How urban land expansion alters terrain in mountainous and hilly areas: An empirical study in China

Zihao Zhou , Yimin Chen

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) : 100304

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) :100304 DOI: 10.1016/j.geosus.2025.100304
Research Article
review-article

How urban land expansion alters terrain in mountainous and hilly areas: An empirical study in China

Author information +
History +
PDF

Abstract

Large-scale urban land expansion in mountainous and hilly areas (UEMH) has significantly altered the terrain in many Chinese cities, leading to various environmental and urban challenges. Despite its importance, there is limited nation-scale research that reveals the amount and the spatial variations of UEMH-induced terrain alteration. This research integrates the Global Annual Urban Dynamics dataset, the Global Basic Landform Unit dataset, the TanDEM-X DEM Change Map (DCM) dataset, Baidu Points-of-Interest (POI), and other auxiliary datasets to conduct a comprehensive analysis of terrain alteration induced by UEMH in China from 2012 to 2020. The results indicate that the country-wide UEMH-induced terrain alteration reached approximately 13 billion m³, which is about 100 times the volume of Hangzhou West Lake, and terrain alteration volume in over 300 counties exceeded 10 million m³. The Southwest and Southeast regions, which are ecologically sensitive and critical, feature the greatest alteration in terms of area and volume. The most significant terrain alteration in terms of intensity is observed in the Southwest and Hengduan Mountain Area. Additionally, there are significant spatial variations in the contributions of different urban functional zones to terrain alteration. Our findings indicate that urban land expansion in mountains and hills has significantly altered terrain in some regions of China, necessitating customized urban planning strategies for better managing mountainous urban land expansion and governance policies to address the geological, ecological, and urban development challenges.

Keywords

Urban land expansion / Terrain alteration / Tandem-X DEM change map / Urban functional zones

Cite this article

Download citation ▾
Zihao Zhou, Yimin Chen. How urban land expansion alters terrain in mountainous and hilly areas: An empirical study in China. Geography and Sustainability, 2025, 6(4): 100304 DOI:10.1016/j.geosus.2025.100304

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability

TanDEM-X-DEM Change Map is available on https://download.geoservice.dlr.de;

GAUD (1985–2015) dataset is available on https://figshare.com/articles/dataset/High_spatiotemporal_resolution_mapping_of_global_urban_change_from_1985_to_2015/11513178; New version of GAUD (1985–2020 or later) will be available on request; GBLU dataset is available on https://zenodo.org/records/13187969

CRediT authorship contribution statement

Zihao Zhou: Writing – review & editing, Writing – original draft, Visualization, Methodology, Formal analysis, Data curation, Conceptualization. Yimin Chen: Writing – original draft, Validation, Supervision, Resources, Methodology, Investigation, Funding acquisition.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The research is supported by the National Natural Science Foundation of China (Grants No. 42322110 and 42271415).

Supplementary materials

Supplementary material associated with this article can be found in the online version, at doi:10.1016/j.geosus.2025.100304.

References

[1]

Airbus, D. S., 2020. Copernicus DEM Copernicus Digital Elevation Model Validation Report. Airbus Defence and Space—Intelligence, Potsdam Germany

[2]

Bibri, S. E., Krogstie, J, Kärrholm, M., 2020. Compact city planning and development: emerging practices and strategies for achieving the goals of sustainability. Dev. Built Environ., 4 , Article 100021. doi: 10.1016/j.dibe.2020.100021.

[3]

Carranza, M. L., Drius, M, Marzialetti, F, Malavasi, M, de Francesco, M. C., Acosta, A, Stanisci, A., 2020. Urban expansion depletes cultural ecosystem services: an insight into a Mediterranean coastline. Rend. Lincei-Sci. Fis. E Nat., 31 , pp. 103-111. doi: 10.1007/s12210-019-00866-w.

[4]

Carvalho, O, Guimaraes, R, Freitas, L, Gomes-Loebmann, D, Gomes, R. A., Martins, E, Montgomery, D. R., 2010. Urbanization impacts upon catchment hydrology and gully development using mutli-temporal digital elevation data analysis. Earth Surf. Process. Landf., 35 , pp. 611-617. doi: 10.1002/esp.1917.

[5]

Chang, R, Soebarto, V, Zhao, Z, Zillante, G., 2016. Facilitating the transition to sustainable construction: China’s policies. J. Clean. Prod., 131 , pp. 534-544. doi: 10.1016/j.jclepro.2016.04.147.

[6]

Chang, Z, Liu, L, Ma, J, Cao, W, Cui, Y, Shi, K., 2024. Hillside urban expansion exacerbates nature and semi-nature habitat landscape fragmentation in China. Int. J. Digit. Earth, 17 , Article 2368095. doi: 10.1080/17538947.2024.2368095.

[7]

Chen, Y, Qian, H, Wang, X, Wang, D, Han, L., 2022. A GloVe model for urban functional area identification considering nonlinear spatial relationships between points of interest. ISPRS Int. J. Geo-Inf., 11 (10) , p. 498. doi: 10.3390/ijgi11100498.

[8]

Chen, Y, Yu, B, Shu, B, Yang, L, Wang, R., 2023. Exploring the spatiotemporal patterns and correlates of urban vitality: temporal and spatial heterogeneity. Sust. Cities Soc., 91 , Article 104440. doi: 10.1016/j.scs.2023.104440.

[9]

Chin, W. C. B., Fu, Y, Lim, K. H., Schroepfer, T, Cheah, L., 2023. Identifying urban functional zones by analysing the spatial distribution of amenities. Env. Plan. B-Urban Anal. City Sci., 51 (6) , pp. 1274-1289. doi: 10.1177/23998083231217376.

[10]

de Albuquerque, A. O., de Carvalho Junior, O. A., Guimaraes, R. F., Trancoso Gomes, R. A., Hermuche, P. M., 2020. Assessment of gully development using geomorphic change detection between pre- and post-urbanization scenarios. Environ. Earth Sci., 79 (10) , p. 232. doi: 10.1007/s12665-020-08958-9.

[11]

Duan, X, Dong, Q, W-Ye, J, J-Zhou, L, Oh, E., 2019. Study on adverse effects of groundwater level rising induced by land creation engineering in hilly and gully area of the Loess Plateau. J. Mt. Sci., 16 (12) , pp. 2739-2753. doi: 10.1007/s11629-019-5549-x.

[12]

Fischer, M. M., Getis, A., 2010. Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications. Springer . doi: 10.1007/978-3-642-03647-7.

[13]

Fuchs, M, Torizin, J, Wang, L, Tong, B, Balzer, D, Chen, L, Kuhn, D, Li, A, Wan, L., 2019. Identification and temporally-spatial quantification of geomorphic relevant changes by construction projects in loess landscapes: case study Lanzhou City, NW China. Big Earth Data, 3 , pp. 395-410. doi: 10.1080/20964471.2019.1640412.

[14]

Gan, X, Huang, L, Wang, H, Mou, Y, Wang, D, Hu, A., 2021. Optimal block size for improving urban vitality: an exploratory analysis with multiple vitality indicators. J. Urban Plan. Dev., 147 , Article 04021027. doi: 10.1061/(ASCE)UP.1943-5444.0000696.

[15]

Gao, J, O’Neill, B. C., 2020. Mapping global urban land for the 21st century with data-driven simulations and shared socioeconomic pathways. Nat. Commun., 11 (1) , p. 2302. doi: 10.1038/s41467-020-15788-7.

[16]

Hartigan, J. A., Wong, M. A., 1979. A K-means clustering algorithm. J. R. Soc. Ser. C-Appl. Stat., 28 (1) , pp. 100-108. doi: 10.2307/2346830.

[17]

Hawker, L, Uhe, P, Paulo, L, Sosa, J, Savage, J, Sampson, C, Neal, J., 2022. A 30 m global map of elevation with forests and buildings removed. Environ. Res. Lett., 17 (2) , Article 024016. doi: 10.1088/1748-9326/ac4d4f.

[18]

He, S, Yu, S, Li, G, Zhang, J., 2020. Exploring the influence of urban form on land-use efficiency from a spatiotemporal heterogeneity perspective: evidence from 336 Chinese cities. Land Policy, 95 , Article 104576. doi: 10.1016/j.landusepol.2020.104576.

[19]

Hou, Y, Huang, Q, Ren, Q, Gu, T, Zhou, Y, Wu, P, Fan, Y, Zhu, G., 2024. Spatiotemporal dynamics of urban sprawl in China from 2000 to 2020. GISci. Remote Sens., 61 , Article 2351262. doi: 10.1080/15481603.2024.2351262.

[20]

Hu, Y. N., Connor, D. S., Stuhlmacher, M, Peng, J, Turner II, B. L., 2024. Turner II. More urbanization, more polarization: evidence from two decades of urban expansion in China. Npj Urban Sustain., 4 (1) , p. 33. doi: 10.1038/s42949-024-00170-z.

[21]

Huang, C, Xiao, C, Rong, L., 2022. 14 , p. 4201. doi: 10.3390/rs14174201.

[22]

Huang, H, Fu, D, Ding, G, Yan, C, Xie, X, Gao, Y, Liu, Q., 2024. Construction and optimization of green infrastructure network in mountainous cities: a case study of Fuzhou, China. Sci. Rep., 14 , Article 11936. doi: 10.1038/s41598-024-57567-0.

[23]

Huang, Q, Zhang, H, van Vliet, J, Ren, Q, Wang, R. Y., Du, S, Liu, Z, He, C., 2021. Patterns and distributions of urban expansion in global watersheds. Earth. Future, 9 , Article e2021EF002062. doi: 10.1029/2021EF002062.

[24]

Jie, X, Shi, L, Keyan, X, Jianping, C, Sofia, G, Tarolli, P., 2019. Quantitative analysis of anthropogenic morphologies based on multi-temporal high-resolution topography. Remote Sens., 11 , p. 1493. doi: 10.3390/rs11121493.

[25]

Juang, C. H., Dijkstra, T, Wasowski, J, Meng, X., 2019. Loess geohazards research in China: advances and challenges for mega engineering projects. Eng. Geol., 251 , pp. 1-10. doi: 10.1016/j.enggeo.2019.01.019.

[26]

Korpilo, S, Nyberg, E, Vierikko, K, Nieminen, H, Arciniegas, G, Raymond, C. M., 2023. Developing a multi-sensory public participation GIS (MSPPGIS) method for integrating landscape values and soundscapes of urban green infrastructure. Landsc. Urban Plan., 230 , Article 104617. doi: 10.1016/j.landurbplan.2022.104617.

[27]

Lachaise, M, Gonzalez, C, Rizzoli, P, Schweisshelm, B, Zink, M., 2022. The new TanDEM-X DEM change maps product. 2022 IEEE International Geoscience remote Sensing Symposium, IGARSS 2022 , pp. 5432-5435. doi: 10.1109/IGARSS46834.2022.9883612.

[28]

Li, J, Yang, L, Pu, R, Liu, Y., 2017. A review on anthropogenic geomorphology. J. Geogr. Sci., 27 , pp. 109-128. doi: 10.1007/s11442-017-1367-7.

[29]

Li, P., Qian, H., Wu, J., 2014. Environment: accelerate research on land creation. Nature 510 (7503), 29–31. doi: 10.1038/510029a.

[30]

Liang, Y-H, W-Shui, H, S-Lu, F., 2022. Field practice and ground settlement behaviors of a land creation case in loess area of China. Bull. Eng. Geol. Environ., 81 , p. 462. doi: 10.1007/s10064-022-02964-w.

[31]

Liu, L., 2010. Land Resource Sciences. China Agricultural University Press, Beijing

[32]

Liu, X, Huang, Y, Xu, X, Ciais, P, Lin, P, Gong, K, Ziegler, A. D., Chen, A, Gong, P, Chen, J, Hu, G, Chen, Y, Wang, S, Wu, Q, Huang, K, Estes, L, Zeng, Z., 2020. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain., 3 , pp. 564-570. doi: 10.1038/s41893-020-0521-x.

[33]

Long, Y., Shen, Y., Jin, X., 2016. Mapping block-level urban areas for all Chinese cities. Ann. Am. Assoc. Geogr. 106, 96–113. doi: 10.1080/00045608.2015.1095062.

[34]

Lu, J, Peng, Q, Song, Y, Lyu, L, Chen, D, Huang, P, Peng, F, Liu, Y., 2024. Characteristics and effects of global sloping land urbanization from 2000 to 2020. Sci. Total Environ., 937 , Article 173348. doi: 10.1016/j.scitotenv.2024.173348.

[35]

Luan, Y. F., Huang, G. H., Zheng, G. H., Wang, Y. E., 2022. Correlation between spatio-temporal evolution of habitat quality and human activity intensity in typical mountain cities: a case study of Guiyang City, China. Int. J. Environ. Res. Public. Health, 19 (21) , Article 14294. doi: 10.3390/ijerph192114294.

[36]

Maguire, T. J., Fulweiler, R. W., 2019. Urban groundwater dissolved silica concentrations are elevated due to vertical composition of historic land-filling. Sci. Total Environ., 684 , pp. 89-95. doi: 10.1016/j.scitotenv.2019.05.272.

[37]

Niu, Q, Bai, J, Cheng, W, Dang, X, Wang, G, Gao, X, Wang, Y., 2022. Mapping the dynamics of urban land creation from hilltop removing and gully filling projects in the river-valley city of Lanzhou, China. J. Indian Soc. Remote Sens., 50 , pp. 1813-1826. doi: 10.1007/s12524-022-01565-0.

[38]

Park, J, Jung, S., 2024. Exploring urban compactness and greenhouse gas emissions in the road transport sector: a case study of big cities in South Korea. Sustainability, 16 (5) , p. 1911. doi: 10.3390/su16051911.

[39]

Peng, J, Du, Y, Liu, Y, Hu, X., 2016. How to assess urban development potential in mountain areas? An approach of ecological carrying capacity in the view of coupled human and natural systems. Ecol. Indic., 60 , pp. 1017-1030. doi: 10.1016/j.ecolind.2015.09.008.

[40]

Pu, C, Xu, Q, Zhao, K, Jiang, Y, Hao, L, Liu, J, Chen, W, Kou, P., 2021. Characterizing the topographic changes and land subsidence associated with the mountain excavation and city construction on the Chinese Loess Plateau. Remote Sens., 13 (8) , p. 1556. doi: 10.3390/rs13081556.

[41]

Rizvi, S. H., Fatima, H, Alam, K, Iqbal, M. J., 2021. The surface urban heat island intensity and urban expansion: a comparative analysis for the coastal areas of Pakistan. Environ. Dev. Sustain., 23 , pp. 5520-5537. doi: 10.1007/s10668-020-00828-5.

[42]

Schiavina, M, Melchiorri, M, Freire, S, Florio, P, Ehrlich, D, Tommasi, P, Pesaresi, M, Kemper, T., 2022. Land use efficiency of functional urban areas: global pattern and evolution of development trajectories. Habitat Int., 123 , Article 102543. doi: 10.1016/j.habitatint.2022.102543.

[43]

Shi, K, Wu, Y, Liu, S, Chen, Z, Huang, C, Cui, Y., 2023. Mapping and evaluating global urban entities (2000–2020): a novel perspective to delineate urban entities based on consistent nighttime light data. GISci. Remote Sens., 60 , Article 2161199. doi: 10.1080/15481603.2022.2161199.

[44]

Simkin, R. D., Seto, K. C., McDonald, R. I., Jetz, W., 2022. Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proc. Natl. Acad. Sci. U.S.A., 119 (12) , Article e2117297119. doi: 10.1073/pnas.2117297119.

[45]

Sparck-Jones, K., 2004. A statistical interpretation of term specificity and its application in retrieval. J. Doc., 60 (5) , pp. 493-502. doi: 10.1108/00220410410560573.

[46]

Subraelu, P, Ebraheem, A. A., Sherif, M, Sefelnasr, A, Yagoub, M. M., Rao, K. N., 2022. Land in water: the study of land reclamation and artificial islands formation in the UAE Coastal Zone: a remote sensing and GIS perspective. Land, 11 (11) , p. 2014. doi: 10.3390/land11112024.

[47]

Tang, G., Yang, X., Zhou, C., Li, F., Xiong, L., 2023. Global basic landform units datasets (2023), version 1.

[48]

Trepci, E., Maghelal, P., Azar, E., 2020. Effect of densification and compactness on urban building energy consumption: case of a Transit-oriented development in Dallas, TX. Sust. Cities Soc. 56, 101987. doi: 10.1016/j.scs.2019.101987.

[49]

van Vliet, J., 2019. Direct and indirect loss of natural area from urban expansion. Nat. Sustain., 2 , pp. 755-763. doi: 10.1038/s41893-019-0340-0.

[50]

Wang, J. A., Liang, S, Shi, P., 2022. Topography and Landforms, The Geography of Contemporary China. Springer International Publishing, Cham . doi: 10.1007/978-3-031-04158-7_3.

[51]

Wang, L, Anna, H, Zhang, L, Xiao, Y, Wang, Y, Xiao, Y, Liu, J, Ouyang, Z., 2019. Spatial and temporal changes of arable land driven by urbanization and ecological restoration in China. Chin. Geogr. Sci., 29 (5) , pp. 809-819. doi: 10.1007/s11769-018-0983-1.

[52]

Wang, N, Cheng, W, Wang, B, Liu, Q, Zhou, C., 2020. Geomorphological regionalization theory system and division methodology of China. J. Geogr. Sci., 30 (2) , pp. 212-232. doi: 10.1007/s11442-020-1724-9.

[53]

Wessel, B, Lachaise, M, Bachmann, M, Schweisshelm, B, Huber, M, Fritz, T, Tubbesing, R, Buckreuss, S. 2022. The new TanDEM-X DEM 2020: generation and specifications. EUSAR 2022; 14th European Conference on Synthetic Aperture Radar, pp.1-5.

[54]

Xia, C, AG-Yeh, O, Zhang, A., 2020. Analyzing spatial relationships between urban land use intensity and urban vitality at street block level: a case study of five Chinese megacities. Landsc. Urban Plan., 193 , Article 103669. doi: 10.1016/j.landurbplan.2019.103669.

[55]

Xu, X., Ding, D., Liu, X., 2024. A three-dimensional future land use simulation (FLUS-3D) model for simulating the 3D urban dynamics under the shared socio-economic pathways. Landsc. Urban Plan. 250, 105135. doi: 10.1016/j.landurbplan.2024.105135.

[56]

Yang, C., Guo, W., Zhang, C., Cui, A., Li, X., Zhao, T., Liu, H., Shi, T., Xu, G., Fang, X., Liu, X., Zhang, K., Gong, P., Li, Q., Wu, G., 2022b. Characteristics and trends of hillside urbanization in China from 2007 to 2017. Habitat Int. 120, 102502. doi: 10.1016/j.habitatint.2021.102502.

[57]

Yang, C, Li, Q, Wang, X, Cui, A, Chen, J, Liu, H, Ma, W, Dong, X, Shi, T, Meng, F, Yan, X, Ding, K, Wu, G., 2023. Human expansion-induced biodiversity crisis over Asia from 2000 to 2020. Research, 6 , p. 0226. doi: 10.34133/research.0226.

[58]

Yang, C., Li, Q., Wang, X., Cui, A., Chen, J., Liu, H., Ma, W., Dong, X., Shi, T., Meng, F., Yan, X., Ding, K., Wu, G., 2023. Human expansion-induced biodiversity crisis over Asia from 2000 to 2020. Research 6, 0226. doi: 10.34133/research.0226.

[59]

Yang, C., Liu, H., Li, Q., Cui, A., Xia, R., Shi, T., Zhang, J., Gao, W., Zhou, X., Wu, G., 2021a. Rapid urbanization induced extensive forest loss to urban land in the Guangdong-Hong Kong-Macao Greater Bay Area, China. Chin. Geogr. Sci. 31, 93–108. doi: 10.1007/s11769-021-1177-9.

[60]

Yang, C., Liu, H., Li, Q., Wang, X., Ma, W., Liu, C., Fang, X., Tang, Y., Shi, T., Wang, Q., Xu, Y., Zhang, J., Li, X., Xu, G., Chen, J., Su, M., Wang, S., Wu, J., Huang, L., Li, X., Wu, G., 2022a. Human expansion into Asian highlands in the 21st century and its effects. Nat. Commun. 13, 4955. doi: 10.1038/s41467-022-32648-8.

[61]

Yao, Y, Zhou, K, Liu, C, Sun, Z, Chen, D, Li, L, Cheng, T, Guan, Q., 2024. Temporal-VCA: simulating urban land use change using coupled temporal data and vector cellular automata. Cities, 149 , Article 104975. doi: 10.1016/j.cities.2024.104975.

[62]

Zhang, F, Shu, H, Yan, B, Wu, X, Lan, H, Peng, J., 2023. Characteristic analysis and potential hazard assessment of reclaimed mountainous areas in Lanzhou, China. Catena, 221 , Article 106771. doi: 10.1016/j.catena.2022.106771.

[63]

Zhang, H, Zeng, R, Zhang, Y, Zhao, S, Meng, X, Li, Y, Liu, W, Meng, X, Yang, Y., 2022. Subsidence monitoring and influencing factor analysis of mountain excavation and valley infilling on the Chinese Loess Plateau: a case study of Yan’an New District. Eng. Geol., 297 , Article 106482. doi: 10.1016/j.enggeo.2021.106482.

[64]

Zhong, C, Guo, H, Swan, I, Gao, P, Yao, Q, Li, H., 2023. Evaluating trends, profits, and risks of global cities in recent urban expansion for advancing sustainable development. Habitat Int., 138 , Article 102869. doi: 10.1016/j.habitatint.2023.102869.

[65]

Zhou, L, Dang, X, Mu, H, Wang, B, Wang, S., 2021. Cities are going uphill: slope gradient analysis of urban expansion and its driving factors in China. Sci. Total Environ., 775 , Article 145836. doi: 10.1016/j.scitotenv.2021.145836.

[66]

Zhuang, Z, Li, K, Liu, J, Cheng, Q, Gao, Y, Shan, J, Cai, L, Huang, Q, Chen, Y, Chen, D., 2017. China’s new urban space regulation policies: a study of urban development boundary delineations. Sustainability, 9 (1) , p. 45. doi: 10.3390/su9010045.

[67]

Zuo, J., Zheng, W., Hong, J., 2024. Interactions between centrality and commuting costs in a mountainous city: implications for jobs-housing relationships and land use policies. Land Policy 137, 106999. doi: 10.1016/j.landusepol.2023.106999.

PDF

248

Accesses

0

Citation

Detail

Sections
Recommended

/