Exploring regional variations in agricultural greenhouse gas emissions: Insights from Bangladesh’s districts

Shaikh Shamim Hasan , Zhihui Li , Fan Zhang

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) : 100298

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) :100298 DOI: 10.1016/j.geosus.2025.100298
Research Article
research-article

Exploring regional variations in agricultural greenhouse gas emissions: Insights from Bangladesh’s districts

Author information +
History +
PDF

Abstract

Agriculture is part of the food production that feeds the expanding population though it produces considerable greenhouse gas (GHG) emissions. It’s crucial to balancing food security and emission reduction for a win-win scenario. However, the lack of sufficient comprehensive district-level assessments makes it difficult to determine the specific mitigation potential for agriculture emissions. In this study, we deployed the IPCC Tier 1 approach and estimated GHG at district/division level in Bangladesh from the year 2010 to 2021. We computed three primary GHG (CO2, N2O, and CH4) from five sources of agriculture, namely, rice-growing CH4, other crops-growing N2O, enteric fermentation, urea fertilizer-induced N2O, and energy-related CO2 emissions in the 64 districts, and aggregated them into eight divisions. We observed from this study that GHG emissions in Bangladesh gradually increased from 2010 to 2021 and reached the peak (34.3 MtCO2e) in 2021. Rangpur division emitted the highest amount of GHG (6.03 MtCO2e in 2021) during this period. We also observed significant variations in the sources and structure of emissions within each division. Moreover, regional differences were observed in overall emissions and per capita emissions after additional spatial analysis, with per capita GHG emissions declining from 2010 (1.97 tCO2e) to 2021 (1.90 tCO2e). Findings of this regional (district/division) estimation will help stakeholders of the country to develop suitable mitigation approaches which targets particular emission sources and geographic areas.

Keywords

Agricultural production / Agri-food system / Greenhouse gas emissions / Spatial pattern / Bangladesh

Cite this article

Download citation ▾
Shaikh Shamim Hasan, Zhihui Li, Fan Zhang. Exploring regional variations in agricultural greenhouse gas emissions: Insights from Bangladesh’s districts. Geography and Sustainability, 2025, 6(4): 100298 DOI:10.1016/j.geosus.2025.100298

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Shaikh Shamim Hasan: Writing - review & editing, Writing - original draft, Validation, Supervision, Resources, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Zhihui Li: Visualization, Project administration, Funding acquisition, Conceptualization. Fan Zhang: Validation, Software, Formal analysis.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant No. 72221002) and the Chinese Academy of Sciences President’s International Fellowship Initiative (PIFI) (Grant No. 2024VCA0001).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100298.

References

[1]

Ahmed, Z., Ahmad, M., Rjoub, H., Kalugina, O.A., Hussain, N., 2021. Economic growth, renewable energy consumption, and ecological footprint: exploring the role of environmental regulations and democracy in sustainable development. Sustain. Dev. 30 (4), 595-605. doi: 10.1002/sd.2251.

[2]

Alae-Carew, C., Green, R., Stewart, C., Cook, B., Dangour, A.D., Scheelbeek, P.F.D., 2022. The role of plant-based alternative foods in sustainable and healthy food systems: consumption trends in the UK. Sci. Total Environ. 807, 151041. doi: 10.1016/j.scitotenv.2021.151041.

[3]

Bakam, I., Balana, B.B., Matthews, R., 2012. Cost-effectiveness analysis of policy instruments for greenhouse gas emission mitigation in the agricultural sector. J. Environ. Manage. 112, 33-44. doi: 10.1016/j.jenvman.2012.07.001.

[4]

Bangladesh Bureau of Statistics, 2016. Statistical Yearbook of Bangladesh 2016. Planning Division, Ministry of Planning, Government of the People’s Republic of Bangladesh.

[5]

Bangladesh Bureau of Statistics, 2022. Statistical Year Book of Bangladesh 2022. Planning Division, Ministry of Planning, Government of the People’s Republic of Bangladesh.

[6]

Bangladesh Bureau of Statistics, 2023. Statistical Year Book of Bangladesh 2023. Planning Division, Ministry of Planning, Government of the People’s Republic of Bangladesh.

[7]

Chen, M., Cui, Y., Jiang, S., Forsell, N., 2022. Toward carbon neutrality before 2060: trajectory and technical mitigation potential of non-CO2 greenhouse gas emissions from Chinese agriculture. J. Clean. Prod. 368, 133186. doi: 10.1016/j.jclepro.2022.133186.

[8]

Chowdhury, T., Chowdhury, H., Ahmed, A., Park, Y.K., Chowdhury, P., Hossain, N., Sait, S.M., 2020. Energy, exergy, and sustainability analyses of the agricultural sector in Bangladesh. Sustainability 12 (11), 4447. doi: 10.3390/su12114447.

[9]

Clark, M.A., Domingo, N.G.G., Colgan, K., Thakrar, S.K., Tilman, D., Lynch, J., Azevedo, I.L., Hill, J.D., 2020. Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. Science 370 (651), 705-708. doi: 10.1126/science.aba7357.

[10]

Crippa, M., Solazzo, E., Guizzardi, D., Monforti-Ferrario, F., Tubiello, F.N., Leip, A., 2021. Food systems are responsible for a third of Global anthropogenic GHG emissions. Nat. Food 2 (3), 198-209. doi: 10.1038/s43016-021-00225-9.

[11]

Djekic, I., Sanjuan, N., Clemente, G., Jambrak, A.R., Djukic-Vukovic, A., Brodnjak, U.V., Pop, E., Thomopoulos, R., Tonda, A., 2018. Review on environmental models in the food chain-current status and future perspectives. J. Clean. Prod. 176, 1012-1025. doi: 10.1016/j.jclepro.2017.11.241.

[12]

Du, Y., Liu, H., Huang, H., Li, X., 2023. The carbon emission reduction effect of agricultural policy-evidence from China. J. Clean. Prod. 406, 137005. doi: 10.1016/j.jclepro.2023.137005.

[13]

Foong, A., Pradhan, P., Fror, O., Kropp, J.P., 2022. Adjusting agricultural emissions for trade matters for climate change mitigation. Nat. Commun. 13 (1), 3024. doi: 10.1038/s41467-022-30607-x.

[14]

Gao, L., Huang, J., Chen, X., Chen, Y., Liu, M., 2018. Contributions of natural climate changes and human activities to the trend of extreme precipitation. Atmos. Res. 205, 60-69. doi: 10.1016/j.atmosres.2018.02.006.

[15]

Government of Bangladesh, 2012. Second National Communication of Bangladesh to the United Nations Framework Convention on Climate Change. Ministry of Environment & Forests, Government of the People’s Republic of Bangladesh.

[16]

Gokmenoglu, K.K., Taspinar, N., 2018. Testing the agriculture-induced EKC hypothesis: the case of Pakistan. Environ. Sci. Pollut. Res. 25 (23), 22829-22841. doi: 10.1007/s11356-018-2330-6.

[17]

Hamid, I., Alam, M.S., Murshed, M., Jena, P.K., Sha, N., Alam, M.N., 2021. The roles of foreign direct investments, economic growth, and capital investments in decarbonizing the economy of Oman. Environ. Sci. Pollut. Res. 29, 22122-22138. doi: 10.1007/s11356-021-17246-3.

[18]

Han, J., Qu, J., Maraseni, T.N., Xu, L., Zeng, J., Li, H., 2021. A critical assessment of provincial-level variation in agricultural GHG emissions in China. J. Environ. Manage. 296, 113190. doi: 10.1016/j.jenvman.2021.113190.

[19]

Hasan, S.S., Deng, X., Li, Z., Chen, D., 2017b. Projections of future land use in Bangladesh under the background of baseline, ecological protection and economic development. Sustainability 9 (4), 505. doi: 10.3390/su9040505.

[20]

Hasan, S.S., Hossain, M., Sultana, S., Ghosh, M.K., 2015. Women’s involvement in income generating activities and their opinion about its contribution: a study of Gazipur District, Bangladesh. Sci. Innov. 3 (6), 72-80. doi: 10.11648/j.si.20150306.13.

[21]

Hasan, S.S., Turin, M.Z., Ghosh, M.K., Khalil, M.I., 2017a. Assessing agricultural extension professionals opinion towards sustainable agriculture in Bangladesh. Asian J. Agric. Ext. Econ. Sociol. 17 (1), 1-13. doi: 10.9734/AJAEES/2017/33338.

[22]

Heffer, P., Gruère, A., Roberts, T., 2017. Assessment of Fertilizer Use by Crop at the Global Level 2014-2014/15. International Fertilizer Association (IFA) and International Plant Nutrition Institute (IPNI), France.

[23]

Hong, C., Burney, J.A., Pongratz, J., Nabel, J.E.M.S., Mueller, N.D., Jackson, R.B., Davis, S.J., 2021. Global and regional drivers of land-use emissions in 1961-2017. Nature 589 (7843), 554-561. doi: 10.1038/s41586-020-03138-y.

[24]

Hong, C., Zhao, H., Qin, Y., Burney, J.A., Pongratz, J., Hartung, K., Liu, Y., Moore, F.C., Jackson, R.B., Zhang, Q., Davis, S.J., 2022. Land-use emissions embodied in international trade. Science 376 (6593), 597-603. doi: 10.1126/science.abj1572.

[25]

Hu, Y., Su, M., Jiao, L., 2023. Peak and fall of China’s agricultural GHG emissions. J. Clean. Prod. 389, 136035. doi: 10.1016/j.jclepro.2023.136035.

[26]

Hu, Y., Su, M., Wang, Y., Cui, S., Meng, F., Yue, W., Liu, Y., Xu, C., Yang, Z., 2020. Food production in China requires intensified measures to be consistent with national and provincial environmental boundaries. Nat. Food 1 (9), 572-582. doi: 10.1038/s43016-020-00143-2.

[27]

Huang, J., Zhang, G., Zhang, Y., Guan, X., Wei, Y., Guo, R., 2020. Global desertification vulnerability to climate change and human activities. Land Degrad. Dev. 31 (11), 1380-1391. doi: 10.1002/ldr.3556.

[28]

Intergovernmental Panel on Climate Change (IPCC), 2006. IPCC Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies (IGES), Japan.

[29]

Intergovernmental Panel on Climate Change (IPCC), 2019. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies (IGES), Japan.

[30]

Jebli, M.B., Youssef, S.B., 2017. The role of renewable energy and agriculture in reducing CO 2 emissions: evidence for North Africa countries. Ecol. Indic. 74, 295-301. doi: 10.1016/j.ecolind.2016.11.032.

[31]

Kozicka, M., Havlík, P., Valin, H., Wollenberg, E., Deppermann, A., Leclere, D., Lauri, P., Moses, R., Boere, E., Frank, S., Davis, C., Park, E., Gurwick, N., 2023. Feeding climate and biodiversity goals with novel plant-based meat and milk alternatives. Nat. Commun. 14 (1), 5316. doi: 10.1038/s41467-023-40899-2.

[32]

Lamb, W.F., Wiedmann, T., Pongratz, J., Andrew, R., Crippa, M., Olivier, J.G.J., Wiedenhofer, D., Mattioli, G., Khourdajie, A.A., House, J., Pachauri, S., Figueroa, M., Saheb, Y., Slade, R., Hubacek, K., Sun, L., Ribeiro, S.K., Khennas, S., Can, S. de la, R.du, Chapungu, L., Davis, S.J., Bashmakov, I., Dai, H., Dhakal, S., Tan, X., Geng, Y., Gu, B., Minx, J., 2021. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ. Res. Lett. 16 (7), 073005. doi: 10.1088/1748-9326/abee4e.

[33]

Lin, B., Xu, B., 2018. Factors affecting CO 2 emissions in China’s agriculture sector: a quantile regression. Renew. Sustain. Energy Rev. 94, 15-27. doi: 10.1016/j.rser.2018.05.065.

[34]

Liu, G., Deng, X., Zhang, F., 2024. The spatial and source heterogeneity of agricultural emissions highlight necessity of tailored regional mitigation strategies. Sci. Total Environ. 914, 169917. doi: 10.1016/j.scitotenv.2024.169917.

[35]

Liu, G., Zhang, F., Deng, X., 2023. Half of the greenhouse gas emissions from China’s food system occur during food production. Commun. Earth Environ. 4 (1), 161. doi: 10.1038/s43247-023-00809-2.

[36]

Liu, X., Bae, J., 2018. Urbanization and industrialization impact of CO 2 emissions in China. J. Clean. Prod. 172, 178-186. doi: 10.1016/j.jclepro.2017.10.156.

[37]

Liu, X., Zhang, S., Bae, J., 2017. The impact of renewable energy and agriculture on carbon dioxide emissions: investigating the environmental Kuznets curve in four selected ASEAN countries. J. Clean. Prod. 164, 1239-1247. doi: 10.1016/j.jclepro.2017.07.086.

[38]

Liu, Z., Yang, P., Tang, H., Wu, W., Zhang, L., Yu, Q., Li, Z., 2014. Shifts in the extent and location of rice cropping areas match the climate change pattern in China during 1980-2010. Reg. Environ. Change 15, 919-929. doi: 10.1007/s10113-0140677- x.

[39]

Mbow, C., Rosenzweig, C.E., Barioni, L.G., Benton, T.G., Herrero, M., Krishnapillai, M., Ruane, A.C., Liwenga, E., Pradhan, P., Rivera-Ferre, M.G., Sapkota, T.B., Tubiello, F.N., Xu, Y., 2019. Food security. In: ShuklaP.R., SkeaJ., Calvo BuendiaE., MassonDelmotteV., PörtnerH.O., RobertsD.C., ZhaiP., SladeR., ConnorsS., van DiemenR., FerratE., HaugheyM., LuzS., NeogiS., PathakM., PetzoldJ., Portugal PereiraJ., VyasP., HuntleyE., KissickK., BelkacemiM., MalleyJ. ( Climate Change and Land:Eds.), An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Intergovernmental Panel on Climate Change, Geneva, Switzerland, pp. 437-550. doi: 10.1017/9781009157988.007.

[40]

McGreevy, S.R., Rupprecht, C.D.D., Niles, D., Wiek, A., Carolan, M., Kallis, G., Kantamaturapoj, K., Mangnus, A., Jehli čka, P., Taherzadeh, O., Sahakian, M., Chabay, I., Colby, A., Vivero-Pol, J.L., Chaudhuri, R., Spiegelberg, M., Kobayashi, M., Balazs, B., Tsuchiya, K., Nicholls, C., Tanaka, K., Vervoort, J., Akitsu, M., Mallee, H., Ota, K., Shinkai, R., Khadse, A., Tamura, N., Abe, K., Altieri, M., Sato, Y.I., Tachikawa, M., 2022. Sustainable agrifood systems for a post-growth world. Nat. Sustain. 5 (12), 1011-1017. doi: 10.1038/s41893-022-00933-5.

[41]

Ministry of Environment, Forest and Climate Change (MoEFCC), 2018. Third National Communication of Bangladesh to the United Nations Framework Convention on Climate Change. Government of the People’s Republic of Bangladesh.

[42]

Moran, P.P., 1948. The interpretation of statistical maps. J. R. Stat. Soc. B. Methodol. 10 (2), 243-251. doi: 10.1111/j.2517-6161.1948.tb00012.x.

[43]

Ntim-Amo, G., Qi, Y., Ankrah-Kwarko, E., Twumasi, M.A., Ansah, S., Kissiwa, L.B., Ruiping, R., 2022. Investigating the validity of the agricultural-induced environmental Kuznets curve (EKC) hypothesis for Ghana: evidence from an autoregressive distributed lag (ARDL) approach with a structural break. Manag. Environ. Qual. 33 (2), 494-526. doi: 10.1108/MEQ-05-2021-0109.

[44]

Planning Commission of Bangladesh, 2020.The 8th Five Year Plan: Promoting prosperity and Fostering Inclusiveness Dhaka, Bangladesh.

[45]

Poore, J., Nemecek, T., 2018. Reducing food’s environmental impacts through producers and consumers. Science 360 (6392), 987-992. doi: 10.1126/science.aaq0216.

[46]

Qayyum, M., Zhang, Y., Wang, M., Yu, Y., Li, S., Ahmad, W., Maodaa, S.N., Sayed, S.R.M., Gan, J., 2023. Advancements in technology and innovation for sustainable agriculture: understanding and mitigating greenhouse gas emissions from agricultural soils. J. Environ. Manage. 347, 119147. doi: 10.1016/j.jenvman.2023.119147.

[47]

Quddus, A., Kropp, J.D., 2020. Constraints to agricultural production and marketing in the lagging regions of Bangladesh. Sustainability 12 (10), 3956. doi: 10.3390/su12103956.

[48]

Raihan, A., Muhtasim, D.A., Farhana, S., Hasan, M.A.U., Pavel, M.I., Farul, O., Rahman, M., Mahmoodd, A., 2023. An econometric analysis of greenhouse gas emissions from different agricultural factors in Bangladesh. Energy Nexus 9, 100179. doi: 10.1016/j.nexus.2023.100179.

[49]

Raihan, A., Tuspekova, A., 2022. The nexus between economic growth, renewable energy use, agricultural land expansion, and carbon emissions: new insights from Peru. Energy Nexus 6, 100067. doi: 10.1016/j.nexus.2022.100067.

[50]

Rockstrom, J., Edenhofer, O., Gaertner, J., DeClerck, F., 2020. Planet-proofing the global food system. Nat. Food 1, 3-5. doi: 10.1038/s43016-019-0010-4.

[51]

Rosenzweig, C., Mbow, C., Barioni, L.G., Benton, T.G., Herrero, M., Krishnapillai, M., Liwenga, E.T., Pradhan, P., Rivera-Ferre, M.G., Sapkota, T., Tubiello, F.N., Xu, Y., Mencos Contreras, E., Portugal-Pereira, J., 2020. Climate change responses benefit from a global food system approach. Nat. Food 1 (2), 94-97. doi: 10.1038/s43016-020-0031-z.

[52]

Saber, Z., van Zelm, R., Pirdashti, H., Schipper, A.M., Esmaeili, M., Motevali, A., Nabavi- Pelesaraei, A., Huijbregts, M.A., 2021. Understanding farm-level differences in environmental impact and eco-efficiency: the case of rice production in Iran. Sustain. Prod. Consump. 27, 1021-1029. doi: 10.1016/j.spc.2021.02.033.

[53]

Saha, M.K., Mia, S., Biswas, A.K.M.A.A., Sattar, M.A., Kader, M.A., Jiang, Z., 2022. Potential methane emission reduction strategies from rice cultivation systems in Bangladesh: a critical synthesis with global meta-data. J. Environ. Manage. 310, 114755. doi: 10.1016/j.jenvman.2022.114755.

[54]

Sapkota, T.B., Khanam, F., Mathivanan, G.P., Vetter, S., Hussain, S.G., Pilat, A., Shahrin, S., Hossain, M.K., Sarker, N.R., Krupnik, T.J., 2021. Quantifying opportunities for greenhouse gas emissions mitigation using big data from smallholder crop and livestock farmers across Bangladesh. Sci. Total Environ. 786, 147344. http://doi.org/10.1016/j.scitotenv.2021.147344.

[55]

Shaddick, G., Thomas, M.L., Mudu, P., Ruggeri, G., Gumy, S., 2020. Half the world’s population are exposed to increasing air pollution. Clim. Atmos. Sci. 3 (1), 1-5. doi: 10.1038/s41612-020-0124-2.

[56]

Shew, A.M., Durand-Morat, A., Putman, B., Nalley, L.L., Ghosh, A., 2019. Rice intensification in Bangladesh improves economic and environmental welfare. Environ. Sci. Policy 95, 46-57. doi: 10.1016/j.envsci.2019.02.004.

[57]

Song, M., Wu, J., Song, M., Zhang, L., Zhu, Y., 2020. Spatiotemporal regularity and spillover effects of carbon emission intensity in China’s Bohai economic rim. Sci. Total Environ. 740, 140184. doi: 10.1016/j.scitotenv.2020.140184.

[58]

Springmann, M., Clark, M., Mason-D’Croz, D., Wiebe, K., Bodirsky, B.L., Lassaletta, L., de Vries, W., Vermeulen, S.J., Herrero, M., Carlson, K.M., Jonell, M., Troell, M., DeClerck, F., Gordon, L.J., Zurayk, R., Scarborough, P., Rayner, M., Loken, B., Fanzo, J., Godfray, H.C.J., Tilman, D., Rockstrom, J., Willett, W., 2018. Options for keeping the food system within environmental limits. Nature 562 (7728), 519-525. doi: 10.1038/s41586-018-0594-0.

[59]

Tabar, I.B., Keyhani, A., Raiee, S.,2010. Energy balance in Iran’s agronomy (1990-2006). Renew. Sust. Energ. Rev. 14 (2), 849-855. doi: 10.1016/j.rser.2009.10.024.

[60]

Tang, B.J., Guo, Y.Y., Yu, B., Harvey, L.D., 2021. Pathways for decarbonizing China’s building sector under global warming thresholds. Appl. Energy 298, 117213. doi: 10.1016/j.apenergy.2021.117213.

[61]

Tigchelaar, M., Battisti, D.S., Naylor, R.L., Ray, D.K., 2018. Future warming increases probability of globally synchronized maize production shocks. Proc. Natl. Acad. Sci. U.S.A. 115 (26), 6644-6649. doi: 10.1073/pnas.1718031115.

[62]

Tubiello, F.N., Karl, K., Flammini, A., Gütschow, J., Obli-Laryea, G., Conchedda, G., Pan, X., Qi, S.Y., Halldorudottir Heiðarsdottir, H., Wanner, N., Quadrelli, R., Rocha Souza, L., Benoit, P., Hayek, M., Sandalow, D., Mencos Contreras, E., Rosenzweig, C., Rosero Moncayo, J., Conforti, P., Torero, M., 2022. Pre- and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems. Earth Syst. Sci. Data 14 (4), 1795-1809. doi: 10.5194/essd-14-1795-2022.

[63]

Tubiello, F.N., Rosenzweig, C., Conchedda, G., Karl, K., Guetschow, J., Pan, X., Obli- Laryea, G., Wanner, N., Qiu, S.Y., De Barros, J., Flammini, A., Mencos-Contreras, E., Souza, L., Quadrelli, R., Heidarsdottir, H.H., Benoit, P., Hayek, M., Sandalow, D., 2021. Greenhouse gas emissions from food systems: building the evidence base. Environ. Res. Lett. 16 (6), 065007. doi: 10.1088/1748-9326/ac018e.

[64]

Ullah, A., Khan, D., Khan, I., Zheng, S., 2018. Does agricultural ecosystem cause environmental pollution in Pakistan? Promise and menace. Environ. Sci. Pollut. Res. 25, 13938-13955. doi: 10.1007/s11356-018-1530-4.

[65]

Wang, B., Cai, A., Li, Y., Qin, X., Wilkes, A., Wang, P., Liu, S., Zhang, X., Zeng, N., 2022. Four pathways towards carbon neutrality by controlling net greenhouse gas emissions in Chinese cropland. Resour. Conserv. Recycl. 186, 106576. doi: 10.1016/j.resconrec.2022.106576.

[66]

Wang, L., Zhang, F., Wang, Z., Tan, Q., 2021. The impact of rural infrastructural investment on farmers’ income growth in China. China Agric. Econ. Rev. 14 (1), 202-219. doi: 10.1108/CAER-09-2020-0211.

[67]

Wang, P., Zhang, Z., Song, X., Chen, Y., Wei, X., Shi, P., Tao, F., 2014. Temperature variations and rice yields in China: historical contributions and future trends. Clim. Change 124, 777-789. doi: 10.1007/s10584-014-1136-x.

[68]

Wang, Q., Han, X., 2021. Is decoupling embodied carbon emissions from economic output in Sino-US trade possible? Technol. Forecast. Soc. Chang. 169, 120805. doi: 10.1016/j.techfore.2021.120805.

[69]

Wang, Q., Zhang, F., 2020. Does increasing investment in research and development promote economic growth decoupling from carbon emission growth? An empirical analysis of BRICS countries. J. Clean. Prod. 252, 119853. doi: 10.1016/j.jclepro.2019.119853.

[70]

World, Bank, 2019. Climate Smart Agriculture Investment Pan: Bangladesh. Investment opportunities in the Agriculture Sector’s Transition to a Climate Resilient Growth Path. International Bank for Reconstruction and Development (IBRD) /The World Bank, Washington, D.C.

[71]

World, Bank, 2022. Data Series by the World Bank Group. World Development Indicators (WDI). World Bank, Washington, D.C., USA.

[72]

Yang, Y., Hobbie, S.E., Hernandez, R.R., Fargione, J., Grodsky, S.M., Tilman, D., Zhu, Y.G., Luo, Y., Smith, T.M., Jungers, J.M., Yang, M., Chen, W.Q., 2020. Restoring abandoned farmland to mitigate climate change on a full earth. One Earth 3 (2), 176-186. doi: 10.1016/j.oneear.2020.07.019.

[73]

Yousuf, M., Ahmed, R., Lubna, N.A., Sumon, S.M., 2019. Estimating the services sector impact on economic growth of Bangladesh: an econometric investigation. Asian J. Econ. Model. 7 (2), 62-72. http://10.18488/journal.8.2019.72.62.72.

[74]

Yu, Y., Jiang, T., Li, S., Li, X., Gao, D., 2020. Energy-related CO 2 emissions and structural emissions’ reduction in China’s agriculture: an input-output perspective. J. Clean. Prod. 276, 124169. doi: 10.1016/j.jclepro.2020.124169.

[75]

Zhang, G., Xiao, X., Biradar, C.M., Dong, J., Qin, Y., Menarguez, M.A., Zhou, Y., Zhang, Y., Jin, C., Wang, J., Doughty, R.B., Ding, M., Moore, B., 2017. Spatiotemporal patterns of paddy rice croplands in China and India from 2000 to 2015. Sci. Total Environ. 579, 82-92. doi: 10.1016/j.scitotenv.2016.10.223.

[76]

Zurek, M., Hebinck, A., Selomane, O., 2022. Climate change and the urgency to transform food systems. Science 376 (6600), 1416-1421. doi: 10.1126/science.abo2364.

PDF

228

Accesses

0

Citation

Detail

Sections
Recommended

/