Land structure change and ecological effects under future development scenarios in Tarim River Basin, Central Asia

Yifeng Hou , Yaning Chen , Zhi Li , Yupeng Li , Fan Sun

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) : 100300

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) :100300 DOI: 10.1016/j.geosus.2025.100300
Research Article
research-article

Land structure change and ecological effects under future development scenarios in Tarim River Basin, Central Asia

Author information +
History +
PDF

Abstract

Soil and water matching in a land basin is important for securing land demand, alleviating human-land conflicts, and promoting sustainable development in the region. The Tarim River Basin (TRB) is the largest inland river basin in China and primarily sustains an agricultural economy centered around oases. This study employs the Patch-generating Land-Use Simulation (PLUS) model to forecast the changing patterns of land use across various future scenarios. The connection between land development and the ecological environment is examined through the lens of relative ecological value and ecological impact. The results indicate that: (1) From 1992 to 2020, the ecology of the basin showed an improving trend, with the area of new cropland increasing by 18,850.51 km2 at a growth rate of 56.13 %. Grassland area increased by 10,235.29 km2 and barren land area decreased by 20,597.29 km2. (2) Under the four tested scenarios of Natural Development, Cropland Conservation, Ecological Protection, and Urban Expansion (scenarios I-Ⅳ, respectively), the PLUS results for the year 2050 show an increase in cropland area of 12.69 % under Scenario Ⅱ, an increase in grassland area of 20,374.82 km2 under Scenario Ⅳ, and an increase in built-up land area of 1,105.57 km2 under Scenario Ⅲ. (3) A simulation of the basin’s ecology in 2050 shows a significant improvement trend under Scenario Ⅳ. Specifically, the development of a large amount of barren land into grassland and woodland has significant ecological benefits, with a contribution rate of 61.88 % to 70.18 %. This study provides a strong scientific foundation for future land management and ecological sustainable development in the TRB.

Keywords

Tarim River Basin / PLUS model / Land development scenarios / Future ecological change

Cite this article

Download citation ▾
Yifeng Hou, Yaning Chen, Zhi Li, Yupeng Li, Fan Sun. Land structure change and ecological effects under future development scenarios in Tarim River Basin, Central Asia. Geography and Sustainability, 2025, 6(4): 100300 DOI:10.1016/j.geosus.2025.100300

登录浏览全文

4963

注册一个新账户 忘记密码

Credit authorship contribution statement

Yifeng Hou: Writing - review & editing, Writing - original draft, Methodology. Yaning Chen: Supervision, Funding acquisition. Zhi Li: Supervision, Software. Yupeng Li: Software, Formal analysis. Fan Sun: Data curation, Validation.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

The research is supported by the National Natural Science Foundation of China (Grant No. W2412135), the Tianshan Yingcai Program of Xinjiang Uygur Autonomous Region (Grant No. 2022TSYCCX0038) and the International Cooperation Program of Chinese Academy of Sciences (Grant No. 131965KYSB20210045).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100300.

References

[1]

Ayanlade, A., Howard, M.T., 2017. Understanding changes in a Tropical Delta: a multimethod narrative of landuse/landcover change in the Niger Delta. Ecol. Model. 364, 53-65.

[2]

Barai, K.R., Harashina, K., Satta, N., Annaka, T., 2019. Comparative analysis of land-use pattern and socioeconomic status between shrimp- and rice- production areas in southwestern coastal Bangladesh: a land-use/cover change analysis over 30 years. J. Coast. Conserv. 23, 531-542.

[3]

Beauchard, O., Verissimo, H., Queiros, A.M., Herman, P.M.J., 2017. The use of multiple biological traits in marine community ecology and its potential in ecological indicator development. Ecol. Indic. 76, 81-96.

[4]

Borgwardt, F., Robinson, L., Trauner, D., Teixeira, H., Nogueira, A.J.A., Lillebo, A.I., Piet, G., Kuemmerlen, M., O’Higgins, T., McDonald, H., Arevalo-Torres, J., Barbosa, A.L., Iglesias-Campos, A., Hein, T., Culhane, F., 2019. Exploring variability in environmental impact risk from human activities across aquatic ecosystems. Sci. Total Environ. 652, 1396-1408.

[5]

Borrelli, P., Robinson, D.A., Panagos, P., Lugato, E., Yang, J.E., Alewell, C., Ballabio, C., 2020. Land use and climate change impacts on global soil erosion by water ( 2015-2070). Proc. Natl. Acad. Sci. U.S.A. 117 (36), 21994-22001.

[6]

Borrelli, P., Robinson, D.A., Fleischer, L.R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 8, 2013.

[7]

Chang, X., Xing, Y., Wang, J., Yang, H., Gong, W., 2022. Effects of land use and cover change (LUCC) on terrestrial carbon stocks in China between 2000 and 2018. Resour. Conserv. Recycl. 182, 106333.

[8]

Chen, D., Lu, X., Hu, W., Zhang, C., Lin, Y., 2021. How urban sprawl influences eco-environmental quality: empirical research in China by using the Spatial Durbin model. Ecol. Indic. 131, 108113.

[9]

Chen, Y., Guo, F., Wang, J., Cai, W., Wang, C., Wang, K., 2020. Provincial and gridded population projection for China under shared socioeconomic pathways from 2010 to 2100. Sci. Data 7 (1), 83.

[10]

Chen, Y., Hao, X., Chen, Y., Zhu, C., 2019a. Study on water system connectivity and ecological protection countermeasures of Tarim River Basin in Xinjiang. Bull. Chin. Acad. Sci. 34 (10), 1156-1164 (in Chinese).

[11]

Chen, Y., Li, B., Fan, Y., Sun, C., Fang, G., 2019b. Hydrological and water cycle processes of inland river basins in the arid region of Northwest China. J. Arid Land 11, 161-179.

[12]

Chen, Y., Li, Z., Li, W., Deng, H., Shen, Y., 2016. Water and ecological security: dealing with hydroclimatic challenges at the heart of China’s Silk Road. Environ. Earth Sci. 75, 881.

[13]

Chen, Y., Takeuchi, K., Xu, C., Chen, Y., Xu, Z., 2010. Regional climate change and its effects on river runoff in the Tarim Basin, China. Hydrol. Process. 20, 2207-2216.

[14]

Chen, Y., Xu, C., Hao, X., Li, W., Chen, Y., Zhu, C., Ye, Z., 2009. Fifty-year climate change and its effect on annual runoff in the Tarim River Basin, China. Quat. Int. 208, 53-61.

[15]

Chen, Z., Chen, Y., Li, W., Chen, Y., 2011. Changes of runoff consumption and its human influence intensity in the mainstream of Tarim River. Acta Geogr. Sin. 66, 89-98 (in Chinese).

[16]

da Cunha, E.R., Santos, C.A.G., da Silva, R.M., Bacani, V.M., Pott, A., 2021. Future scenarios based on a CA-Markov land use and land cover simulation model for a tropical humid basin in the Cerrado/Atlantic forest ecotone of Brazil. Land Use Policy 101, 105141.

[17]

de Graaf, I.E.M., Gleeson, T., van Beek, L.P.H., Sutanudjaja, E.H., Bierkens, M.F.P., 2019. Environmental flow limits to global groundwater pumping. Nature 574 (7776), 90-94.

[18]

Dhali, M.K., Chakraborty, M., Sahana, M., 2019. Assessing spatio-temporal growth of urban sub-centre using Shannon’s entropy model and principle component analysis: a case from North 24 Parganas, lower Ganga River Basin, India. Egypt. J. Remote Sens. Space Sci. 22 (1), 25-35.

[19]

Estacio, I., Basu, M., Sianipar, C.P., Onitsuka, K., Hoshino, S., 2022. Dynamics of land cover transitions and agricultural abandonment in a mountainous agricultural landscape: case of Ifugao rice terraces, Philippines. Landsc. Urban Plan. 222, 104394.

[20]

Fang, G., Yang, J., Chen, Y., Li, Z., Ji, H., De Maeyer, P., 2018. How hydrologic processes differ spatially in a large basin: multisite and multiobjective modeling in the Tarim River Basin. J. Geophys. Res. Atmos. 123, 7098-7113.

[21]

Fang, Z., Ding, T., Chen, J., Xue, S., Zhou, Q., Wang, Y., Wang, Y., Huang, Z., Yang, S., 2022. Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Sci. Total Environ. 831, 154967.

[22]

Feng, M., Chen, Y., Duan, W., Fang, G., Jiao, L., Sun, F., Li, Y., Hou, Y., 2022. Comprehensive evaluation of the water-energy-food nexus in the agricultural management of the Tarim River Basin, Northwest China. Agric. Water Manage. 271, 107811.

[23]

Feng, M., Chen, Y., Duan, W., Zhu, Z., Wang, C., Hu, Y., 2023. Water-energy-carbon emissions nexus analysis of crop production in the Tarim river basin, Northwest China. J. Clean. Prod. 396, 136566.

[24]

Fu, F., Deng, S., Wu, D., Liu, W., Bai, Z., 2022. Research on the spatiotemporal evolution of land use landscape pattern in a county area based on CA-Markov model. Sust. Cities Soc. 80, 103760.

[25]

Gao, L., Tao, F., Liu, R., Wang, Z., Leng, H., Zhou, T., 2022. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: a case study of Nanjing. Sust. Cities Soc. 85, 104055.

[26]

Gomes, E., Inacio, M., Bogdzevi, K., Kalinauskas, M., Karnauskait, D., Pereira, P., 2021. Future land-use changes and its impacts on terrestrial ecosystem services: a review. Sci. Total Environ. 781, 146716.

[27]

Han, J., Zhou, X., Xiang, W., 2016. Progress in research on land use effects on carbon emissions and low carbon management. Acta Ecol. Sin. 36 (4), 1152-1161 (in Chinese).

[28]

Hao, X., Hao, H., Zhang, J., 2021. Soil moisture influenced the variability of air temperature and oasis effect in a large inland basin of an arid region. Hydrol. Process. 35, e14246.

[29]

He, D., Hou, K., Wen, J., Wu, S., Wu, Z., 2022. A coupled study of ecological security and land use change based on GIS and entropy method —a typical region in Northwest China, Lanzhou. Environ. Sci. Pollut. Res. 29 (4), 6347-6359.

[30]

Hong, C., Burney, J.A., Pongratz, J., Nabel, J.E., Mueller, N.D., Jackson, R.B., Davis, S.J., 2021. Global and regional drivers of land-use emissions in 1961-2017. Nature 589 (7843), 554-561.

[31]

Hou, X., Liu, J., Zhang, D., Zhao, M., Xia, C., 2019. Impact of urbanization on the eco- efficiency of cultivated land utilization: a case study on the Yangtze River Economic Belt, China. J. Clean. Prod. 238, 117916.

[32]

Hu, C., Zhang, L., Wu, Q., Soomro, S., Jian, S., 2020. Response of LUCC on runoff generation process in middle Yellow River Basin: the Gushanchuan Basin. Water 12 (5), 1237.

[33]

Huang, J., Tang, Z., Liu, D., He, J., 2020. Ecological response to urban development in a changing socio-economic and climate context: policy implications for balancing regional development and habitat conservation. Land Use Policy 97, 104772.

[34]

Huang, W., Duan, W., Chen, Y., 2021. Rapidly declining surface and terrestrial water resources in Central Asia driven by socio-economic and climatic changes. Sci. Total Environ. 784, 147193.

[35]

Jiang, L., Liu, Y., Wu, S., Yang, C., 2021. Analyzing ecological environment change and associated driving factors in China based on NDVI time series data. Ecol. Indic. 129, 107933.

[36]

Jiao, M., Hu, M., Xia, B., 2019. Spatiotemporal dynamic simulation of land-use and landscape- pattern in the Pearl River Delta, China. Sust. Cities Soc. 49, 101581.

[37]

Jing, Y., Zhang, F., He, Y., Kung, H., Johnson, V.C., Arikena, M., 2020. Assessment of spatial and temporal variation of ecological environment quality in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Ecol. Indic. 110, 105874.

[38]

Li, C., Wu, Y., Gao, B., Zheng, K., Wu, Y., Li, C., 2021a. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China. Ecol. Indic. 132, 108328.

[39]

Li, J., Chen, X., Kurban, A., Van de Voorde, T., De Maeyer, P., Zhang, C., 2021b. Coupled SSPs-RCPs scenarios to project the future dynamic variations of water-soil-carbon-biodiversity services in Central Asia. Ecol. Indic. 129, 107936.

[40]

Li, J., Rodriguez, D., Tang, X., 2017. Effects of land lease policy on changes in land use, mechanization and agricultural pollution. Land Use Policy 64, 405-413.

[41]

Li, M., Verburg, P.H., van Vliet, J., 2022. Global trends and local variations in land take per person. Landsc. Urban Plan. 218, 104308.

[42]

Li, Y., Liu, W., Feng, Q., Zhu, M., Yang, L., Zhang, J., Yin, X., 2023. The role of land use change in affecting ecosystem services and the ecological security pattern of the Hexi Regions, Northwest China. Sci. Total Environ. 855, 158940.

[43]

Li, Z., Chen, Y., Wang, Y., Li, W., 2016. Drought promoted the disappearance of civilizations along the ancient Silk Road. Environ. Earth Sci. 75 (14), 1116.

[44]

Li, Z., Li, M., Xia, B., 2020. Spatio-temporal dynamics of ecological security pattern of the Pearl River Delta urban agglomeration based on LUCC simulation. Ecol. Indic. 114, 106319.

[45]

Liang, C., Zhang, R.C., Zeng, J., 2023. Optimizing ecological and economic benefits in areas with complex land-use evolution based on spatial subdivisions. Landsc. Urban Plan. 236, 104782.

[46]

Liang, L., Wang, Z., Li, J., 2019. The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. J. Clean. Prod. 237, 117649.

[47]

Liang, X., Guan, Q., Clarke, K.C., Liu, S., Wang, B., Yao, Y., 2021. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: a case study in Wuhan, China. Comput. Environ. Urban Syst. 85, 101569.

[48]

Ling, H., Guo, B., Zhang, G., Xu, H., Deng, X., 2019. Evaluation of the ecological protective effect of the “large basin ” comprehensive management system in the Tarim River basin, China. Sci. Total Environ. 650, 1696-1706.

[49]

Liu, M., Jiang, Y., Xu, X., Huang, Q., Huo, Z., Huang, G., 2018. Long-term groundwater dynamics affected by intense agricultural activities in oasis areas of arid inland river basins, Northwest China. Agric. Water Manage. 203, 37-52.

[50]

Liu, X., Liu, Y., Wang, Y., Liu, Z., 2022. Evaluating potential impacts of land use changes on water supply-demand under multiple development scenarios in dryland region. J. Hydrol. 610, 127811.

[51]

Liu, Y., Batty, M., Wang, S., Corcoran, J., 2019. Modelling urban change with cellular automata: contemporary issues and future research directions. Prog. Hum. Geogr. 45 (1), 3-24.

[52]

Liu, Y., Gao, J., Yang, Y., 2003. A holistic approach towards assessment of severity of land degradation along the Great Wall in Northern Shaanxi Province, China. Environ. Monit. Assess. 82, 187-202.

[53]

Luo, K., Zhang, X., 2022. Increasing urban flood risk in China over recent 40 years induced by LUCC. Landsc. Urban Plan. 219, 104317.

[54]

Maharjan, A., Kochhar, I., Chitale, V.S., Hussain, A., Gioli, G., 2020. Under-standing rural outmigration and agricultural land use change in the Gandaki Basin, Nepal. Appl. Geogr. 124, 102278.

[55]

Mainuri, Z.G., Owino, J.O., 2014. Linking landforms and land use to land degradation in the Middle River Njoro Watershed. Int. Soil Water Conserv. Res. 2 (2), 1-10.

[56]

Muyibul, Z., Xia, J., Muhtar, P., Shi, Q., Zhang, R., 2018. Spatiotemporal changes of land use/cover from 1995 to 2015 in an oasis in the middle reaches of the Keriya River, southern Tarim Basin, Northwest China. Catena 171, 416-425.

[57]

Oliver, M.A., Webster, R., 2014. A tutorial guide to geostatistics: computing and modelling variograms and kriging. Catena 113, 56-69.

[58]

Peng, Q., Wang, R., Jiang, Y., Zhang, W., Liu, C., Zhou, L., 2022. Soil erosion in Qilian Mountain national park: dynamics and driving mechanisms. J. Hydrol. Reg. Stud. 42, 101144.

[59]

Peng, S., Ciais, P., Maignan, F., Li, W., Chang, J., Wang, T., Yue, C., 2017. Sensitivity of land use change emission estimates to historical land use and land cover mapping. Glob. Biogeochem. Cycle. 31 (4), 626-643.

[60]

Qiu, S., Peng, J., Dong, J., Wang, X., Ding, Z., Zhang, H., Mao, Q., Liu, H., Quine, T.A., Meersmans, J., 2021. Understanding the relationships between ecosystem services and associated social-ecological drivers in a karst region: a case study of Guizhou Province, China. Prog. Phys. Geogr. 45 (1), 98-114.

[61]

Ren, Y., Li, Z., Li, J., Dashtseren, A., Li, Y., Altanbagana, M., 2022. Comparative analysis of driving forces of land use/cover change in the upper, middle and lower reaches of the Selenga River Basin. Land Use Policy 117, 106118.

[62]

Shi, K., Liu, G., Zhou, L., Cui, Y., Liu, S., Wu, Y., 2023a. Satellite remote sensing data reveal increased slope climbing of urban land expansion worldwide. Landsc. Urban Plan. 235, 104755.

[63]

Shi, Q., Gu, C., Xiao, C., 2023b. Multiple scenarios analysis on land use simulation by coupling socioeconomic and ecological sustainability in Shanghai, China. Sust. Cities Soc. 95, 104578.

[64]

Song, Y., Xue, D., Dai, L., Huang, X., 2018. Land use change and its effect on ecological response in typical fossil energy development zones in Shanxi, Shaanxi and Inner Mongolia. Arid Zone Res. 35 (5), 1199-1207 (in Chinese).

[65]

Song, Y., Xue, D., Dai, L., Wang, P., Huang, X., Xia, S., 2020. Land cover change and eco-environmental quality response of different geomorphic units on the Chinese Loess Plateau. J. Arid Land 12 (1), 29-43.

[66]

Spera, S.A., Galford, G.L., Coe, M.T., Macedo, M.N., Mustard, J.F., 2016. Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob. Change Biol. 22, 3405-3413.

[67]

Sterling, S.M., Ducharne, A., Polcher, J., 2013. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Change 3 (4), 385-390.

[68]

Sudhira, H.S., Ramachandra, T.V., Jagadish, K.S., 2004. Urban sprawl: metrics, dynamics and modelling using GIS. Int. J. Appl. Earth Obs. Geoinf. 5, 29-39.

[69]

Sun, R., Wu, Z., Chen, B., Yang, C., Qi, D., Lan, G., Fraedrich, K., 2020. Effects of land-use change on eco-environmental quality in Hainan Island, China. Ecol. Indic. 109, 105777.

[70]

Tang, Q., Wang, J., Jing, Z., Yan, Y., Niu, H., 2021. Response of ecological vulnerability to land use change in a resource-based city, China. Resour. Policy 74, 102324.

[71]

Tian, S., Wang, S., Bai, X., Luo, G., Li, Q., Yang, Y., Hu, Z., Li, C., Deng, Y., 2021. Global patterns and changes of carbon emissions from land use during 1992-2015. Environ. Sci. Technol. 7, 100108.

[72]

Wang, C., Jiang, Q., Shao, Y., Sun, S., Xiao, L., Guo, J., 2019. Ecological environment assessment based on land use simulation: a case study in the Heihe River Basin. Sci. Total Environ. 697, 133928.

[73]

Wang, M., Jiang, Z., Li, T., Yang, Y., Zhuo, Z., 2023a. Analysis on absolute conflict and relative conflict of land use in Xining metropolitan area under different scenarios in 2030 by PLUS and PFCI. Cities 137, 104314.

[74]

Wang, Q., Guan, Q., Sun, Y., Du, Q., Xiao, X., Luo, H., Zhang, J., Mi, J., 2023b. Simulation of future land use/cover change (LUCC) in typical watersheds of arid regions under multiple scenarios. J. Environ. Manage. 335, 117543.

[75]

Wang, Q., Li, W., Li, T., Li, X., Liu, S., 2018. Goaf water storage and utilization in arid regions of northwest China: a case study of Shennan coal mine district. J. Clean. Prod. 202, 33-44.

[76]

Wang, W., Chen, Y., Wang, W., 2020a. Groundwater recharge in the oasis-desert areas of northern Tarim Basin, Northwest China. Hydrol. Res. 51, 1506-1520.

[77]

Wang, Y., Chen, Y., Ding, J., Fang, G., 2015. Land-use conversion and its attribution in the Kaidu-Kongqi River Basin, China. Quat. Int. 380, 216-223.

[78]

Wang, Y., Zhang, S., Zhen, H., Chang, X., Shataer, R., Li, Z., 2020b. Spatiotemporal evolution characteristics in ecosystem service values based on land use/cover change in the Tarim River Basin, China. Sustainability 12 (18), 7759.

[79]

Wen, B., Heng, Z., Xiao, Y., Hua, Q., Zi, Y., 2024. Ecosystem services response to future land use/cover change (LUCC) under multiple scenarios: a case study of the Beijing- Tianjin-Hebei (BTH) region, China. Technol. Forecast. Soc. Chang. 205, 123525.

[80]

Wu, J., Luo, J., Zhang, H., Qin, S., Yu, M., 2022. Projections of land use change and habitat quality assessment by coupling climate change and development patterns. Sci. Total Environ. 847, 157491.

[81]

Wu, J., Zhang, D., Wang, H., Li, X., 2021. What is the future for production-living-ecological spaces in the Greater Bay Area? A multi-scenario perspective based on DEE. Ecol. Indic. 131, 108171.

[82]

Xie, G., Zhang, C., Zhang, L., Chen, W., Li, S., 2015. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 30, 1243-1254 (in Chinese).

[83]

Xue, L., Wang, J., Zhang, L., Wei, G., Zhu, B., 2019. Spatiotemporal analysis of ecological vulnerability and management in the Tarim River Basin, China. Sci. Total Environ. 649, 876-888.

[84]

Yan, Z., Zhou, D., Li, Y., Zhang, L., 2021. An integrated assessment on the warming effects of urbanization and agriculture in highly developed urban agglomerations of China. Sci. Total Environ. 804, 150119.

[85]

Yang, B., Chen, X., Wang, Z., Li, W., Zhang, C., Yao, X., 2020b. Analyzing land use structure efficiency with carbon emissions: a case study in the middle reaches of the Yangtze River, China. J. Clean. Prod. 274, 123076.

[86]

Yang, J., Gong, J., Tang, W., Liu, C., 2020c. Patch-based cellular automata model of urban growth simulation: integrating feedback between quantitative composition and spatial configuration. Comput. Environ. Urban Syst. 79, 101402.

[87]

Yang, L., Xie, Y., Zong, L., Qiu, T., Jiao, J., 2020a. Land use optimization configuration based on multi-objective genetic algorithm and FLUS model of agro-pastoral ecotone in Northwest China. J. Geo-Inf. Sci. 22, 568-579.

[88]

Yang, Y., 2021. Evolution of habitat quality and association with land-use changes in mountainous areas: a case study of the Taihang Mountains in Hebei Province, China. Ecol. Indic. 129, 107967.

[89]

Yang, Z., Li, W., Li, X., Wang, Q., He, J., 2019. Assessment of eco-geo-environment quality using multivariate data: a case study in a coal mining area of Western China. Ecol. Indic. 107, 105651.

[90]

Yin, J., He, F., Xiong, Y., Qiu, G., 2017. Effects of land use/land cover and climate changes on surface runoff in a semi-humid and semi-arid transition zone in northwest China. Hydrol. Earth Syst. Sci. 21, 183-196.

[91]

Yu, Y., Li, J., Zhou, Z., Ma, X., Zhang, X., 2021. Response of multiple mountain ecosystem services on environmental gradients: how to respond, and where should be priority conservation? J. Clean. Prod. 278, 123264.

[92]

Zhang, S., Wang, Y., Wang, Y., Li, Z., Hou, Y., 2023a. Spatiotemporal evolution and influencing mechanisms of ecosystem service value in the Tarim River Basin, Northwest China. Remote Sens. 15 (3), 591.

[93]

Zhang, Y., Wu, D., Lyu, X., 2020. A review on the impact of land use/land cover change on ecosystem services from a spatial scale perspective. J. Nat. Resour. 35, 1172-1189.

[94]

Zhang, Z., Hu, B., Jiang, W., Qiu, H., 2021. Identification and scenario prediction of degree of wetland damage in Guangxi based on the CA-Markov model. Ecol. Indic. 127, 107764.

[95]

Zhang, Z., Jiang, W., Peng, K., Wu, Z., Ling, Z., Li, Z., 2023b. Assessment of the impact of wetland changes on carbon storage in coastal urban agglomerations from 1990 to 2035 in support of SDG15.1. Sci. Total Environ. 877, 162824.

[96]

Zhang, Z., Li, X., Liu, X., Zhao, K., 2024. Dynamic simulation and projection of land use change using system dynamics model in the Chinese Tianshan mountainous region, central Asia. Ecol. Modell. 487, 110564.

[97]

Zhao, M., He, Z., Du, J., Chen, L., Lin, P., Fang, S., 2019. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 98, 29-38.

[98]

Zhu, Z., Woodcock, C.E., 2014. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 144, 152-171.

PDF

158

Accesses

0

Citation

Detail

Sections
Recommended

/