The modeling framework of the coupled human and natural systems in the Yellow River Basin

Shan Sang , Yan Li , Shuang Zong , Lu Yu , Shuai Wang , Yanxu Liu , Xutong Wu , Shuang Song , Xuhui Wang , Bojie Fu

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) : 100294

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) :100294 DOI: 10.1016/j.geosus.2025.100294
Perspective
review-article

The modeling framework of the coupled human and natural systems in the Yellow River Basin

Author information +
History +
PDF

Abstract

A mechanistic understanding and modeling of the coupled human and natural systems (CHANS) are frontier of geographical sciences and essential for promoting regional sustainability. Modeling regional CHANS in the Yellow River Basin (YRB) featuring high water stress, intense human interference, and a fragile ecosystem has always been a complex challenge. Here, we propose a conceptual modeling framework to capture key human-natural components and their interactions, focusing on human-water dynamics. The modeling framework encompasses five human (Population, Economy, Energy, Food, and Water Demand) and five natural sectors (Water Supply, Sediment, Land, Carbon, and Climate) that can be either fully interactive or standalone. The modeling framework, implemented using the system dynamics (SD) approach, can well reproduce the basin's historical evolution in human-natural processes and predict future dynamics under various scenarios. The flexibility, adaptability, and potential for integration with diverse methods position the framework as an instructive tool for guiding regional CHANS modeling. Our insights highlight pathways to advance regional CHANS modeling and its application to address regional sustainability challenges.

Keywords

Coupled human-natural systems (CHANS) / System dynamics / Regional modeling / Yellow River / Sustainable development

Cite this article

Download citation ▾
Shan Sang, Yan Li, Shuang Zong, Lu Yu, Shuai Wang, Yanxu Liu, Xutong Wu, Shuang Song, Xuhui Wang, Bojie Fu. The modeling framework of the coupled human and natural systems in the Yellow River Basin. Geography and Sustainability, 2025, 6(4): 100294 DOI:10.1016/j.geosus.2025.100294

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Shan Sang: Writing – review & editing, Writing – original draft, Software, Methodology, Formal analysis, Data curation, Conceptualization. Yan Li: Writing – review & editing, Supervision, Project administration, Methodology, Investigation, Funding acquisition, Conceptualization. Shuang Zong: Software, Methodology, Data curation. Lu Yu: Software, Methodology, Data curation. Shuai Wang: Writing – review & editing. Yanxu Liu: Writing – review & editing. Xutong Wu: Writing – review & editing. Shuang Song: Writing – review & editing. Xuhui Wang: Project administration. Bojie Fu: Writing – review & editing, Supervision, Methodology, Funding acquisition, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study is supported by the National Natural Science Foundation of China (Grant No. 42041007), and the Fundamental Research Funds for the Central Universities. We thank Dr. Weishuang Qu for developing the Threshold 21 model in the Millennium Institute that inspired this study, and also for his and Dr. Haiyan Jiang’s generous help with the YRB modeling. We also thank the data support from National Earth System Science Data Center, National Science & Technology Infrastructure of China (http://www.geodata.cn).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100294.

References

[1]

Akhtar, M. K., Wibe, J, Simonovic, S. P., MacGee, J., 2013. Integrated assessment model of society-biosphere-climate-economy-energy system. Environ. Modell. Softw., 49 , pp. 1-21. doi: 10.1016/j.envsoft.2013.07.006.

[2]

Alexander, P, Rabin, S, Anthoni, P, Henry, R, Pugh, T. A. M., Rounsevell, M. D. A., Arneth, A., 2018. Adaptation of global land use and management intensity to changes in climate and atmospheric carbon dioxide. Glob. Change Biol., 24 , pp. 2791-2809. doi: 10.1111/gcb.14110.

[3]

Bao, C, Fang, C., 2007. Water resources constraint force on urbanization in water deficient regions: a case study of the Hexi Corridor, arid area of NW China. Ecol. Econ., 62 , pp. 508-517. doi: 10.1016/j.ecolecon.2006.07.013.

[4]

Binsted, M, Iyer, G, Patel, P, Graham, N. T., Ou, Y, Khan, Z, Kholod, N, Narayan, K, Hejazi, M, Kim, S, Calvin, K, Wise, M., 2022. GCAM-USA v5.3_water_dispatch: integrated modeling of subnational US energy, water, and land systems within a global framework. Geosci. Model Dev., 15 , pp. 2533-2559. doi: 10.5194/gmd-15-2533-2022.

[5]

Blair, P, Buytaert, W., 2016. Socio-hydrological modelling: a review asking “why, what and how?”. Hydrol. Earth Syst. Sci., 20 , pp. 443-478. doi: 10.5194/hess-20-443-2016.

[6]

Boretti, A, Rosa, L., 2019. Reassessing the projections of the World water development report. npj Clean Water, 2 , p. 15. doi: 10.1038/s41545-019-0039-9.

[7]

Breach, P. A., Simonovic, S. P., 2021. ANEMI3: an updated tool for global change analysis. PLoS One, 16 , Article e0251489. doi: 10.1371/journal.pone.0251489.

[8]

Calvin, K, Bond-Lamberty, B., 2018. Integrated human-earth system modeling—state of the science and future directions. Environ. Res. Lett., 13 , Article 063006. doi: 10.1088/1748-9326/aac642.

[9]

Cheng, Y, Huang, M, Lawrence, D. M., Calvin, K, Lombardozzi, D. L., Sinha, E, Pan, M, He, X., 2022. Future bioenergy expansion could alter carbon sequestration potential and exacerbate water stress in the United States. Sci. Adv., 8 , p. eabm8237. doi: 10.1126/sciadv.abm8237.

[10]

Chou, J, Hu, C, Dong, W, Ban, J., 2018. Temporal and spatial matching in human-earth system model coupling. Earth Space Sci., 5 , pp. 231-239. doi: 10.1002/2018EA000371.

[11]

Cosgrove, W. J., Loucks, D. P., 2015. Water management: current and future challenges and research directions. Water Resour. Res., 51 , pp. 4823-4839. doi: 10.1002/2014WR016869.

[12]

Deng, X, Huang, J, Rozelle, S, Uchida, E., 2008. Growth, population and industrialization, and urban land expansion of China. J. Urban Econ., 63 , pp. 96-115. doi: 10.1016/j.jue.2006.12.006.

[13]

Feng, M, Liu, P, Li, Z, Zhang, J, Liu, D, Xiong, L., 2016. Modeling the nexus across water supply, power generation and environment systems using the system dynamics approach: hehuang Region, China. J. Hydrol., 543 , pp. 344-359. doi: 10.1016/j.jhydrol.2016.10.011.

[14]

Feng, X, Fu, B, Piao, S, Wang, S, Ciais, P, Zeng, Z, , Y, Zeng, Y, Li, Y, Jiang, X, Wu, B., 2016. Revegetation in China's Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change, 6 , pp. 1019-1022. doi: 10.1038/nclimate3092.

[15]

Feng, Y, Zhu, A., 2022. Spatiotemporal differentiation and driving patterns of water utilization intensity in Yellow River Basin of China: comprehensive perspective on the water quantity and quality. J. Clean. Prod., 369 , Article 133395. doi: 10.1016/j.jclepro.2022.133395.

[16]

Flörke, M, Kynast, E, Bärlund, I, Eisner, S, Wimmer, F, Alcamo, J., 2013. Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: a global simulation study. Glob. Environ. Change, 23 , pp. 144-156. doi: 10.1016/j.gloenvcha.2012.10.018.

[17]

Fu, B., 2020. Promoting geography for sustainability. Geogr. Sustain., 1 , pp. 1-7. doi: 10.1016/j.geosus.2020.02.003.

[18]

Fu, B, Liu, Y, , Y, He, C, Zeng, Y, Wu, B., 2011. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol. Complex., 8 , pp. 284-293. doi: 10.1016/j.ecocom.2011.07.003.

[19]

Fu, B, Liu, Y, Meadows, M. E., 2023. Ecological restoration for sustainable development in China. Natl. Sci. Rev., 10 , p. nwad033. doi: 10.1093/nsr/nwad033.

[20]

Fujimori, S, Wu, W, Doelman, J, Frank, S, Hristov, J, Kyle, P, Sands, R, van Zeist, W. J., Havlik, P, Domínguez, I. P., Sahoo, A, Stehfest, E, Tabeau, A, Valin, H, van Meijl, H, Hasegawa, T, Takahashi, K., 2022. Land-based climate change mitigation measures can affect agricultural markets and food security. Nat. Food, 3 , pp. 110-121. doi: 10.1038/s43016-022-00464-4.

[21]

Gou, J, Miao, C, Samaniego, L, Xiao, M, Wu, J, Guo, X., 2021. CNRD v1.0: a high-quality natural runoff dataset for hydrological and climate studies in China. Bull. Amer. Meteorol. Soc., 102 , pp. E929-E947. doi: 10.1175/BAMS-D-20-0094.1.

[22]

Hu, H, Tian, G, Wu, Z, Xia, Q., 2023. Cross-regional ecological compensation under the composite index of water quality and quantity: a case study of the Yellow River Basin. Environ. Res., 238 , Article 117152. doi: 10.1016/j.envres.2023.117152.

[23]

Jain, S, Mindlin, J, Koren, G, Gulizia, C, Steadman, C, Langendijk, G. S., Osman, M, Abid, M. A., Rao, Y, Rabanal, V., 2022. Are we at risk of losing the current generation of climate researchers to data science?. AGU Adv., 3 . doi: 10.1029/2022AV000676.

[24]

Jia, B, Zhou, J, Zhang, Y, Tian, M, He, Z, Ding, X., 2021. System dynamics model for the coevolution of coupled water supply–power generation–environment systems: upper Yangtze River Basin, China. J. Hydrol., 593 , Article 125892. doi: 10.1016/j.jhydrol.2020.125892.

[25]

Jiang, H, Simonovic, S. P., Yu, Z., 2022. ANEMI_Yangtze v1.0: a coupled human–natural systems model for the Yangtze Economic Belt – model description. Geosci. Model Dev., 15 , pp. 4503-4528. doi: 10.5194/gmd-15-4503-2022.

[26]

Jiang, L, Zuo, Q, Ma, J, Zhang, Z., 2021. Evaluation and prediction of the level of high-quality development: a case study of the Yellow River Basin, China. Ecol. Indic., 129 , Article 107994. doi: 10.1016/j.ecolind.2021.107994.

[27]

Klassert, C, Yoon, J, Sigel, K, Klauer, B, Talozi, S, Lachaut, T, Selby, P, Knox, S, Avisse, N, Tilmant, A, Harou, J. J., Mustafa, D, Medellín-Azuara, J, Bataineh, B, Zhang, H, Gawel, E, Gorelick, S. M., 2023. Unexpected growth of an illegal water market. Nat. Sustain., 6 , pp. 1406-1417. doi: 10.1038/s41893-023-01177-7.

[28]

Li, C, Zhang, Y, Shen, Y, Yu, Q., 2020. Decadal water storage decrease driven by vegetation changes in the Yellow River Basin. Sci. Bull., 65 , pp. 1859-1861. doi: 10.1016/j.scib.2020.07.020.

[29]

Li, X, Zhang, L, Zheng, Y, Yang, D, Wu, F, Tian, Y, Han, F, Gao, B, Li, H, Zhang, Y, Ge, Y, Cheng, G, Fu, B, Xia, J, Song, C, Zheng, C., 2021. Novel hybrid coupling of ecohydrology and socioeconomy at river basin scale: a watershed system model for the Heihe River basin. Environ. Modell. Softw., 141 , Article 105058. doi: 10.1016/j.envsoft.2021.105058.

[30]

Li, Y, Sang, S, Mote, S, Rivas, J, Kalnay, E., 2023. Challenges and opportunities for modeling coupled human and natural systems. Natl. Sci. Rev., 10 , p. nwad054. doi: 10.1093/nsr/nwad054.

[31]

Luderer, G, Vrontisi, Z, Bertram, C, Edelenbosch, O. Y., Pietzcker, R. C., Rogelj, J, De Boer, H. S., Drouet, L, Emmerling, J, Fricko, O, Fujimori, S, Havlík, P, Iyer, G, Keramidas, K, Kitous, A, Pehl, M, Krey, V, Riahi, K, Saveyn, B, Tavoni, M, Van Vuuren, D. P., Kriegler, E., 2018. Residual fossil CO2 emissions in 1.5–2°C pathways. Nat. Clim. Change, 8 , pp. 626-633. doi: 10.1038/s41558-018-0198-6.

[32]

McDonnell, J. J., 2017. Beyond the water balance. Nat. Geosci., 10 , p. 396. doi: 10.1038/ngeo2964.

[33]

Miao, C, Kong, D, Wu, J, Duan, Q., 2016. Functional degradation of the water–sediment regulation scheme in the lower Yellow River: spatial and temporal analyses. Sci. Total Environ., 551–552 , pp. 16-22. doi: 10.1016/j.scitotenv.2016.02.006.

[34]

Monier, E, Paltsev, S, Sokolov, A, Chen, Y. H. H., Gao, X, Ejaz, Q, Couzo, E, Schlosser, C. A., Dutkiewicz, S, Fant, C, Scott, J, Kicklighter, D, Morris, J, Jacoby, H, Prinn, R, Haigh, M., 2018. Toward a consistent modeling framework to assess multi-sectoral climate impacts. Nat. Commun., 9 , p. 660. doi: 10.1038/s41467-018-02984-9.

[35]

Motesharrei, S., Rivas, J., Kalnay, E., 2014. Human and nature dynamics (HANDY): modeling inequality and use of resources in the collapse or sustainability of societies. Ecol. Econ. 101, 90–102. doi: 10.1016/j.ecolecon.2014.02.014.

[36]

Motesharrei, S, Rivas, J, Kalnay, E, Asrar, G. R., Busalacchi, A. J., Cahalan, R. F., Cane, M. A., Colwell, R. R., Feng, K, Franklin, R. S., Hubacek, K, Miralles-Wilhelm, F, Miyoshi, T, Ruth, M, Sagdeev, R, Shirmohammadi, A, Shukla, J, Srebric, J, Yakovenko, V. M., Zeng, N., 2016. Modeling sustainability: population, inequality, consumption, and bidirectional coupling of the Earth and human systems. Natl. Sci. Rev., 3 , pp. 470-494. doi: 10.1093/nsr/nww081.

[37]

Ning, X, Zhu, N, Liu, Y, Wang, H., 2022. Quantifying impacts of climate and human activities on the grassland in the Three-River Headwater Region after two phases of Ecological Project. Geogr. Sustain., 3 , pp. 164-176. doi: 10.1016/j.geosus.2022.05.003.

[38]

Oki, T, Kanae, S., 2006. Global hydrological cycles and world water resources. Science, 313 (2006), pp. 1068-1072. doi: 10.1126/science.1128845.

[39]

Peng, X., 2011. China's demographic history and future challenges. Science, 333 (2011), pp. 581-587. doi: 10.1126/science.1209396.

[40]

Qu, W, Shi, W, Zhang, J, Liu, T., 2020. T21 China 2050: a tool for national sustainable development planning. Geogr. Sustain., 1 , pp. 33-46. doi: 10.1016/j.geosus.2020.03.004.

[41]

Rydzak, F, Obersteiner, M, Kraxner, F, Fritz, S, McCallum, I., 2013. FeliX3–Impact Assessment Model: Systemic View Across Societal Benefit Areas beyond Global Earth Observation. International Institute for Applied Systems Analysis (IIASA), Laxenburg

[42]

Sun, X., Zhou, Z., Wang, Y., 2023. Water resource carrying capacity and obstacle factors in the Yellow River basin based on the RBF neural network model. Environ. Sci. Pollut. Res. 30, 22743–22759. doi: 10.1007/s11356-022-23712-3.

[43]

Vaidyanathan, G., 2021. Integrated assessment climate policy models have proven useful, with caveats. Proc. Natl. Acad. Sci. U.S.A., 118 , Article e2101899118. doi: 10.1073/pnas.2101899118.

[44]

Verburg, P. H., Dearing, J. A., Dyke, J. G., Leeuw van der, S, Seitzinger, S, Steffen, W, Syvitski, J., 2016. Methods and approaches to modelling the Anthropocene. Glob. Environ. Change, 39 , pp. 328-340. doi: 10.1016/j.gloenvcha.2015.08.007.

[45]

Wang, J, Guan, H, Zhao, A., 2024. 375 , Article 124178. doi: 10.1016/j.apenergy.2024.124178.

[46]

Wang, S, Fu, B, Piao, S, , Y, Ciais, P, Feng, X, Wang, Y., 2016. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci., 9 , pp. 38-41. doi: 10.1038/ngeo2602.

[47]

Wang, Y, Song, J, Zhang, X, Sun, H, Bai, H., 2022. Coupling coordination evaluation of water-energy-food and poverty in the Yellow River Basin, China. J. Hydrol., 614 , Article 128461. doi: 10.1016/j.jhydrol.2022.128461.

[48]

Wei, H, Wang, Y, Liu, J, Zhang, J, Cao, Y., 2023. Coordinated development of cultivated land use and ecological protection in cities along the main stream of the Yellow River in Henan Province, China. Ecol. Indic., 156 , Article 111143. doi: 10.1016/j.ecolind.2023.111143.

[49]

Woodard, D. L., Davis, S. J., Randerson, J. T., 2019. Economic carbon cycle feedbacks may offset additional warming from natural feedbacks. Proc. Natl. Acad. Sci. U.S.A., 116 , pp. 759-764. doi: 10.1073/pnas.1805187115.

[50]

Xu, X.L., 2017a. Kilometer grid dataset of China’s GDP spatial distribution. https://doi.org/10.12078/2017121102

[51]

Xu, X.L., 2017b Kilometer grid dataset of China’s population spatial distribution. https://doi.org/10.12078/2017121101

[52]

Yang, D, Shao, W, Yeh, P. J. F., Yang, H, Kanae, S, Oki, T., 2009. Impact of vegetation coverage on regional water balance in the nonhumid regions of China. Water Resour. Res., 45 (7), 507–519 . doi: 10.1029/2008WR006948.

[53]

Yin, S, Gao, G, Ran, L, Li, D, Lu, X, Fu, B., 2023. Extreme streamflow and sediment load changes in the Yellow River Basin: impacts of climate change and human activities. J. Hydrol., 619 , Article 129372. doi: 10.1016/j.jhydrol.2023.129372.

[54]

Yin, S, Gao, G, Ran, L, Lu, X, Fu, B., 2021. Spatiotemporal variations of sediment discharge and in-reach sediment budget in the Yellow River from the headwater to the delta. Water Resour. Res., 57, . doi: 10.1029/2021WR030130.

[55]

Yoon, J, Klassert, C, Selby, P, Lachaut, T, Knox, S, Avisse, N, Harou, J, Tilmant, A, Klauer, B, Mustafa, D, Sigel, K, Talozi, S, Gawel, E, Medellín-Azuara, J, Bataineh, B, Zhang, H, Gorelick, S. M., 2021. A coupled human–natural system analysis of freshwater security under climate and population change. Proc. Natl. Acad. Sci. U.S.A., 118 , Article e2020431118. doi: 10.1073/pnas.2020431118.

[56]

Yu, S, Horing, J, Liu, Q, Dahowski, R, Davidson, C, Edmonds, J, Liu, B, Mcjeon, H, McLeod, J, Patel, P, Clarke, L., 2019. CCUS in China's mitigation strategy: insights from integrated assessment modeling. Int. J. Greenh. Gas Control, 84 , pp. 204-218. doi: 10.1016/j.ijggc.2019.03.004.

[57]

Zhang, T, Su, X, Zhang, G, Wu, H, Liu, Y., 2022. Projections of the characteristics and probability of spatially concurrent hydrological drought in a cascade reservoirs area under CMIP6. J. Hydrol., 613 , Article 128472. doi: 10.1016/j.jhydrol.2022.128472.

[58]

Zhang, W, Liang, W, Gao, X, Li, J, Zhao, X., 2024. Trajectory in water scarcity and potential water savings benefits in the Yellow River basin. J. Hydrol., 633 , Article 130998. doi: 10.1016/j.jhydrol.2024.130998.

PDF

204

Accesses

0

Citation

Detail

Sections
Recommended

/