Climate aridification and intensified human interference undermined water storage in the Lower Yellow River region

Xilin Wu , Xiaoming Feng , Bojie Fu

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) : 100303

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) :100303 DOI: 10.1016/j.geosus.2025.100303
Research Article
research-article

Climate aridification and intensified human interference undermined water storage in the Lower Yellow River region

Author information +
History +
PDF

Abstract

Understanding the relationships between human activities and hydrological processes is critical for sustainable water resources management, especially under the threat of increasing climate extremes. China’s Lower Yellow River (LYR) region is one of the world’s most water-scarce and human-impacted areas, yet comprehensive information on its water resources is lacking. This study adopted a water resources system (WRS) analytical framework to investigate the water crisis facing the region. The findings reveal that over the last decade, the system’s resilience has been undermined by the combined impacts of climate aridification and intensified human interference. Specifically, a delicate balance between natural groundwater depletion and irrigation replenishment has been disrupted by a series of drought events since 2012. Increased groundwater extraction during droughts, coupled with an imbalanced allocation of surface water resources, has led to a persistent decline in water storage that has continued even after the droughts have ended. To mitigate future climate risks in the LYR, we recommend implementing more adaptive strategies, such as flexible water regulation policies and combined surface-groundwater management. Lessons from the LYR have important implications for other regions facing water resource challenges.

Keywords

Water resources system / Lower Yellow River / Groundwater / Socio-hydrology / Sustainable water management

Cite this article

Download citation ▾
Xilin Wu, Xiaoming Feng, Bojie Fu. Climate aridification and intensified human interference undermined water storage in the Lower Yellow River region. Geography and Sustainability, 2025, 6(4): 100303 DOI:10.1016/j.geosus.2025.100303

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Xilin Wu: Writing - original draft, Visualization, Data curation, Formal analysis, Methodology. Xiaoming Feng: Writing - review & editing, Conceptualization, Supervision. Bojie Fu: Supervision, Funding acquisition.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 42041007). We thank three anonymous reviewers for their professional comments which further improved the quality of the manuscript.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100303.

References

[1]

Abbott, B.W., Bishop, K., Zarnetske, J.P., Minaudo, C., Chapin, F.S., Krause, S., Hannah, D.M., Conner, L., Ellison, D., Godsey, S.E., Plont, S., Marçais, J., Kolbe, T., Huebner, A., Frei, R.J., Hampton, T., Gu, S., Buhman, M., Sara Sayedi, S., Ursache, O., Chapin, M., Henderson, K.D., Pinay, G., 2019. Human domination of the global water cycle absent from depictions and perceptions. Nat. Geosci. 12, 533-540.

[2]

Adams, J., 2017. Climate_indices, an open source Python library providing reference implementations of commonly used climate indices. Allen, R.G., 2000. Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. J. Hydrol. 229, 27-41.

[3]

Ang, B.W., 2015. LMDI decomposition approach: a guide for implementation. Energy Policy 86, 233-238.

[4]

Best, J., 2019. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12, 7-21.

[5]

Brown, C.M., Lund, J.R., Cai, X., Reed, P.M., Zagona, E.A., Ostfeld, A., Hall, J., Characklis, G.W., Yu, W., Brekke, L., 2015. The future of water resources systems analysis: toward a scientific framework for sustainable water management. Water Resour. Res. 51, 6110-6124.

[6]

Budescu, D.V., 1993. Dominance analysis: a new approach to the problem of relative importance of predictors in multiple regression. Psychol. Bull. 114, 542-551.

[7]

Chen, Y., Syvitski, J.P.M., Gao, S., Overeem, I., Kettner, A.J., 2012. Socio-economic impacts on flooding: a 4000-year history of the Yellow River, China. Ambio 41, 682-698.

[8]

Conte, L.C., Bayer, D.M., Bayer, F.M., 2019. Bootstrap Pettitt test for detecting change points in hydroclimatological data: case study of Itaipu Hydroelectric Plant, Brazil. Hydrol. Sci. J. 64, 1312-1326.

[9]

Cuthbert, M.O., Gleeson, T., Moosdorf, N., Befus, K.M., Schneider, A., Hartmann, J., Lehner, B., 2019. Global patterns and dynamics of climate-groundwater interactions. Nat. Clim. Change 9, 137-141.

[10]

Deng, H., Yin, Y., Zong, X., Yin, M., 2023. Future drought risks in the Yellow River Basin and suggestions for targeted response. Int. J. Disaster Risk Reduct. 93, 103764.

[11]

Dolan, F., Lamontagne, J., Link, R., Hejazi, M., Reed, P., Edmonds, J., 2021. Evaluating the economic impact of water scarcity in a changing world. Nat. Commun. 12 (1), 1915.

[12]

Feng, W., Zhong, M., Lemoine, J.-M., Biancale, R., Hsu, H.-T., Xia, J., 2013. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 49, 2110-2118.

[13]

Gao, H., Bohn, T.J., Podest, E., McDonald, K.C., Lettenmaier, D.P., 2011. On the causes of the shrinking of Lake Chad. Environ. Res. Lett. 6, 034021.

[14]

Gies, E., 2022. Smarter ways with water. Nature 611 (7936), S12-S14.

[15]

Gleeson, T., Wada, Y., Bierkens, M.F.P., Van Beek, L.P.H., 2012. Water balance of global aquifers revealed by groundwater footprint. Nature 488 (7410), 197-200.

[16]

Gou, J., Miao, C., Samaniego, L., Xiao, M., Wu, J., Guo, X., 2021. CNRD v1.0: a high-quality natural runoff dataset for hydrological and climate studies in China. Bull. Amer. Meteorol. Soc. 102, E929-E947.

[17]

Han, S., Tian, F., Liu, Y., Duan, X., 2017. Socio-hydrological perspectives of the co-evolution of humans and groundwater in Cangzhou, North China Plain. Hydrol. Earth Syst. Sci. 21, 3619-3633.

[18]

Hou, C., Li, Y., Sang, S., Zhao, X., Liu, Y., Liu, Y., Zhao, F., 2023. High-resolution mapping of monthly industrial water withdrawal in China from 1965 to 2020. ESSD 16, 2449-2464.

[19]

Houspanossian, J., Giménez, R., Whitworth-Hulse, J.I., Nosetto, M.D., Tych, W., Atkinson, P.M., Rufino, M.C., Jobbágy, E.G., 2023. Agricultural expansion raises groundwater and increases flooding in the South American plains. Science 380 (6652), 1344-1348.

[20]

Jia, Y., 2011. Groundwater issues and management in the North China Plain. In: FindikakisA.N., SatoK. (Eds.), Groundwater Management PRactices (IAHR Monographs). CRC Press.

[21]

Konapala, G., Mishra, A.K., Wada, Y., Mann, M.E., 2020. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11 (1), 3044.

[22]

Li, J., Lei, H., 2022. Impacts of climate change on winter wheat and summer maize dual- cropping system in the North China Plain. Environ. Res. Commun. 4, 075014.

[23]

Liang, S., Ge, S., Wan, L., Zhang, J., 2010. Can climate change cause the Yellow River to dry up? Water Resour. Res. 46 (2), W02505.

[24]

Lin, M., Biswas, A., Bennett, E.M., 2019. Spatio-temporal dynamics of groundwater storage changes in the Yellow River Basin. J. Environ. Manage. 235, 84-95.

[25]

Liu, D., Chen, X., Nakato, T., 2012. Resilience assessment of water resources system. Water Resour. Manage. 26, 3743-3755.

[26]

Liu, K., Bo, Y., Li, X., Wang, S., Zhou, G., 2024. Uncovering current and future variations of irrigation water use across China using machine learning. Earth. Future 12 (3) e2023EF003562.

[27]

Liu, R., Zhong, B., Li, X., Zheng, K., Liang, H., Cao, J., Yan, X., Lyu, H.,2022. Analysis of groundwater changes (2003-2020) in the North China Plain using geodetic measurements. J. Hydrol.: Reg. Stud. 41, 101085.

[28]

Liu, Z., Zhao, Y., Han, Y., Wang, C., Wang, F., 2018. Driving factors of the evolution of groundwater level in people’s Victory Canal irrigation District, China. Desalin. Water Treat. 112, 324-333.

[29]

Long, D., Yang, W., Scanlon, B.R., Zhao, J., Liu, D., Burek, P., Pan, Y., You, L., Wada, Y., 2020. South-to-North water diversion stabilizing Beijing’s groundwater levels. Nat. Commun. 11 (1), 3665.

[30]

Ma, T., Sun, S., Fu, G., Hall, J.W., Ni, Y., He, L., Yi, J., Zhao, N., Du, Y., Pei, T., Cheng, W., Song, C., Fang, C., Zhou, C., 2020. Pollution exacerbates China’s water scarcity and its regional inequality. Nat. Commun. 11 (1), 650.

[31]

Mallakpour, I., Villarini, G., 2016. A simulation study to examine the sensitivity of the Pettitt test to detect abrupt changes in mean. Hydrol. Sci. J. 61, 245-254.

[32]

Micklin, P., 2010. The past, present, and future Aral Sea. Lakes Reserv. Sci. Policy Manage. Sustain. Use 15 (3), 193-213.

[33]

Omer, A., Elagib, N.A., Ma, Z., Saleem, F., Mohammed, A., 2020. Water scarcity in the Yellow River Basin under future climate change and human activities. Sci. Total Environ. 749, 141446.

[34]

Orduña Alegría, M.E., Zipper, S., Shin, H.C., Deines, J.M., Hendricks, N.P., Allen, J.J., Bohling, G.C., Golden, B., Griggs, B.W., Lauer, S., Lin, C.-Y., Marston, L.T., Sanderson, M.R., Smith, S.M., Whittemore, D.O., Wilson, B.B., Yu, D.J., Yu, Q.C., Butler Jr., J.J., 2024. Unlocking aquifer sustainability through irrigator-driven groundwater conservation. Nat. Sustain. 7 (12), 1574-1583.

[35]

Pahl-Wostl, C., 2007. Transitions towards adaptive management of water facing climate and global change. Water Resour. Manage. 21, 49-62.

[36]

Pettitt, A.N., 1979. A non-parametric approach to the change-point problem. Appl. Stat. 28, 126.

[37]

Pokhrel, Y., Felfelani, F., Satoh, Y., Boulange, J., Burek, P., Gädeke, A., Gerten, D., Gosling, S.N., Grillakis, M., Gudmundsson, L., Hanasaki, N., Kim, H., Koutroulis, A., Liu, J., Papadimitriou, L., Schewe, J., Müller Schmied, H., Stacke, T., Telteu, C.-E., Thiery, W., Veldkamp, T., Zhao, F., Wada, Y., 2021. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Change 11, 226-233.

[38]

Rodell, M., Chen, J., Kato, H., Famiglietti, J.S., Nigro, J., Wilson, C.R., 2007. Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol. J. 15, 159-166.

[39]

Rodell, M., Houser, P.R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J.K., Walker, J.P., Lohmann, D., Toll, D., 2004. The global land data assimilation system. Bull. Amer. Meteorol. Soc. 85, 381-394.

[40]

Rosipal, R., Krämer, N., 2005. Overview and recent advances in partial least squares. Lect. Notes Comput. Sci. 3940, 34-51.

[41]

Save, H., Bettadpur, S., Tapley, B.D., 2016. High-resolution CSR GRACE RL 05 mascons. J. Geophys. Res.: Solid Earth 121, 7547-7569.

[42]

Scanlon, B.R., Fakhreddine, S., Rateb, A., de Graaf, I., Famiglietti, J., Gleeson, T., Grafton, R.Q., Jobbagy, E., Kebede, S., Kolusu, S.R., Konikow, L.F., Long, D., Mekonnen, M., Schmied, H.M., Mukherjee, A., MacDonald, A., Reedy, R.C., Shamsudduha, M., Simmons, C.T., Sun, A., Taylor, R.G., Villholth, K.G., Vörösmarty, C.J., Zheng, C., 2023. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth Environ. 4, 87-101.

[43]

Schlosser, C.A., Strzepek, K., Gao, X., Fant, C., Blanc, É., Paltsev, S., Jacoby, H., Reilly, J., Gueneau, A., 2014. The future of global water stress: an integrated assessment. Earth. Future 2, 341-361.

[44]

Sneyers, R., 1991. On the Statistical Analysis of Series of Observations. World Meteorological Organization, Geneva.

[45]

Song, S., Wang, S., Wu, X., Wei, Y., Cumming, G.S., Qin, Y., Wu, X., Fu, B., 2023. Identifying regime transitions for water governance in the Yellow River Basin, China. Water Resour. Res. 59, e2022WR033819.

[46]

Sophocleous, M., 2000. From safe yield to sustainable development of water resources —the Kansas experience. J. Hydrol. 235, 27-43.

[47]

Tatem, A.J., 2017. WorldPop, open data for spatial demography. Sci. Data 4, 170004.

[48]

Taylor, S.J., Letham, B., 2017. Forecasting at scale. PeerJ doi: 10.7287/peerj.preprints. 3190v2.

[49]

Veldkamp, T.I.E., Wada, Y., Aerts, J.C.J.H., Döll, P., Gosling, S.N., Liu, J., Masaki, Y., Oki, T., Ostberg, S., Pokhrel, Y., Satoh, Y., Kim, H., Ward, P.J., 2017. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nat. Commun. 8, 15697.

[50]

Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I., 2010. a multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696-1718.

[51]

Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S.E., Sullivan, C.A., Liermann, C.R., Davies, P.M., 2010. Global threats to human water security and river biodiversity. Nature 467 (7315), 555-561.

[52]

Wang, F., Wang, Z., Yang, H., Di, D., Zhao, Y., Liang, Q., Hussain, Z., 2020. Comprehensive evaluation of hydrological drought and its relationships with meteorological drought in the Yellow River basin, China. J. Hydrol. 584, 124751.

[53]

Wang, S., Fu, B., Liang, W., Liu, Y., Wang, Y., 2017. Driving forces of changes in the water and sediment relationship in the Yellow River. Sci. Total Environ. 576, 453-461.

[54]

Weiskel, P.K., Vogel, R.M., Steeves, P.A., Zarriello, P.J., DeSimone, L.A., Ries III, K.G., 2007. Water use regimes: characterizing direct human interaction with hydrologic systems. Water Resour. Res. 43, W04402.

[55]

Wu, Q., Ke, L., Wang, J., Pavelsky, T.M., Allen, G.H., Sheng, Y., Duan, X., Zhu, Y., Wu, J., Wang, L., Liu, K., Chen, T., Zhang, W., Fan, C., Yong, B., Song, C., 2023a. Satellites reveal hotspots of global river extent change. Nat. Commun. 14, 1587.

[56]

Wu, X., Feng, X., Fu, B., Yin, S., He, C., 2023b. Managing erosion and deposition to stabilize a silt-laden river. Sci. Total Environ. 881, 163444.

[57]

Xia, C., Pahl-Wostl, C., 2012. The development of water allocation management in the Yellow River Basin. Water Resour. Manage. 26, 3395-3414.

[58]

Xu, Y., Gun, Z., Zhao, J., Chen, J., Liu, Q., Cheng, X., Sutanudjaja, E.H., Wang, J., Liu, H., Zhan, W., 2023. Continuing severe water shortage in the water-receiving area of the South-to-North Water Diversion Eastern Route Project from 2002 to 2020. Water Resour. Res. 59 e2022WR034365.

[59]

Zhang, C., Dong, J., Xie, Y., Zhang, X., Ge, Q., 2022. Mapping irrigated croplands in China using a synergetic training sample generating method, machine learning classifier, and Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 112, 102888.

[60]

Zhang, S., Li, H., Li, C., Yi, Y., Wang, X., Liu, Q., 2023. Allocation of water resources in the Lower Yellow River based on ecological footprint. Front. Earth Sci. 10, 1018980.

[61]

Zhao, A., Xiang, K., Zhang, A., Zhang, X., 2022. Spatial-temporal evolution of meteorological and groundwater droughts and their relationship in the North China Plain. J. Hydrol. 610, 127903.

[62]

Zhao, M., Boll, J., 2022. Adaptation of water resources management under climate change. Front. Water 4, 983228.

[63]

Zhao, N., Liu, Y., Cai, J., Paredes, P., Rosa, R.D., Pereira, L.S., 2013. Dual crop coefficient modelling applied to the winter wheat-summer maize crop sequence in North China Plain: basal crop coefficients and soil evaporation component. Agric. Water Manage. 117, 93-105.

[64]

Zheng, L., Pan, Y., Gong, H., Huang, Z., Zhang, C., 2020. Comparing groundwater storage changes in two main grain producing areas in China: implications for sustainable agricultural water resources management. Remote Sens. 12, 2151.

[65]

Zheng, L., Wang, J., Guo, W., Wang, D., 2019. Consideration on modernization of Yellow River irrigation area in the lower reaches of the Yellow River. Sustain. Dev. 9, 75-82 (in Chinese).

[66]

Zhou, F., Bo, Y., Ciais, P., Dumas, P., Tang, Q., Wang, X., Liu, J., Zheng, C., Polcher, J., Yin, Z., Guimberteau, M., Peng, S., Ottle, C., Zhao, X., Zhao, J., Tan, Q., Chen, L., Shen, H., Yang, H., Piao, S., Wang, H., Wada, Y., 2020. Deceleration of China’s human water use and its key drivers. Proc. Natl. Acad. Sci. U.S.A. 117, 7702-7711.

[67]

Zhu, Y., Lin, Z., Wang, J., Zhao, Y., He, F., 2016. Impacts of climate changes on water resources in Yellow River Basin, China. Procedia Eng. 154, 687-695.

PDF

390

Accesses

0

Citation

Detail

Sections
Recommended

/