Optimizing cropland expansion for minimizing ecosystem service loss in China

Siyan Zeng , Junna Liu , Jing Ma , Yongjun Yang , Gang-Jun Liu , Fu Chen

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) : 100299

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) :100299 DOI: 10.1016/j.geosus.2025.100299
Research Article
research-article

Optimizing cropland expansion for minimizing ecosystem service loss in China

Author information +
History +
PDF

Abstract

Global population growth and rising standards of living are the driving factors for the cropland expansion to meet increasing demands. However, there is no clear assessment of the specific losses on ecosystem services caused by China’s expansion of cropland to ensure food security at the cost of losing ecological land such as forests and grasslands. This study employed the ArcGIS platform and integrated valuation of ecosystem services and tradeoffs (InVEST) model to explore the cropland expansion in China from 2000 to 2020 and its impact on ecosystem services, so as to predict the priority areas of future cropland expansion in different scenarios. The results indicated that in the past 20 years, the total area of cropland expansion in China was 17.04 million hm2 with 70.79 % conversion from forests and grasslands. Cropland expansion has contributed to an overall improvement in the food supply services with the Northern Arid and Semi-Arid Region exhibiting an increase of 18.76 × 106 tons, while concurrently leading to a decline in habitat quality services. The priority areas for future cropland expansion without ecological loss were found to be 1.42 million hm², which only account for 9.44 % of the total reclaimable land. To minimize the loss of ecosystem services, there is a need to adjust the cropland replenishment policies and provide an operational solution for global food security and ecological protection.

Keywords

Cropland expansion / Ecosystem services / InVEST model / Spatial trade-offs / China

Cite this article

Download citation ▾
Siyan Zeng, Junna Liu, Jing Ma, Yongjun Yang, Gang-Jun Liu, Fu Chen. Optimizing cropland expansion for minimizing ecosystem service loss in China. Geography and Sustainability, 2025, 6(4): 100299 DOI:10.1016/j.geosus.2025.100299

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Siyan Zeng: Writing - review & editing, Writing - original draft, Methodology, Formal analysis, Data curation, Conceptualization. Junna Liu: Writing - review & editing, Writing - original draft, Formal analysis. Jing Ma: Writing - review & editing. Yongjun Yang: Writing - review & editing. Gang-Jun Liu: Writing - review & editing. Fu Chen: Writing - review & editing, Writing - original draft, Supervision, Methodology, Funding acquisition, Conceptualization.

Declaration of competing interests

The authors declares that there are no known competing financial interests or personal relationships that influenced the work reported in this paper.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 52374170), the Major Special Projects of the Third Comprehensive Scientific Exploration in Xinjiang (Grant No. 2022xjkk1005), and the Fundamental Research Funds for the Central Universities (Grant No. B230207001).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100299.

References

[1]

Bongaarts, J., 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Popul. Dev. Rev. 45 (3), 680-681. doi: 10.1111/padr.12283.

[2]

Chaplin-Kramer, R., Sharp, R.P., Mandle, L., Sim, S., Johnson, J., Butnar, I., Milà I Canals, L., Eichelberger, B.A., Ramler, I., Mueller, C., McLachlan, N., Yousefi, A., King, H., Kareiva, P.M., 2015. Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage. Proc. Natl. Acad. Sci. U.S.A. 112 (24), 7402-7407. doi: 10.1073/pnas.1406485112.

[3]

Deng, Y.J., Yao, S.B., Hou, M.Y., Zhang, T.Y., Lu, Y.N., Gong, Z.W., Wang, Y.F., 2020. Assessing the effects of the Green for Grain Program on ecosystem carbon storage service by linking the InVEST and FLUS models: a case study of Zichang county in hilly and gully region of Loess Plateau. J. Nat. Resour. 35 (4), 826-844. doi: 10.31497/zrzyxb.20200407, (in Chinese).

[4]

Fernández-Tizón, M., Emmenegger, T., Perner, J., Hahn, S., 2020. Arthropod biomass increase in spring correlates with NDVI in grassland habitat. Sci. Nat. 107, 42. doi: 10.1007/s00114-020-01698-7.

[5]

Folberth, C., Khabarov, N., Balkovi č, J., Skalský, R., Visconti, P., Ciais, P., Janssens, I.A., Peñuelas, J., Obersteiner, M., 2020. The global cropland-sparing potential of highyield farming. Nat. Sustain. 3 (4), 281-289. doi: 10.1038/s41893-020-0505-x.

[6]

Gandhi, M.G., Parthiban, S., Thummalu, N., Christy, A., 2015. NDVI: vegetation change detection using remote sensing and GIS - a case study of Vellore District. Procedia Comput. Sci. 57, 1199-1210. doi: 10.1016/j.procs.2015.07.415.

[7]

Giuan, X., Zhang, F., Li, L., Guo, L., Shao, Z., 2010. Suitability evaluation of reserve resources of cultivated land development in Beijing. Trans. Chin. Soc. Agric. Eng. 26 (12), 304-310 (in Chinese).

[8]

He, C., Zhang, D., Huang, Q., Zhao, Y., 2016. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environ. Modell. Softw. 75, 44-58. doi: 10.1016/j.envsoft.2015.09.015.

[9]

Hu, Q., Xiang, M., Chen, D., Zhou, J., Wu, W., Song, Q., 2020. Global cropland intensification surpassed expansion between 2000 and 2010: a spatio-temporal analysis based on GlobeLand30. Sci. Total Environ. 746, 141035. doi: 10.1016/j.scitotenv.2020.141035.

[10]

Hu, S., Cao, M.M., Liu, Q., Zhang, T.Q., Qiu, H.J., Liu, W., Song, J.X., 2014. Comparative study on the soil conservation function of InVEST model under different perspectives. Geogr. Res. 33 (12), 2393-2406. doi: 10.11821/dlyj201412016, (in Chinese).

[11]

Huang, C., Zhao, D., Liao, Q., Xiao, M., 2023. Linking landscape dynamics to the relationship between water purification and soil retention. Ecosyst. Serv. 59, 101498. doi: 10.1016/j.ecoser.2022.101498.

[12]

Jia, Q., Jiao, L., Hu, Y., Lian, X., Tian, Y., Liu, X., Zhang, H., 2023. Telecoupling indirect ecological impacts of urban expansion in China from the perspective of the food trade. Land Degrad. Dev. 34, 4964-4976. doi: 10.1002/ldr.4822.

[13]

Jian, Z., Sun, Y., Wang, F., Zhou, C., Pan, F., Meng, W., Sui, M., 2024. Soil conservation ecosystem service supply-demand and multi scenario simulation in the Loess Plateau, China. Glob. Ecol. Conserv. 49, e02796. doi: 10.1016/j.gecco.2023.e02796.

[14]

Ke, X., van Vliet, J., Zhou, T., Verburg, P.H., Zheng, W., Liu, X., 2018. Direct and indirect loss of natural habitat due to built-up area expansion: a modelbased analysis for the city of Wuhan, China. Land Use Policy 74, 231-239. doi: 10.1016/j.landusepol.2017.12.048.

[15]

Kong, L., Wu, T., Xiao, Y., Xu, W., Zhang, X., Daily, G.C., Ouyang, Z., 2023. Natural capital investments in China undermined by reclamation for cropland. Nat. Ecol. Evol. 7 (11), 1771-1777. doi: 10.1038/s41559-023-02198-3.

[16]

Kuang, W., Liu, J., Tian, H., Shi, H., Dong, J., Song, C., Li, X., Du, G., Hou, Y., Lu, D., Chi, W., Pan, T., Zhang, S., Hamdi, R., Yin, Z., Yan, H., Yan, C., Wu, S., Li, R., Yang, J., Dou, Y., Wu, W., Liang, L., Xiang, B., Yang, S., 2022. Cropland redistribution to marginal lands undermines environmental sustainability. Nat. Sci. Rev. 9 (1), nwab091. doi: 10.1093/nsr/nwab091.

[17]

Lal, R., 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304 (5677), 1623-1627. doi: 10.1126/science.1097396.

[18]

Li, C., Kandel, M., Anghileri, D., Oloo, F., Kambombe, O., Chibarabada, T.P., Ngongondo, C., Sheffield, J., Dash, J., 2021a. Recent changes in cropland area and productivity indicate unsustainable cropland expansion in Malawi. Environ. Res. Lett. 16, 084052. doi: 10.1088/1748-9326/ac162a.

[19]

Li, F., Wu, S., Liu, H., Yan, D., 2024. Biodiversity loss through cropland displacement for urban expansion in China. Sci. Total Environ. 907, 167988. doi: 10.1016/j.scitotenv.2023.167988.

[20]

Li, M., Liang, D., Xia, J., Song, J., Cheng, D., Wu, J., Cao, Y., Sun, H., Li, Q., 2021b. Evaluation of water conservation function of Danjiang River Basin in Qinling Mountains, China based on InVEST model. J. Environ. Manage. 286, 112212. doi: 10.1016/j.jenvman.2021.112212.

[21]

Li, M., Zhou, Y., Xiao, P., Tian, Y., Huang, H., Xiao, L., 2021c. Evolution of habitat quality and its topographic gradient effect in Northwest Hubei Province from 2000 to 2020 based on the InVEST model. Land (Basel) 10 (8), 857. doi: 10.3390/land10080857.

[22]

Li, W., Buitenwerf, R., Munk, M., Amoke, I., Bøcher, P.K., Svenning, J.-C., 2020. Accelerating savanna degradation threatens the Maasai Mara socioecological system. Glob. Environ. Change-Human Policy Dimens. 60, 102030. doi: 10.1016/j.gloenvcha.2019.102030.

[23]

Li, X., Chen, Y., 2020. Projecting the future impacts of China’s cropland balance policy on ecosystem services under the shared socioeconomic pathways. J. Clean. Prod. 250, 119489. doi: 10.1016/j.jclepro.2019.119489.

[24]

Li, X., Liu, Z., Li, S., Li, Y., 2022. Multi-scenario simulation analysis of land use impacts on habitat quality in Tianjin based on the PLUS model coupled with the InVEST model. Sustainability 14, 6923. doi: 10.3390/su14116923.

[25]

Liu, L., Xu, X., Liu, J., Chen, X., Ning, J., 2014. Impact of farmland changes on production potential in China during recent two decades. Acta Geogr. Sin. 69, 1767-1778 (in Chinese).

[26]

Liu, X., Zhao, C., Song, W., 2017. Review of the evolution of cultivated land protection policies in the period following China’s reform and liberalization. Land Use Policy 67, 660-669. doi: 10.1016/j.landusepol.2017.07.012.

[27]

Liu, Z., Liu, Y., Wang, J., 2021. A global analysis of agricultural productivity and water resource consumption changes over cropland expansion regions. Agric. Ecosyst. Environ. 321, 107630. doi: 10.1016/j.agee.2021.107630.

[28]

Mao, D., Luo, L., Wang, Z., Wilson, M.C., Zeng, Y., Wu, B., Wu, J., 2018. Conversions between natural wetlands and farmland in China: a multiscale geospatial analysis. Sci. Total Environ. 634, 550-560. doi: 10.1016/j.scitotenv.2018.04.009.

[29]

Mao, D., He, X., Wang, Z., Tian, Y., Xiang, H., Yu, H., Man, W., Jia, M., Ren, C., Zheng, H., 2019. Diverse policies leading to contrasting impacts on land cover and ecosystem services in Northeast China. J. Clean. Prod. 240, 117961. doi: 10.1016/j.jclepro.2019.117961.

[30]

McDonald, R.I., Guneralp, B., Huan, C.-W., Seto, K.C., You, M., 2018. Conservation priorities to protect vertebrate endemics from global urban expansion. Biol. Conserv. 224, 290-299. doi: 10.1016/j.biocon.2018.06.010.

[31]

Meng, Z., Dong, J., Ellis, E.C., Metternicht, G., Qin, Y., Song, X.-P., Löfqvist, S., Garrett, R.D., Jia, X., Xiao, X., 2023. Post- 2020 biodiversity framework challenged by cropland expansion in protected areas. Nat. Sustain. 6, 758-768. doi: 10.1038/s41893-023-01093-w.

[32]

Ministry of Water Resources of the People’s Republic of China (MWR of China), 2021. The Water Resources Bulletin in 2020.

[33]

Mukhopadhyay, A., Hati, J.P., Acharyya, R., Pal, I., Tuladhar, N., Habel, M., 2024. Global trends in using the InVEST model suite and related research: a systematic review. Ecohydrol. Hydrobiol. 25 (2), 389-405. doi: 10.1016/j.ecohyd.2024.06.002.

[34]

Pendrill, F., Persson, U.M., Godar, J., Kastner, T., Moran, D., Schmidt, S., Wood, R., 2019. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change-Human Policy Dimens. 56, 1-10. doi: 10.1016/j.gloenvcha.2019.03.002.

[35]

Qiu, B., Li, H., Tang, Z., Chen, C., Berry, J., 2020. How cropland losses shaped by unbalanced urbanization process? Land Use Policy 96, 104715. doi: 10.1016/j.landusepol.2020.104715.

[36]

Rands, M.R.W., Adams, W.M., Bennun, L., Butchart, S.H.M., Clements, A., Coomes, D., Entwistle, A., Hodge, I., Kapos, V., Scharlemann, J.P.W., Sutherland, W.J., Vira, B., 2010. Biodiversity conservation: challenges beyond 2010. Science 329 (5997), 1298-1303. doi: 10.1126/science.1189138.

[37]

Sun, X., Yang, G., Ou, W., Xu, X., 2014. Impacts of cropland change on ecosystem services in the Taihu Lake Basin. J. Nat. Resour. 29, 1675-1685.

[38]

Tang, L., Ke, X., Chen, Y., Wang, L., Zhou, Q., Zheng, W., Xiao, B., 2021. Which impacts more seriously on natural habitat loss and degradation? Cropland expansion or urban expansion? Land Degrad. Dev. 32 (2), 946-964. doi: 10.1002/ldr.3768.

[39]

Tollefson, J., 2019. One million species face extinction. Nature 569 (7755), 171. doi: 10.1038/d41586-019-01448-4.

[40]

Tu, Y., Chen, B., Yu, L., Xin, Q., Gong, P., Xu, B., 2021. How does urban expansion interact with cropland loss? A comparison of 14 Chinese cities from 1980 to 2015. Landsc. Ecol. 36 (1), 243-263. doi: 10.1007/s10980-020-01137-y.

[41]

van Vliet, J., Eitelberg, D.A., Verburg, P.H., 2017. A global analysis of land take in cropland areas and production displacement from urbanization. Glob. Environ. Change-Human Policy Dimens. 43, 107-115. doi: 10.1016/j.gloenvcha.2017.02.001.

[42]

Wang, L., Zhang, S., Xiong, Q., Liu, Y., Liu, Y., Liu, Y., 2022. Spatiotemporal dynamics of cropland expansion and its driving factors in the Yangtze River Economic Belt: a nuanced analysis at the county scale. Land Use Policy 119, 106168. doi: 10.1016/j.landusepol.2022.106168.

[43]

Xia, H., Yuan, S., Prishchepov, A.V., 2023. Spatial-temporal heterogeneity of ecosystem service interactions and their social-ecological drivers: implications for spatial planning and management. Resour. Conserv. Recycl. 189, 106767. doi: 10.1016/j.resconrec.2022.106767.

[44]

Xiao, L., Yang, X., Chen, S., Cai, H., 2015. Suitability assessment of reserve cultivated land resources south of the Yangtze River. Resour. Sci. 37, 2030-2038.

[45]

Xiao, P., Zhou, Y., Li, M., Xu, J.J.E., 2023. Spatiotemporal patterns of habitat quality and its topographic gradient effects of Hubei Province based on the InVEST model. Environ. Dev. Sustain. 25, 6419-6448.

[46]

Xiao, Q., Hu, D., Xiao, Y., 2016. Assessing changes in soil conservation ecosystem services and causal factors in the Three Gorges Reservoir region of China. J. Clean. Prod. 163, S172-S180. doi: 10.1016/j.jclepro.2016.09.012.

[47]

Yang, B., Ke, X., van Vliet, J., Yu, Q., Zhou, T., Verburg, P.H., 2020b. Impact of cropland displacement on the potential crop production in China: a multi-scale analysis. Reg. Environ. Change 20 (3), 97. doi: 10.1007/s10113-020-01690-x.

[48]

Yang, X., Yang, X., Yang, X., Chen, R., Chen, R., Chen, R., Meadows, M.E., Meadows, M.E., Ji, G., Ji, G., Xu, J., Xu, J., Xu, J., 2020a. Modelling water yield with the InVEST model in a data scarce region of northwest China. Water Sci. Technol.-Water Supply 20 (3), 1035-1045. doi: 10.2166/ws.2020.026.

[49]

Zabel, F., Delzeit, R., Schneider, J.M., Seppelt, R., Mauser, W., Václavík, T., 2019. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 10 (1), 2844. doi: 10.1038/s41467-019-10775-z.

[50]

Zeng, S., Chen, F., Liu, G.-J., Raveloaritiana, E., Wanger, T.C., 2023. Fallow priority areas for spatial trade-offs between cost and efficiency in China. Commun. Earth Environ. 4 (1), 183. doi: 10.1038/s43247-023-00850-1.

[51]

Zhang, G., Wu, Y., Zhao, Y., 2010. Physical suitability evaluation of reserve resources of cultivated land in China based on SOTER. Trans. Chin. Soc. Agric. Eng. 26, 1-8 (in Chinese).

[52]

Zheng, W., Ke, X., Zhong, T., Yang, B., 2019. Trade-offs between cropland quality and ecosystem services of marginal compensated cropland-a case study in Wuhan, China. Ecol. Indic. 105, 613-620. doi: 10.1016/j.ecolind.2018.05.089.

[53]

Zhong, H., Liu, Z., Wang, J., 2022. Understanding impacts of cropland pattern dynamics on grain production in China: a integrated analysis by fusing statistical data and satellite-observed data. J. Environ. Manage. 313, 114988. doi: 10.1016/j.jenvman.2022.114988.

PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

/