (7) , pp. 402-409. doi: 10.1016/j.tree.2008.03.008.

[15]

Ellis, E. C., Malhi, Y, Ritchie, H, Montana, J, Díaz, S, Obura, D, Clayton, S, Leach, M, Pereira, L, Marris, E, Muthukrishna, M, Fu, B, Frankopan, P, Grace, M. K., Barzin, S, Watene, K, Depsky, N, Pasanen, J, Conceição, P., 2025. An aspirational approach to planetary futures. Nature accepted.

[16]

Evans, N. M., Davis, M. A., 2019. Theorising human impacts into ecological restoration is not a slippery slope, but a toehold for reaching social-ecological resilience: a counter-response to McDonald et al. . Restor. Ecol., 27 (4) (2019), pp. 726-729. doi: 10.1111/rec.12946.

[17]

Fan, J., 2022. A century of integrated research on the human-environment system in Chinese human geography. Prog. Hum. Geogr., 46 (4) , pp. 988-1008. doi: 10.1177/03091325221085594.

[18]

Fang, B, Tan, Y, Li, C, Cao, Y, Liu, J, P-Schweizer, J, Shi, H, Zhou, B, Chen, H, Hu, Z., 2016. Energy sustainability under the framework of telecoupling. Energy, 106 , pp. 253-259. doi: 10.1016/j.energy.2016.03.055.

[19]

Felipe-Lucia, M. R., 2021. Felipe-Lucia. Modelling dynamic ecosystem services. Nat. Sustain., 4 (11) , pp. 928-929. doi: 10.1038/s41893-021-00765-9.

[20]

Feng, Q, Zhao, W, Duan, B, Hu, X, Cherubini, F., 2021. Coupling trade-offs and supply-demand of ecosystem services (ES): a new opportunity for ES management. Geogr. Sustain., 2 (4) , pp. 275-280. doi: 10.1016/j.geosus.2021.11.002.

[21]

Fisher, J. A., Patenaude, G, Meir, P, Nightingale, A. J., Rounsevell, M. D. A., Williams, M, Woodhouse, I. H., 2013. Strengthening conceptual foundations: analysing frameworks for ecosystem services and poverty alleviation research. Glob. Environ. Change-Human Policy Dimens., 23 (5) , pp. 1098-1111. doi: 10.1016/j.gloenvcha.2013.04.002.

[22]

Folke, C, Carpenter, S, Walker, B, Scheffer, M, Elmqvist, T, Gunderson, L, Holling, C., 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst., 35 , pp. 557-581. doi: 10.1146/annurev.ecolsys.35.021103.105711.

[23]

Franzke, C. L. E., Ciullo, A, Gilmore, E. A., Matias, D. M., Nagabhatla, N, Orlov, A, Paterson, S. K., Scheffran, J, Sillmann, J., 2022. Perspectives on tipping points in integrated models of the natural and human earth system: cascading effects and telecoupling. Environ. Res. Lett., 17 (1) , Article 015004. doi: 10.1088/1748-9326/ac42fd.

[24]

Friis, C, Nielsen, J. O., 2017. Land-use change in a telecoupled world: the relevance and applicability of the telecoupling framework in the case of banana plantation expansion in Laos. Ecol. Soc., 22 (4) , p. 30. doi: 10.5751/ES-09480-220430.

[25]

Fu, B, Liu, Y, Zhao, W, Wu, J., 2025. The emerging “pattern-process-service-sustainability” paradigm in landscape ecology. Landsc. Ecol., 40 (3) , p. 54. doi: 10.1007/s10980-025-02063-7.

[26]

Fu, B, Meadows, M. E., Zhao, W., 2022. Geography in the anthropocene: transforming our world for sustainable development. Geogr. Sustain., 3 (1) , pp. 1-6. doi: 10.1016/j.geosus.2021.12.004.

[27]

Fuldauer, L. I., Adshead, D, Thacker, S, Gall, S, Hall, J. W., 2022. Evaluating the benefits of national adaptation to reduce climate risks and contribute to the Sustainable Development Goals. Glob. Environ. Change, 76 , Article 102575. doi: 10.1016/j.gloenvcha.2022.102575.

[28]

Fuldauer, L. I., Thacker, S, Hall, J. W., 2021. Informing national adaptation for sustainable development through spatial systems modelling. Glob. Environ. Change, 71 , Article 102396. doi: 10.1016/j.gloenvcha.2021.102396.

[29]

Gilarranz, L. J., Narwani, A, Odermatt, D, Siber, R, Dakos, V., 2022. Regime shifts, trends, and variability of lake productivity at a global scale. Proc. Natl. Acad. Sci. U.S.A., 119 (35) , Article e2116413119. doi: 10.1073/pnas.2116413119.

[30]

Goodwin, S, Olazabal, M, Castro, A. J., Pascual, U., 2023. Global mapping of urban nature-based solutions for climate change adaptation. Nat. Sustain., 6 (4) , pp. 458-469. doi: 10.1038/s41893-022-01036-x.

[31]

Gregory, K., Gurnell, A., Petts, G., 2002. Restructuring physical geography. Trans. Inst. Br. Geogr. 27 (2), 136–154. doi: 10.1111/1475-5661.00046.

[32]

Greve, P, Kahil, T, Mochizuki, J, Schinko, T, Satoh, Y, Burek, P, Fischer, G, Tramberend, S, Burtscher, R, Langan, S, Wada, Y., 2018. Global assessment of water challenges under uncertainty in water scarcity projections. Nat. Sustain., 1 (9) , pp. 486-494. doi: 10.1038/s41893-018-0134-9.

[33]

Han, D., Yu, D., Qiu, J., 2023. Assessing coupling interactions in a safe and just operating space for regional sustainability. Nat. Commun. 14 (1), 1369. doi: 10.1038/s41467-023-37073-z.

[34]

Hasegawa, T, Sakurai, G, Fujimori, S, Takahashi, K, Hijioka, Y, Masui, T., 2021. Extreme climate events increase risk of global food insecurity and adaptation needs. Nat. Food, 2 (8) , pp. 587-595. doi: 10.1038/s43016-021-00335-4.

[35]

He, R, Zhu, D, Chen, X, Cao, Y, Chen, Y, Wang, X., 2019. How the trade barrier changes environmental costs of agricultural production: an implication derived from China’s demand for soybean caused by the US–China trade war. J. Clean. Prod., 227 , pp. 578-588. doi: 10.1016/j.jclepro.2019.04.192.

[36]

Herrfahrdt-Pahle, E, Schluter, M, Olsson, P, Folke, C, Gelcich, S, Pahl-Wostl, C., 2020. Sustainability transformations: socio-political shocks as opportunities for governance transitions. Glob. Environ. Change, 63 , Article 102097. doi: 10.1016/j.gloenvcha.2020.102097.

[37]

Higuera, P. E., Cook, M. C., Balch, J. K., Stavros, E. N., Mahood, A. L., St Denis, L. A., 2023. Shifting social-ecological fire regimes explain increasing structure loss from western wildfires. PNAS Nexus, 2 (3) , p. pgad005. doi: 10.1093/pnasnexus/pgad005.

[38]

Hoang, N. T., Kanemoto, K., 2021. Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nat. Ecol. Evol., 5 (6) , pp. 845-853. doi: 10.1038/s41559-021-01417-z.

[39]

Hobbs, W, Spence, P, Meyer, A, Schroeter, S, Fraser, A. D., Reid, P, Tian, T. R., Wang, Z, Liniger, G, Doddridge, E. W., Boyd, P. W., 2024. Observational evidence for a regime shift in summer antarctic sea ice. J. Clim., 37 (7) , pp. 2263-2275. doi: 10.1175/JCLI-D-23-0479.1.

[40]

Hughes, T. P., Carpenter, S, Rockstrom, J, Scheffer, M, Walker, B., 2013. Multiscale regime shifts and planetary boundaries. Trends Ecol. Evol., 28 (7) , pp. 389-395. doi: 10.1016/j.tree.2013.05.019.

[41]

Jägermeyr, J, Müller, C, Ruane, A, Elliott, J, Balkovic, J, Castillo, O, Faye, B, Foster, I, Folberth, C, Franke, J, Fuchs, K, Guarin, J, Heinke, J, Hoogenboom, G, Iizumi, T, Jain, A, Kelly, D, Khabarov, N, Lange, S, T-Lin, S, Liu, W, Mialyk, O, Minoli, S, Moyer, E. J., Okada, M, Phillips, M, Porter, C, Rabin, S. S., Scheer, C, Schneider, J. M., Schyns, J. F., Skalsky, R, Smerald, A, Stella, T, Stephens, H, Webber, H, Zabel, F, Rosenzweig, C., 2021. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food, 2 (11) , pp. 875-885. doi: 10.1038/s43016-021-00400-y.

[42]

Kinzig, A. P., Ryan, P, Etienne, M, Allison, H, Elmqvist, T, Walker, B. H., 2006. Resilience and regime shifts: assessing cascading effects. Ecol. Soc., 11 (1) , p. 20. doi: 10.5751/ES-01678-110120.

[43]

Kuruppu, N, Liverman, D., 2011. Mental preparation for climate adaptation: the role of cognition and culture in enhancing adaptive capacity of water management in Kiribati. Glob. Environ. Change, 21 (2) , pp. 657-669. doi: 10.1016/j.gloenvcha.2010.12.002.

[44]

Laber, M, Klimek, P, Bruckner, M, Yang, L, Thurner, S., 2023. Shock propagation from the Russia–Ukraine conflict on international multilayer food production network determines global food availability. Nat. Food, 4 (6) , pp. 508-517. doi: 10.1038/s43016-023-00771-4.

[45]

Lenton, T. M., 2011. Early warning of climate tipping points. Nat. Clim. Change, 1 (4) , pp. 201-209. doi: 10.1038/NCLIMATE1143.

[46]

Lenton, T. M., Rockstroem, J, Gaffney, O, Rahmstorf, S, Richardson, K, Steffen, W, Schellnhuber, H. J., 2019. Climate tipping points—too risky to bet against. Nature, 575 (2019), pp. 592-595. doi: 10.1038/d41586-019-03595-0.

[47]

Lewis, S. L., Maslin, M. A., 2015. Defining the anthropocene. Nature, 519 (2015), pp. 171-180. doi: 10.1038/nature14258.

[48]

Li, G, Jiang, C, Gao, Y, Du, J., 2022. Natural driving mechanism and trade-off and synergy analysis of the spatiotemporal dynamics of multiple typical ecosystem services in northeast Qinghai-Tibet Plateau. J. Clean. Prod., 374 , Article 134075. doi: 10.1016/j.jclepro.2022.134075.

[49]

Li, X, Jiang, C, Wang, Y, Liu, J, Wang, R, Zhao, Y, Zhang, J, Zhang, H, Wang, B, Xiao, Y., 2024. Moving forward from escaping the poverty trap in China’s greenest regions: examining four decades of socioecological evolution to re-orient sustainable development policies. Appl. Geogr., 170 , Article 103348. doi: 10.1016/j.apgeog.2024.103348.

[50]

Li, L, Fassnacht, F. E., Burgi, M., 2021. Using a landscape ecological perspective to analyse regime shifts in social-ecological systems: a case study on grassland degradation of the Tibetan Plateau. Landsc. Ecol., 36 (8) , pp. 2277-2293. doi: 10.1007/s10980-021-01191-0.

[51]

Liang, Y., Hashimoto, S., Liu, L., 2021. Integrated assessment of land-use/land-cover dynamics on carbon storage services in the Loess Plateau of China from 1995 to 2050. Ecol. Indic. 120, 106939. doi: 10.1016/j.ecolind.2020.106939.

[52]

Liao, C, Qiu, J, Chen, B, Chen, D, Fu, B, Georgescu, M, He, C, Jenerette, G. D., Li, X, Li, X, Li, X, Qiuying, B, Shi, P, Wu, J., 2020. Advancing landscape sustainability science: theoretical foundation and synergies with innovations in methodology, design, and application. Landsc. Ecol., 35 (1) , pp. 1-9. doi: 10.1007/s10980-020-00967-0.

[53]

Ling, S. D., Scheibling, R. E., Rassweiler, A, Johnson, C. R., Shears, N, Connell, S. D., Salomon, A. K., Norderhaug, K. M., Perez-Matus, A, Hernandez, J. C., Clemente, S, Blamey, L. K., Hereu, B, Ballesteros, E, Sala, E, Garrabou, J, Cebrian, E, Zabala, M, Fujita, D, Johnson, L. E., 2015. Global regime shift dynamics of catastrophic sea urchin overgrazing. Philos. Trans. R. Soc. B-Biol. Sci., 370 (2015), pp. 1-10. doi: 10.1098/rstb.2013.0269.

[54]

Liu, J., 2017. Integration across a metacoupled world. Ecol. Soc., 22 (4) , p. 29. doi: 10.5751/ES-09830-220429.

[55]

Liu, J., 2023. Leveraging the metacoupling framework for sustainability science and global sustainable development. Natl. Sci. Rev., 10 (7) , p. nwad090. doi: 10.1093/nsr/nwad090.

[56]

Liu, J, Hull, V, Batistella, M, DeFries, R, Dietz, T, Fu, F, Hertel, T. W., Izaurralde, R. C., Lambin, E. F., Li, S, Martinelli, L. A., McConnell, W. J., Moran, E. F., Naylor, R, Ouyang, Z, Polenske, K. R., Reenberg, A, Rocha, G, de, M, Simmons, C. S., Verburg, P. H., Vitousek, P. M., Zhang, F, Zhu, C., 2013. Framing sustainability in a telecoupled world. Ecol. Soc., 18 (2) , p. 26. doi: 10.5751/ES-05873-180226.

[57]

Liu, J., Yang, W., Li, S., 2016. Framing ecosystem services in the telecoupled anthropocene. Front. Ecol. Environ. 14 (1), 27–36. doi: 10.1002/16-0188.1.

[58]

Liu, J, Zhang, M, Xia, Y, Zheng, H, Chen, C., 2022. Using agent-based modeling to assess multiple strategy options and trade-offs for the sustainable urbanisation of cultural landscapes: a case in Nansha, China. Landsc. Urban Plan., 228 , Article 104555. doi: 10.1016/j.landurbplan.2022.104555.

[59]

Major, J. J., Spicer, K. R., Mosbrucker, A. R., 2021. Effective hydrological events in an evolving mid-latitude mountain river system following cataclysmic disturbance—a saga of multiple influences. Water Resour. Res., 57 (2) , Article e2019WR026851. doi: 10.1029/2019WR026851.

[60]

Milner, A. M., Robertson, A. L., McDermott, M. J., Klaar, M. J., Brown, L. E., 2013. Major flood disturbance alters river ecosystem evolution. Nat. Clim. Change, 3 (2) , pp. 137-141. doi: 10.1038/NCLIMATE1665.

[61]

Nerini, F. F., Sovacool, B, Hughes, N, Cozzi, L, Cosgrave, E, Howells, M, Tavoni, M, Tomei, J, Zerriffi, H, Milligan, B., 2019. Connecting climate action with other Sustainable Development Goals. Nat. Sustain., 2 (8) , pp. 674-680. doi: 10.1038/s41893-019-0334-y.

[62]

Ni, Z, Zhao, W, Wang, J, Pereira, P., 2025. Resilience reemerged in sustainable development goals: a perspective on easing COVID-19 restrictions in China. Appl. Geogr., 178 , Article 103573. doi: 10.1016/j.apgeog.2025.103573.

[63]

Olsson, P., Folke, C., Berkes, F., 2004. Adaptive comanagement for building resilience in social-ecological systems. Environ. Manage. 34 (1), 75–90. doi: 10.1007/s00267-003-0101-7.

[64]

Pattison, W. D., 1964. The four traditions of geography. J. Geogr., 63 (5) , pp. 211-216. doi: 10.1080/00221346408985265.

[65]

Pelone, B, Sanchez, P., 2025. Analysing flooding dynamics and resilience of a social-ecological system. Int. J. Built Environ. Sustain., 12 (1) , pp. 123-133. doi: 10.11113/ijbes.v12.n1.1315.

[66]

Peng, J, Liu, X, Gu, T, Fu, B., 2024. Developing integrated geography to support the “community” visions. Sci. Bull., 69 (6) , pp. 727-731. doi: 10.1016/j.scib.2024.01.003.

[67]

Pitman, A., 2005. On the role of geography in Earth system science. Geoforum, 36 (2) , pp. 137-148. doi: 10.1016/j.geoforum.2004.11.008.

[68]

Quirion, B. R., Domke, G. M., Walters, B. F., Lovett, G. M., Fargione, J. E., Greenwood, L, Serbesoff-King, K, Randall, J. M., Fei, S., 2021. Insect and disease disturbances correlate with reduced carbon sequestration in forests of the contiguous united states. Front. For. Glob. Change, 4 , Article 716582. doi: 10.3389/ffgc.2021.716582.

[69]

Raworth, K., 2012. A Safe and Just Space for Humanity: Can We Live within the Doughnut?. Oxfam Disscussion Paper

[70]

Rocha, J. C., Peterson, G, Bodin, Ö, Levin, S., 2018. Cascading regime shifts within and across scales. Science, 362 (2018), pp. 1379-1383. doi: 10.1126/science.aat7850.

[71]

Rockstrom, J, Steffen, W, Noone, K, Persson, A, Chapin III, F. S., Lambin, E, Lenton, T. M., Scheffer, M, Folke, C, Schellnhuber, H. J., Nykvist, B, de Wit, C. A., Hughes, T, van der Leeuw, S, Rodhe, H, Sorlin, S, Snyder, P. K., Costanza, R, Svedin, U, Falkenmark, M, Karlberg, L, Corell, R. W., Fabry, V. J., Hansen, J, Walker, B, Liverman, D, Richardson, K, Crutzen, P, Foley, J., 2009. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc., 14(2), 32.

[72]

Rodriguez Sousa, A. A., Munoz-Rojas, J, Brigido, C, Prats, S. A., 2023. Impacts of agricultural intensification on soil erosion and sustainability of olive groves in Alentejo (Portugal). Landsc. Ecol., 38 (12) , pp. 3479-3498. doi: 10.1007/s10980-023-01682-2.

[73]

Ruiu, M. L., Seddaiu, G, Roggero, P. P., 2017. Developing adaptive responses to contextual changes for sustainable agricultural management: the role of social capital in the Arborea district (Sardinia, Italy). J. Rural Stud., 49 , pp. 162-170. doi: 10.1016/j.jrurstud.2016.11.017.

[74]

Scheffer, M, Carpenter, S., 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol., 18 (12) , pp. 648-656. doi: 10.1016/j.tree.2003.09.002.

[75]

Schwanen, T., 2018. Thinking complex interconnections: transition, nexus and geography. Trans. Inst. Br. Geogr., 43 (2) , pp. 262-283. doi: 10.1111/tran.12223.

[76]

Sguotti, C, Bloecker, A. M., Faerber, L, Blanz, B, Cormier, R, Diekmann, R, Letschert, J, Rambo, H, Stollberg, N, Stelzenmueller, V, Stier, A. C., Mollmann, C., 2022. Irreversibility of regime shifts in the North Sea. Front. Mar. Sci., 9 , Article 945204. doi: 10.3389/fmars.2022.945204.

[77]

Steffen, W, Crutzen, P. J., McNeill, J. R., 2007. The anthropocene: are humans now overwhelming the great forces of nature. Ambio, 36 (8) , pp. 614-621. doi: 10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2.

[78]

Steffen, W, Richardson, K, Rockstrom, J, Cornell, S. E., Fetzer, I, Bennett, E. M., Biggs, R, Carpenter, S. R., de Vries, W, de Wit, C. A., Folke, C, Gerten, D, Heinke, J, Mace, G. M., Persson, L. M., Ramanathan, V, Reyers, B, Sörlin, S., 2015. Planetary boundaries: guiding human development on a changing planet. Science, 347 (2015), Article 1259855. doi: 10.1126/science.1259855.

[79]

Tang, Y, Wang, Y., 2023. Impact of digital economy on ecological resilience of resource-based cities: spatial spillover and mechanism. Environ. Sci. Pollut. Res., 30 (14) , pp. 41299-41318. doi: 10.1007/s11356-023-25155-w.

[80]

Tao, Y., 2021. Eutrophication-induced regime shifts reduced sediment burial ability for polycyclic aromatic hydrocarbons: evidence from lake Taihu in China. Chemosphere, 271 , Article 129709. doi: 10.1016/j.chemosphere.2021.129709.

[81]

Tran, T-N-D, Lakshmi, V., 2024. Enhancing human resilience against climate change: assessment of hydroclimatic extremes and sea level rise impacts on the eastern shore of Virginia, United States. Sci. Total Environ., 947 , Article 174289. doi: 10.1016/j.scitotenv.2024.174289.

[82]

United Nations (UN), 2015. Transforming Our World: The 2030 Agenda for Sustainable Development. United States General Assembly, New York.

[83]

Viña, A, Liu, J., 2023. Effects of global shocks on the evolution of an interconnected world. Ambio, 52 (1) , pp. 95-106. doi: 10.1007/s13280-022-01778-0.

[84]

Wang, Z, Zhang, H, Wang, B, Ding, Y., 2025. Towards a synergistic future: the impact of power sector decarbonisation on sustainable development goals in China. Sustain. Prod. Consump., 56 , pp. 385-395. doi: 10.1016/j.spc.2025.04.009.

[85]

Weng, Y, Cai, W, Wang, C., 2021. 299 , Article 117263. doi: 10.1016/j.apenergy.2021.117263.

[86]

Wu, X, Zhang, J, Geng, X, Wang, T, Wang, K, Liu, S., 2020. Increasing green infrastructure-based ecological resilience in urban systems: a perspective from locating ecological and disturbance sources in a resource-based city. Sust. Cities Soc., 61 , Article 102354. doi: 10.1016/j.scs.2020.102354.

[87]

Xiao, H., Liu, Y., Ren, J., 2023. Synergies and trade-offs across sustainable development goals: a novel method incorporating indirect interactions analysis. Sustain. Dev. 31 (2), 1135–1148. doi: 10.1002/sd.2446.

[88]

Xu, Z, Chen, X, Liu, J, Zhang, Y, Chau, S, Bhattarai, N, Wang, Y, Li, Y, Connor, T, Li, Y., 2020. Impacts of irrigated agriculture on food–energy–water–CO2 nexus across metacoupled systems. Nat. Commun., 11 (1) , p. 5837. doi: 10.1038/s41467-020-19520-3.

[89]

Yao, Y, Fu, B, Liu, Y, Li, Y, Wang, S, Zhan, T, Wang, Y, Gao, D., 2022. Evaluation of ecosystem resilience to drought based on drought intensity and recovery time. Agric. For. Meteorol., 314 , Article 108809. doi: 10.1016/j.agrformet.2022.108809.

[90]

Yin, C., Zhao, W., Pereira, P., 2025. Ecosystem restoration along the “pattern-processservice- sustainability ” path for achieving land degradation neutrality. Landsc. Urban Plan. 253, 105227. doi: 10.1016/j.landurbplan.2024.105227.

[91]

Zabel, F, Delzeit, R, Schneider, J, Seppelt, R, Mauser, W, Václavík, T., 2019. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun., 10 (1) , p. 2844. doi: 10.1038/s41467-019-10775-z.

[92]

Zhang, Y, Jiang, Y, Wei, T, Wang, Y, Liu, Y, Xu, L, He, J, Wang, X., 2024. A quantitative analysis framework for analysing impacts of climate change on water-food-energy-ecosystem nexus in irrigation areas based on WEAP-MODFLOW. J. Clean. Prod., 470 , Article 143315. doi: 10.1016/j.jclepro.2024.143315.

[93]

Zhao, W, Yin, C, Hua, T, Meadows, M. E., Li, Y, Liu, Y, Cherubini, F, Pereira, P, Fu, B., 2022. Achieving the sustainable development goals in the post-pandemic era. Hum. Soc. Sci. Commun., 9 (1) , p. 258. doi: 10.1057/s41599-022-01283-5.

[94]

Zhao, Z, Cai, M, Wang, F, Winkler, J. A., Connor, T, Chung, M. G., Zhang, J, Yang, H, Xu, Z, Tang, Y, Ouyang, Z, Zhang, H, Liu, J., 2021. Synergies and tradeoffs among sustainable development goals across boundaries in a metacoupled world. Sci. Total Environ., 751 , Article 141749. doi: 10.1016/j.scitotenv.2020.141749.

[95]

Zhou, Z, Gao, Y, Dong, X, X-Wang, C, Zhang, Y, Xiao, X, Xiao, R, Ye, Q., 2024. Ecosystem services linked sustainability assessment of poverty alleviation based on emergy analysis: case study in the Tibetan area of northwest Sichuan Plateau, China. Ecol. Indic., 167 , Article 112628. doi: 10.1016/j.ecolind.2024.112628.

PDF

174

Accesses

0

Citation

Detail

Sections
Recommended

/